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Graft-versus-host disease (GVHD) is a pathology in which chemokines and their receptors
play essential roles in directing the migration of alloreactive donor T cells into GVHD
organs, thereby leading to further target tissue damage. Currently, acute GVHD (aGVHD)
remains a major cause of high morbidity and mortality in patients who underwent
allogeneic hematopoietic cell transplantation (alloHCT). The identification of immune
cells that correlate with aGVHD is important and intriguing. To date, the involvement of
innate-like gd T cells in the pathogenesis of aGVHD is unclear. Herein, we found that
primary human gd T cells did not directly trigger allogeneic reactions. Instead, we revealed
that gd T cells facilitated the migration of CD4 T cells via the SDF-1-CXCR4 axis. These
results indicate indirect regulation of gd T cells in the development of aGVHD rather than a
direct mechanism. Furthermore, we showed that the expression of CXCR4 was
significantly elevated in gd T cells and CD4 and CD8 T cells in recipients who
experienced grades II-IV aGVHD after alloHCT. Consistently, CXCR4-expressing gd T
cells and CD4 T cells were induced in the target organs of mice suffering aGVHD. The
depletion of gd T cells in transplant grafts and treatment with AMD3100, an inhibitor of
CXCR4 signaling, delayed the onset of aGVHD and prolonged survival in mice. Taken
together, these findings suggest a role for gd T cells in recruiting alloreactive CD4 T cells to
target tissues through the expression of CXCR4. Our findings may help in understanding
the mechanism of aGVHD and provide novel therapeutic targets.
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INTRODUCTION

Acute graft-versus-host disease (aGVHD) remains a leading
cause of unfavorable and life-threatening outcomes after
allogeneic hematopoietic cell transplantation (alloHCT) (1).
The stages of aGVHD are defined based on clinical
manifestations and the severity of organ involvement: grade I
(mild), II (moderate), III (severe), and IV (very severe). Among
patients who underwent alloHCT with different protocols, 30%-
50% developed aGVHD (grades I-IV), and 14% experienced
severe aGVHD (grades III-IV) (2). Mortality is higher in patients
suffering moderate to severe aGVHD than in those with mild
disease. Only 25-30% of patients with grade III aGVHD and 1-
2% of patients with grade IV aGVHD survived longterm (>2
years) (3). Although prophylaxis and treatment regimens have
improved over the past two decades, severe aGVHD after
alloHCT is still a challenging problem in the clinic. Therefore,
a better understanding of the mechanisms related to the
pathogenesis of aGVHD is essential and urgent for decreasing
the incidence of this intractable complication and improving
therapeutic efficacy.

Currently, the development of aGVHD can be separated into
four pathophysiological stages. The first stage centers upon the
effects of conditioning regimens before alloHCT and
the consequent proinflammatory microenvironment that lays the
foundation for initial leukocyte activation and infiltration. The
second stage is mainly focused on the activation of T cells.
Donor-derived T cells recognize alloantigens on host-derived
antigen-presenting cells, resulting in the proliferation and
differentiation of alloreactive effector T cells. Then, the activated
allogeneic T cells migrate towards target organs. Further release of
inflammatory cytokines, accompanied by direct cell-mediated
cytotoxicity, leads to the third and final phases of aGVHD (4).
During this process, CD4 and CD8 T cells are responsible for
mediating the systemic Th1-type response, as well as an
inflammatory cytokine cascade (5). Apart from adaptive ab T
cells, the migration and function of innate-like gd T cells
associated with alloreactivity have been less well reported.
Although previous studies demonstrated that gd T cells were
involved in the development of aGVHD, the conclusions remain
unclear (6–9).

The recruitment of lymphocytes into target tissues is critical for
the pathogenesis of aGVHD (10). It is well understood that the
migration and infiltration of T cells into specific organs are
regulated by a series of chemokines via interactions with specific
receptors on T cells (11). As revealed by clinical and experimental
studies, CCR5 is a critical receptor associated with aGVHD
development. CCR5 appears to play a major role in recruiting
lymphocytes to the skin and leads to the production of cytokines,
which are involved in the pathogenesis of aGVHD (12). Notably, it
has been reported that CCR5 is colocalized and forms complexes
with the chemokine receptor CXCR4 on the surface of CD4-
expressing T cells. CXCR4 interacts with stromal-derived factor-1
(SDF-1/CXCL12) and regulates hematopoietic stemandprogenitor
cell trafficking (13). AMD3100, an antagonist of CXCR4 signaling,
has been proven to act as an immunomodulator to regulate various
immune responses, such as mobilizing hematopoietic stem cells,
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increasing circulating neutrophils, lymphocytes and monocytes,
reducing myeloid-derived suppressor cells, and enhancing
cytotoxic T cell infiltration in tumors (14). Although the SDF-1-
CXCR4 signaling pathway has gained increasing attention in recent
years, its role has not been described in association with the
development of aGVHD.

In the current study, we examined whether gd T cells
functioned directly or indirectly in the process of alloreactivity
and contributed to the development of aGVHD after alloHCT.
The involvement of CXCR4 expression and signaling in the
association of gd T cells with aGVHD was also explored. Our
findings may help researchers understand the mechanisms
behind the occurrence of aGVHD.
MATERIALS AND METHODS

Mixed Lymphocyte Reaction
Peripheral blood samples were collected from healthy donors.
Then peripheral blood mononuclear cells (PBMCs) were freshly
isolated by Ficoll-Hypaque density gradient centrifugation.
Primary gd T cells and PBMCs depleted of gd T cells (referred
to as PBMCDgd T cells) were sorted using Anti-TCR g/d
MicroBead Kit (Miltenyi Biotec, Germany). After that, the
purified allogenic gd T cells and PBMCDgd T cells were
resuspended in RPMI 1640 medium plus 10% FBS, followed by
coculture crosswise at a 1:3 rate in 96-well round bottom plates
(Corning Costar, USA). On day 5 after coculture cells were
collected and detected by flow cytometry.

Detection of Intracellular Cytokines
For detection of intracellular cytokines, cocultured cells were
treated with 1x Protein Transport Inhibitor Cocktail (500x,
eBioscience, USA) for 5 h at 37°C. Following staining with
anti-CD4, anti-CD8 and anti-TCRab, cells were fixed and
permeabilized with the FIX&PERM kit (MultiSciences Biotech,
China), and then were stained with anti-TNF-a, anti-IFN-g and
anti-IL-17 antibodies. Besides, positive controls were included to
demonstrate that the cytokine staining was appropriate for use in
our study. PBMCs were freshly isolated from healthy donors and
treated with Cell Stimulation Cocktail (plus protein transport
inhibitors) (500x, eBioscience, USA) for 5 h and collected for
detection of intracellular cytokines.

Cell Migration Assay
The migration assay was designed using Transwell® cell culture
plate (Corning Costar, USA). Primary gd T cells were isolated as
described above. Primary ab T cells were sorted from fresh
PBMCs of different healthy donors using Anti-TCR g/d
MicroBead Kit and Anti-CD3 MicroBead Kit (Miltenyi Biotec,
Germany). The purified ab T cells (5×105 cells) with or without
gd T cells (1.5×105 cells) were placed into the upper chamber
with 100 ml of RPMI 1640 culture medium (plus 10% FBS), and
600 ml of RPMI 1640 culture medium containing SDF-1 (100 ng/
ml; Biovision) was added to the lower chamber. After incubation
at 37°C for 18 h, the cells that had migrated into the lower wells
were collected and detected by flow cytometry. The ratio of
July 2021 | Volume 12 | Article 687961
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migrating cells was calculated by dividing the number of cells in
the lower chamber by the total input cells, which were delivered
onto the upper chamber before migration.

For chemotaxis inhibition assay, primary gd T cells were
positively sorted using anti-TCR g/d MicroBead Kit (Miltenyi
Biotec, Germany). The purity of positive-selected gd T cells was
over 95%. Then the purified gd T cells were placed into the upper
chamber with 100 ml of RPMI 1640 plus 10% FBS culture
medium, and 600 ml of RPMI 1640 culture medium containing
SDF-1 (100 ng/ml; Biovision) was added to the lower chamber.
After incubation for 24 h, gd T cells those migrated towards SDF-
1 were collected and counted. Then SDF-driven gd T cells (5×105

cells) were placed onto the lower chambers with or without
AMD3100 (10 µg/ml; Selleck) respectively. The non-treated
primary gd T cells were placed onto the lower chamber as
control. The upper chambers were each added with the sorted
ab T cells (5×105 cells). Following incubation for 18 h, cells in
lower chambers were collected for counting and then detected by
flow cytometry. The calculation of CD4 and CD8 T cells mobility
is same as described above.

To validate if SDF-1-exposed gd T cells produce additional
SDF-1, primary gd T cells were sorted and resuspended in culture
media with 100, 150, and 200 ng/mL of SDF-1. The non-treated
primary gd T cells and media containing SDF-1 were as controls.
After incubation for 24 h, the cell supernatant was collected for
subsequent ELISA.

Patients
The current study included 46 consecutive patients who were
diagnosed with hematopoietic malignancies (including acute
myeloid leukemia, acute lymphoblastic leukemia, chronic
myeloid leukemia, and myelodysplastic syndrome) and
received haploidentical hematopoietic cell transplantation
(haploHCT) at our institute from September 2018 to
December 2018. The included patients were between the ages
of 16 and 58. The pre-transplant conditioning regimen,
transplant procedures, aGVHD prophylaxis and treatment
were described previously (15, 16). Chimerism analyses were
performed by DNA fingerprinting of short tandem repeats using
peripheral blood samples. In the current study, full donor
chimerism was confirmed in all included patients at 30 days
after transplantation. Protocol of this study has been approved by
the Ethics Committee of Peking University Institute of
Hematology. All recipients and donors signed consent forms.

Flow Cytometry Analyses
Peripheral blood samples were collected from the included
patients around 45 days post-haploHCT. Briefly, 300 ml of fresh
peripheral blood per sample was stained with the following
fluorochrome-labelled antibodies: PE-Cy7-CD3, BV510-TCRab,
BV605-CD4, APC-CD8, PE-CF594-CXCR4 (BioLegend, San
Diego, CA). After incubation, red blood cells were lysed with a
lysis solution (BD Biosciences, San Jose, CA) and then were
washed twice with PBS. Polychromatic flow cytometric analyses
were performed on a BD LSRFortessaTM Cell Analyser and
further analyzed using BD FACSDivaTM software.
Frontiers in Immunology | www.frontiersin.org 3
Mice
The severe immunodeficient NOD-Prkdcscid Il2rgtm1/Vst (NPG)
mice were purchased from Beijing Vitalstar Biotechnology
(China). For transplantation of human blood cells, NPG mice
were irradiated at a dose of 1 Gy. Then PBMCs freshly isolated
from healthy donors were injected into the mice (5×106 cells/
mouse) via the tail vein. Since the second week after injection, the
PB samples were collected from mice and the implantation was
detected by flow cytometry with APC-Cy7-human CD45
antibody (BioLegend). The implantation will be confirmed if
the percentage of human CD45-positive cells in mouse
peripheral mononuclear cells is more than 25%.

Mice were graded every 2 days for evidence of GVHD by
assessment of five clinical parameters: weight loss, posture
(hunching), activity, fur texture, and skin integrity. Individual
mouse from coded cages received a score of 0 to 2 for each
criterium (maximum score of 10). Scores > 5 were classified as
severe GVHD, and 3-5 were classified as moderate GVHD. Mice
were sacrificed when they reached final aGVHD stages (weight
loss > 25%, severe hunching, impaired movement, stationary
unless stimulated, severe ruffling/poor grooming, obvious areas
of denuded skin) (17). Given the fact that naive NPGmice would
not exhibit GVHD if they were not infused with PBMCs, and the
onset time of GVHD in PBMC-infused mice would be varied due
to individual differences, when the mice manifested obvious
GVHD symptoms, the equal number of mice without aGVHD
were sacrificed at the same time and used as the no-GVHD
controls. Meanwhile, liver biopsies were retrieved from mice
with and without aGVHD. Histolopathological features were
evaluated based on hematoxylin & eosin (H&E) staining for
formal in-fixed paraffin-embedded (FFPE) sect ions .
Immunophenotypic analyses were conducted on FFPE sections
using antibodies against human TNF-a (Boster, China), TCRgd
(Biolegend, USA), CD4 (Affinity Biosciences, China) and CXCR4
(Biosynthesis Biotechnology, China).

The biopsy specimens of skin and liver were obtained from
mice with and without aGVHD. Skin cells were gained by
mincing the tissues followed by digestion with 1% type 1
collagenase for 4 h. Liver samples were gently ground in PBS
to isolate the primary cells. All collected tissue cells were washed
twice with PBS, followed by staining with fluorochrome-labelled
antibodies as indicated. Polychromatic flow cytometric analyses
were performed on a BD LSRFortessaTM Cell Analyser and
further analyzed using BD FACSDivaTM software.

To further prove that the gd T cells and CXCR4 signaling
contribute to the migration of CD4 T cells and the development
of GVHD, NPG mice were transplanted and divided into four
groups: PBMCs group; PBMCs plus AMD3100 group; PBMCs
depleted of gd T cells (PBMCDgd T cells) group; and PBMCDgd T
cells plus AMD3100 group. PBMCs and PBMCDgd T cells were
injected into the mice respectively as described above. The
efficiency of gd T depletion from PBMCs using Miltenyi kit
were almost 98%. Due to the limited number of human blood
cells injected into mice, we divided the mice into two batches. In
the first batch of mice, AMD3100 was administered
intraperitoneally to mice at a dose of 5mg/kg on the next day
July 2021 | Volume 12 | Article 687961

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wu et al. gd T Cells, CXCR4, and aGVHD
after injection of human blood cells. In the second batch of mice,
we performed multiple injections of AMD3100 (from 1 to 4
times) in mice infused with human blood cells to better observe
the survival of mice among each group in consideration of the
short half-life of AMD3100. Mice were routinely graded for the
signs of aGVHD. The onset time of severe aGVHD and survival
days were recorded. When mice died of severe aGVHD,
mononuclear cells of skin and liver were obtained and detected
by polychromatic flow cytometry as described above. Meanwhile,
liver biopsies were retrieved from mice with and without
aGVHD. Histolopathological features were evaluated based on
H&E staining for FFPE sections.

Statistical Analysis
The results shown in the current study are representative data
from independent experiments, which has been repeated at least
three times. Statistical analyses were performed using SPSS 22.0
statistical software (SPSS Inc, USA). Differences in patient age,
numbers of mononuclear cells (MNCs) and CD34+ cells in
transplantation grafts, and the proportions of CXCR4+gd T
cells, CXCR4+CD4 T cells and CXCR4+CD8 T between
recipients with 0-I and II-IV aGVHD were compared using the
Mann-Whitney U test. Differences in gender and type of primary
disease were analyzed using the c2 test. The difference for
survival was determined with Kaplan-Meier log-rank test.
Statistical significance was defined as P ≤ 0.05, based on a two-
tailed test.
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

Homeostatic gd T Cells Neither Responded
to Allogeneic T Cell Stimulation nor
Induced CD4 and CD8 T Cell Alloreactivity
To determine whether gd T cells themselves respond to allogeneic
antigen stimulation, a mixed lymphocyte reaction (MLR) experiment
was conducted. Purified homeostatic gd T cells were cocultured with
allogeneic PBMCs that had been depleted of gd T cells (referred to as
PBMCDgd T cells) from healthy donors. As shown in Figure 1,
PBMCDgd T cells did not increase the expression of the T cell
activation markers HLA-DR (Figures 1A, F, P > 0.05) or CD38
(Figures 1B, G, P > 0.05) on allogenic gd T cells compared with the
control. In addition, we measured the expression of inflammatory
cytokines that are commonly induced by allogeneic reactions. There
were no significant differences in the production of TNF-a
(Figures 1C, H), IFN-g (Figures 1D, I) and IL-17 (Figures 1E, J)
by allogenic gd T cells in the MLR and control groups (all P > 0.05).

On the other hand, we examined whether gd T cells directly
stimulated allogeneic responses. As we hypothesized, coculture with
allogenic gd T cells did not increase the expression of HLA-DR or
CD38 on either CD4 (Figures 2A, B, F, G, P > 0.05) or CD8 T cells
(Figures 3A, B, F, G, P > 0.05) compared with those in the control
groups. Similarly, the production of the inflammatory cytokines TNF-a
(Figures 2C,H and 3C,H), IFN-g (Figures 2D, I and 3D, I) and IL-17
(Figures 2E, J and 3E, J) by CD4 and CD8 T cells was not significantly
different between the MLR and control groups (all P > 0.05). In
A

B

D

E

F G

IH J

C

FIGURE 1 | Assay for the reactivity of gd T cells in response to stimulation of allogeneic ab T cells. Mixed lymphocyte reactions (MLRs) were performed by co-
culture of purified allogenic gd T cells with PBMCs depleted of gd T cells (PBMCDgd T cells) isolated from healthy donors, at a ratio of 1:3. Cells were collected on day
5 after co-culture and stained with antibodies against gd TCR (A–J), HLA-DR (A, F), CD38 (B, G), TNF-a (C, H), IFN-g (D, I) and IL-17 (E, J). Data are expressed as
the mean ± SD of triplicate cultures. P values are shown on the graphs.
July 2021 | Volume 12 | Article 687961

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wu et al. gd T Cells, CXCR4, and aGVHD
contrast, the production of TNF-a, IFN-g and IL-17 by gd T, CD4 and
CD8 T cells was significantly increased after stimulation with a pan-T
cell stimulator, as shown in Supplementary Figures 1–3 (all P < 0.05).
These results indicated that cytokine staining was appropriate for use in
our study. Taken together, these results showed that primary
homeostatic gd T cells could not directly trigger allogeneic reactions.

gd T Cells Promoted the Migration of CD4
T Cells Through the SDF-1-CXCR4 Axis
Next, we examined whether gd T cells played an indirect role in
allogeneic reactions by promoting the migration of ab T cells. In
the presence of the CXCR4 ligand SDF-1, the migration of total
ab T cells (Figure 4A, P = 0.017) and CD4 T cells (Figure 4B,
P = 0.014) was increased compared with that of the control
groups without SDF-1. The addition of autologous gd T cells into
the culture system further promoted the migration of total ab T
cells (Figure 4A, P = 0.041) and CD4 T cells (Figure 4B, P =
0.013) towards SDF-1. Although more CD8 T cells migrated
towards SDF-1 than in the control group (Figure 4C, P = 0.039),
these cells were not further increased in the presence of gd T cells
(Figure 4C, P = 0.101).

To confirm that gd T cells are capable of promoting the
migration of CD4 T cells through the SDF-1-CXCR4 axis, gd T
cells that had premigrated towards SDF-1 (referred to as SDF-1-
gd T cells) were used in the following chemotaxis assay with or
without AMD3100, an inhibitor of the SDF-1-CXCR4 signaling
pathway. As shown in Figure 4, the migration rates of total ab T
cells (Figure 4D, P < 0.001) and CD4 T cells (Figure 4E, P =
Frontiers in Immunology | www.frontiersin.org 5
0.002) were markedly increased when SDF-1-gd T cells were
added into the lower chamber compared with those in the
presence of untreated gd T cells. In contrast, AMD3100
significantly attenuated the migration of total ab T cells
(Figure 4D, P = 0.011) and CD4 T cells (Figure 4E, P = 0.017)
in response to SDF-1-gd T cells. However, there was no
significant change in the migration of CD8 T cells towards
SDF-1-gd T cells, with or without AMD3100 (Figure 4F, P
values are indicated on the graph). Moreover, we found that
the secretion of SDF-1 by gd T cells exposed to different
concentrations of exogenous SDF-1 was significantly increased
in response to a higher dose of extrinsic SDF-1 (Figures 4G–I,
P values are indicated on the graph). These results suggest that
CXCR4-expressing gd T cells interact with SDF-1 and accelerate
the migration of autologous CD4 T cells by producing additional
SDF-1.

CXCR4 Expression Was Increased in
gd T Cells and ab T Cells in Recipients
Who Experienced Grades II-IV aGVHD
After alloHCT
Since T cell migration plays an important role in the
development of aGVHD, we next investigated the proportions
of CXCR4-positive T cells in recipients with or without aGVHD
after alloHCT. The clinical characteristics of the patients in the
current study are summarized in Table 1. There were no
significant differences in age, sex, types of disease at diagnosis,
or numbers of MNCs and CD34+ cells in the grafts between
A

B

D

E

F G
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C

FIGURE 2 | Assay for the reactivity of CD4 T cells in response to stimulation of allogeneic gd T cells. MLRs were performed by co-culture of purified allogenic gd T
cells with PBMCDgd T cells isolated from healthy donors, at a ratio of 1:3. Cells were collected on day 5 after co-culture and stained with antibodies against CD4
(A–J), HLA-DR (A, F), CD38 (B, G), TNF-a (C, H), IFN-g (D, I) and IL-17 (E, J). Data are expressed as the mean ± SD of triplicate cultures. P values are shown
on the graphs.
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recipients with grades 0-I and II-IV aGVHD after haploHCT (all
P > 0.05). The conditioning regimen, transplantation procedure,
and aGVHD prophylaxis and treatment regimens were the same
for all included patients. Among 46 patients, 36 (78.3%) were
diagnosed with grades 0-I aGVHD, whereas 10 (21.7%) patients
developed grades II-IV aGVHD. The median onset time of
grades II-IV aGVHD was day 19 after transplantation.

Interestingly, the proportion of CXCR4-positive cells among
peripheral gd T cells was significantly elevated in recipients with
grades II-IV aGVHD compared with those who developed
grades 0-I aGVHD (75.5% versus 34.0%, P = 0.004,
Figures 5A, B) at 45 days after alloHCT. Similarly, significant
increases in CXCR4 expression were found in CD4 (P = 0.028,
Figures 5C, D) and CD8 (P = 0.032, Figures 5E, F) T cells in
recipients with grades II-IV aGVHD compared with those who
developed grades 0-I aGVHD. The gating strategy for the
positive populations shown in Figures 5A, C, E were based on
control cells without any staining and cells that were stained with
all antibodies minus CXCR4 (Supplementary Figure 4).
Additionally, the CD4 and CD8 cells in the current study
referred to conventional CD4+ and CD8+ ab T cells. In
addition to gd T cells, these are major subpopulations of
effector T cells. Although some gd T cells express CD8, the
proportion was only approximately 8% in our unpublished data.
Taken together, these results suggest that increased CXCR4
Frontiers in Immunology | www.frontiersin.org 6
expression on gd and ab T cells may positively correlate with
the development of aGVHD after alloHCT.

CXCR4-Expressing gd and CD4 T Cells
Were Increased in the Target Organs of
Mice With aGVHD
Immunodeficient mice were injected with human PBMCs
isolated from healthy donors. As shown in Figure 6A, more
than 50% of human CD45-positive cells were observed in mouse
peripheral mononuclear cells (49% and 57%) at 2 and 3 weeks
after injection, indicating that implantation was successful in this
model. The majority (> 95%) of implanted human blood cells
were CD3 T cells. CD4, CD8, and gd T cells were all detectable in
the peripheral blood of transplanted mice (Figure 6A), and the
proportions were close to the normal levels of T cell subsets in
healthy subjects (data not shown). H&E staining showed that
lymphocytes infiltrated around the portal areas of the livers in
aGVHD mice, and these cells were absent in control mice
(Figure 6B). Lymphocyte infiltration and epithelial disruption
were visible in many bile ducts in mice with aGVHD compared
to those of mice without aGVHD (Figure 6B). The presence and
location of the typical inflammatory cytokine TNF-a was
observed in aGVHD lesions in the liver, which further
indicated that liver inflammatory foci formed during
aGVHD (Figure 6B).
A
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FIGURE 3 | Assay for the reactivity of CD8 T cells in response to stimulation of allogeneic gd T cells. MLRs were performed by co-culture of purified allogenic gd T
cells with PBMCDgd T cells isolated from healthy donors, at a ratio of 1:3. Cells were collected on day 5 after co-culture and stained with antibodies against CD8
(A–J), HLA-DR (A, F), CD38 (B, G), TNF-a (C, H), IFN-g (D, I) and IL-17 (E, J). Data are expressed as the mean ± SD of triplicate cultures. P values are shown on
the graphs.
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Next, we evaluated the presence and location of T cell subsets
in the target organs of mice suffering aGVHD. Representative
images of immunohistochemical staining for the expression of
CXCR4, TCRgd, and CD4 in the liver are shown in Figure 6C.
CXCR4 protein expression was significantly detectable in
lymphocytes infiltrating around the portal areas in the livers of
aGVHD mice (Figure 6C). In contrast, little CXCR4 was
observed throughout the liver parenchyma in control mice.
Consistently, there was obvious emergence of gd T cells and
CD4 T cells in defined liver areas in aGVHDmice, and these cells
infiltrated the tissue surrounding the portal areas. However, gd T
cells and CD4 T cells were hardly observed in mice without
aGVHD. Flow cytometry further confirmed that CXCR4-
positive gd T cells and CXCR4-positive CD4 T cells were
significantly elevated in the skin of aGVHD mice compared
with control mice (P = 0.008 and P = 0.014, respectively,
Figures 6D, E). Similarly, increased expression of CXCR4 on
gd T cells and CD4 T cells was observed in the livers of aGVHD
Frontiers in Immunology | www.frontiersin.org 7
mice compared with control mice (P = 0.023 and P = 0.025,
respectively, Figures 6F, G). Taken together, these results suggest
that the expression of CXCR4 on gd T cells and CD4 T cells
promotes the migration of these cells into target organs and
thereby induces cutaneous and hepatic aGVHD.

Depletion of gd T Cells and Treatment With
a CXCR4 Signaling Antagonist Decreased
the Migration of CD4 T Cells, Attenuated
the Severity of aGVHD and Prolonged
Survival in Mice
To further verify that gd T cells and CXCR4 signaling are
involved in the migration of CD4 T cells and the development
of aGVHD, immunodeficient mice were injected with human
PBMCs, PBMCs plus AMD3100, PBMCs depleted of gd T cells
(PBMCDgd T cells), or PBMCDgd T cells plus AMD3100. As
shown in Figure 7A, the proportion of human CD45-positive
cells was more than 60% in the peripheral blood of mice in each
A B

D E F

G IH

C

FIGURE 4 | The impact of gd T cells and SDF-1-CXCR4 axis on the migrations of CD4 and CD8 T cells. The migratory abilities of ab T cells (A), CD4 T cells (B) and
CD8 T cells (C) towards gd T cells were examined, with or without SDF-1. The migratory abilities of ab T cells (D), CD4 T cells (E) and CD8 T cells (F) towards SDF-
1-driven gd T cells were examined, with or without an antagonist (AMD3100) of CXCR4 signaling. The supernatants of gd T cells pretreated with indicated
concentrations of SDF-1 for 24 h were collected for ELISA test (G–I). Data are expressed as the mean ± SD of triplicate cultures. P values are shown on the graphs.
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group at 2 and 3 weeks after injection. This observation indicated
that human lymphocytes were successfully transplanted into the
mice. The median onset time of severe aGVHD in mice with
human PBMCs was 16.5 (14-21) days after transplantation. In
contrast, the occurrence of severe aGVHD was significantly
delayed in mice transplanted with PBMCs plus AMD3100 (22,
Frontiers in Immunology | www.frontiersin.org 8
19-25 days, P = 0.040) or mice transplanted with PBMCDgd T
cells (22.5, 21-23 days, P = 0.013, Figure 7B). These results
indicate that treatment with AMD3100 or the depletion of gd T
cells prolonged the onset of aGVHD in mice transplanted with
human blood cells. The median onset time of severe aGVHD in
mice with PBMCDgd T cells plus AMD3100 (19.5, 14-26 days)
TABLE 1 | Clinical characteristics.

aGVHD 0-I aGVHD II-IV P value

Subjects, n 36 10 –

Age, years 36 (18-58) 26 (19-55) 0.410
Gender, n (%) 0.211
Male 19 (53) 3 (30)
Female 17 (47) 7 (70)
Diagnosis, n (%) 0.546
AML 12 (33) 2 (20)
ALL 16 (44) 7 (70)
CML 1 (2.8) 1 (10)
MDS 5 (14) 0 (0)
others 2 (5.6) 0 (0)
Donor type Related donor Related donor –

HLA typing 1-3/6 mismatch 1-3/6 mismatch –

Stem cell source BM+PB BM+PB –

MNC in grafts,108 /kg 8 (4-15) 9 (7-16) 0.213
CD34+ cells in grafts,106 /kg 2 (1-8) 2 (1-7) 0.946
Conditioning regimen BU+CY+ATG BU+CY+ATG –

GVHD prophylaxis CsA+MMF+MTX CsA+MMF+MTX –
July 2021 | Volume 12 | Article
ATG, antithymocyte globulin; AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; BM, bone marrow; BU, busulfan; CML, chronic myeloid leukemia; CsA, cyclosporine A;
CY, cyclophosphamide; MDS, myelodysplastic syndrome; MMF, mycophenolate mofetil; MTX, methotrexate; PB, peripheral blood.
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C

FIGURE 5 | Association of CXCR4 expression in gd T cells, CD4 and CD8 T cells with aGVHD in haploidentical HCT recipients. The proportions of CXCR4+gd T cells
(A, B), CXCR4+CD4 T cells (C, D), and CXCR4+CD8 T cells (E, F) were detected by flow cytometry in recipients with grade 0-I and II-IV aGVHD after haploHCT.
P values are shown on the graphs.
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was not significantly different from that in the other groups (P =
0.368, Figure 7B). H&E staining showed that lymphocyte
infiltration and epithelial disruption were visible in many bile
ducts in the mice that received PBMCs, and this effect was absent
in mice that received PBMCs depleted of gd T cells or treated
with the SDF-1-CXCR4 antagonist (Figure 7C).

Considering that AMD3100 has a very short half-life and is
rapidly eliminated, with a terminal half-life of 5.3 hours, we
performed multiple injections of AMD3100 (from 1 to 4 times)
in mice infused with human blood cells and observed differences
in survival time among each group until the end of experiment
(21 days). The control mouse group transplanted with human
PBMCs all died due to GVHD around 11.5 (11-12) days. In
contrast, the survival time was significantly prolonged in mice
transplanted with PBMCs plus AMD3100 (16.8, 14-21 days, P =
0.016) or with PBMCDgd T cells (16.8, 14-19 days, P = 0.004).
Additionally, the median survival time of mice transplanted with
PBMCDgd T cells plus AMD3100 was further extended
compared with that in mice transplanted with PBMCs (20.3,
18-21 days, P < 0.001, Figure 7D). Of note, three of the four mice
in this group were still alive at the end of observation. These
results highlight the role of gd T cells in the development of
GVHD through CXCR4 signaling.

Finally, we examined the migration and localization of CD4 T
cells in the target organs of aGVHD in mice after different
injections. Flow cytometry showed that 27.8% of CD4 T cells
Frontiers in Immunology | www.frontiersin.org 9
resided in the skin of mice transplanted with PBMCs, and this
effect was markedly attenuated in mice administered PBMCs
plus AMD3100 (18.9%, P = 0.009) or PBMCDgd T cells (18.7%,
P = 0.031). In mice treated with PBMCDgd T cells plus
AMD3100, the proportion of total CD4 T cells in the skin was
further reduced compared with that in the other three groups
(9.6%, P < 0.001, P = 0.012, and P = 0.005, respectively,
Figures 8A, B). As we hypothesized, dramatically higher
CXCR4 expression in CD4 T cells was found in the skin of
mice that were transplanted with PBMCs than in mice in the
PBMC plus AMD3100 and PBMCDgd T groups (P < 0.001). In
parallel, CXCR4-positive CD4 T cells were lowest in the skin of
the PBMCDgd T cells plus AMD3100 group compared with the
other three groups (P < 0.001, P = 0.002, and P = 0.001,
respectively, Figures 8E, F). The translocation of CD4 T cells
in the liver was examined, and the depletion of gd T cells plus
AMD3100 significantly decreased the proportion of total CD4 T
cells compared with that in the PBMC group (P = 0.045), but this
effect was not significantly different from that in the PBMC plus
AMD3100 or PBMCDgd T cell group (P > 0.05, Figures 8C, D).
Notably, obviously increased expression of CXCR4 on CD4 T
cells was observed in the livers of the PBMC group compared
with the PBMC plus AMD3100 and PBMCDgd T cell groups (P =
0.007 and P = 0.020). Similar to observations in the skin,
PBMCDgd T cells plus AMD3100 further reduced the
translocation of CXCR4-positive CD4 T cells in the liver
A B

D E

F G

C

FIGURE 6 | Migrations of human gd T cells and CD4 T cells expressing CXCR4 in mice with or without aGVHD. Immunodeficient mice were transplanted with
human PBMCs as described. The proportion of human CD45-positive cells was detected in mouse peripheral blood by flow cytometry at 2 and 3 weeks after
injection (A). Histopathological examination was performed on biopsy specimens of liver obtained from transplanted mice. Histopathological feature and expression
of TNF-a in liver were detected by hematoxylin and eosin (H&E, ×100) staining and immunohistochemistry analyses, ×200 (B). Three adjacent sections of liver
biopsies were stained with antibodies against CXCR4, TCRgd and CD4, ×200 (C). CXCR4-expressing gd T and CD4 T cells were detected by flow cytometry in the
skin (D, E) and liver (F, G) of mice with or without aGVHD. n = 4, P values are shown on the graphs.
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A B

DC

FIGURE 7 | Impacts of gd T cells and inhibitor of CXCR4 signaling on the onset of severe aGVHD and the survival time in humanized mice. The proportion of human
CD45-positive cells was detected by flow cytometry at 2 and 3 weeks in mouse peripheral blood after injection with human PBMCs, PBMCs plus AMD3100,
PBMCDgd T cells, and PBMCDgd T cells plus AMD3100 (A). The onset time of severe aGVHD among each group were depicted (B). Histopathological examination
was performed on biopsy specimens of liver obtained from transplanted mice (C). The survival time among each group were depicted (D). n = 4, **P < 0.01,
*P < 0.05, other P values are shown on the graphs.
A B D

E F G H
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FIGURE 8 | Impacts of gd T cells and inhibitor of CXCR4 signaling on the migration of CD4 T cells in humanized mice. Presence of CD4 T cells was detected by
flow cytometry in the skin (A, B) and liver (C, D) of mice among each group. CXCR4-expressing CD4 T cells were detected by flow cytometry in the skin (E, F) and
liver (G, H) of mice among each group. n = 4, P values are shown on the graphs.
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compared with that in the other three groups (P < 0.001, P <
0.001, and P = 0.003, respectively, Figures 8G, H). Taken
together, these results suggest that gd T cells and CXCR4
signaling significantly contribute to the migration of CD4 T
cells into aGVHD target organs. CXCR4 antagonist may prevent
gd T cells from promoting the migration of CD4 T cells through
CXCR4 signaling and thereby delay the onset of severe cutaneous
and hepatic aGVHD in mice.
DISCUSSION

In thehuman immunesystem, gdTcells are aunique subpopulation
of lymphocytes that mediate various types of immune responses
and immunopathological processes (18). It has been extensively
reported that gdT cells play a significant role in host defense against
different pathogens, including viruses, bacteria and parasites (19).
Moreover, gdT cells exert antitumor effects against diverse kinds of
solid tumors and hematological malignancies (20, 21). Since they
function independent of the assistanceofMHCmolecules, gdTcells
are conventionally recognized not to trigger alloreactivity. Indeed, a
previous review showed that selective infusion of donor gd T cells
improved graft-versus leukemia (GVL) effects but did not induce
GVHD(22).However, preliminary clinical studies indicated that gd
Tcellswere associatedwith aGVHDafterHCT.CarolinePabst et al.
found that the absolute number of gdT cells in the grafts of patients
who developed grades II-IV aGVHD was significantly higher than
that in patients with grade 0-I aGVHD (23). In contrast, Y
Kawanishi et al. conducted clinical studies and showed that gd T
cells were not associated with aGVHD (24). In murine models, the
role of gd T cells in the occurrence of GVHD also remains unclear.
Drobyski et al. suggested a protective effect of activated gd T cells
that couldmitigate GVHDbymodulating the abilities ofabT cells
after bonemarrow transplantation (8). However, other studies held
an opposite conclusion and showed that the presence of gd T cells
exacerbated lethalGVHDinmice (7, 9). Inaddition,Anderson et al.
did not find any correlation between host gd T cells and the
occurrence of GVHD in mice (6). Such discrepancies in previous
studies require clarification. To date, no reports have dissected the
role of gd T cells in the migration of donor T cells towards aGVHD
target organs. In the current study, we found that gd T cells did not
directly trigger the allogeneic reactions of CD4 and CD8 T cells.
Instead, we observed that the migration of CD4 T cells was
significantly affected by gd T cells through the chemotactic SDF-
1-CXCR4 axis. These results suggest that gd T cells may play an
indirect role in promoting the development of aGVHD
after transplantation.

Consistently, we found that CXCR4 expressionwas significantly
upregulated in peripheral gd T cells and CD4 and CD8 T cells in
recipients who developed grades II-IV aGVHD after alloHCT. Due
to technical limitations, it is impractical to measure the expression
of CXCR4 in T cell subsets that migrated into GVHD target organs
in transplant patients. Therefore, we established a humanized
mouse model to monitor the migration of peripheral effector T
cells and the changes inCXCR4expression in the context ofGVHD.
Unlike the mouse models used in previous related studies, we
Frontiers in Immunology | www.frontiersin.org 11
utilized severe combined immunodeficient mice with deletion of
murine T, B and NK cells and deficient humoral immunity.
Therefore, our mouse model had the advantage of simulating
clinical immune circumstances after alloHCT. In line with our
data from the clinical cohort, CXCR4 expression was remarkably
increased in gd T cells, and CD4 T cells migrated into the target
organs of aGVHD mice. Interestingly, although the proportion of
CXCR4-positive cells in peripheral CD8 T cells was significantly
elevated in recipients with grades II-IV aGVHD compared with
those who developed grades 0-I aGVHD, we did not find a
significant correlation between CXCR4-positive CD8 T cells and
aGVHD in mice (data not shown). One of possible explanations is
that the sample size ofourmurinemodelwas insufficient to reachan
explicit result.On the otherhand, sinceCD4Tcells expressedmuch
higher CXCR4 than CD8 T cells, the recruitment of CD4 T cells to
target organs of aGVHD mice may rely more heavily on the
chemotactic SDF-1-CXCR4 axis than the recruitment of CD8
T cells.

We hypothesized that the recruitment of T cells into aGVHD
target organs after alloHCT was mediated at least in part through
CXCR4+ gd T cells. Our chemotaxis assay showed that the
migration rate of CD4 T cells was apparently increased when
gd T cells were added, especially in the presence of SDF-1-driven
gd T cells. Moreover, the CXCR4 signaling antagonist AMD3100
significantly attenuated the migration of CD4 T cells in the
current study. Given that exposure to SDF-1 increased the
autocrine secretion of gd T cells, CXCR4-expressing gd T cells
probably promoted the migration/infiltration of ab T cells via
the production of additional SDF-1. Furthermore, we found that
depletion of gd T cells and treatment with the antagonist
significantly restrained the migration of CXCR4-expressing
CD4 T cells in the target organs, which therefore postponed
the onset of severe aGVHD in mice transplanted with human
PBMCs. These data indicate a potential role of gd T cells that
express chemokines (e.g., CXCR4) and thereby facilitate CD4 T
cell recruitment towards GVHD target organs. As for the
possible mechanism by which AMD3100 treatment reduces the
severity of GVHD, a previous study demonstrated the efficacy of
posttransplant administration of AMD3100 in improving
survival using a congenic mouse transplantation model and
reasoned that AMD3100 would attenuate the cytokine storm
and hence reduce multiorgan toxicities (25). In parallel, another
clinical study indicated that grades III–IV acute GVHD was
higher in the comparative control cohort than in the plerixafor
(AMD3100) treatment group. The plasma MIP-1b level was
significantly lower at day +30 in plerixafor-treated patients,
supporting the role of CXCR4 antagonism in attenuating
GVHD and inflammatory cytokine storms following allogeneic
HCT (26). Consistently, our study demonstrated that treatment
with AMD3100 alleviated the severity of GVHD and prolonged
survival in human PBMCs implanted mice. Thus, it is reasonable
to speculate that AMD3100 plays a protective role in GVHD
mice by decreasing the production of inflammatory cytokines.
This hypothesis awaits confirmation in future studies.

We also found that the proportion of CCR5-positive cells
among peripheral gd T cells was significantly elevated in
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recipients with grades II-IV aGVHD compared with those who
developed grades 0-I aGVHD (data not shown). This finding was
consistent with previous studies that reported a correlation
between the expression of CCR5 and aGVHD after alloHCT
(27–29). However, the mechanisms by which CCR5 and CXCR4
work are different. CCR5 and its ligands are proinflammatory
chemokines that mediate the recruitment of some immune cells
and are closely related to the occurrence of various inflammatory
diseases (30–32). In contrast, CXCR4 is considered to be a
homeostatic factor that is important in immune surveillance
(33). In addition, unlike CCR5, which interacts with several types
of ligands, CXCR4 has an exclusive ligand known as SDF-1. As
reported, the interaction between CXCR4 and SDF-1 mainly
regulates the generation, transport, homing and retention of
CXCR4-positive blood cells in hematopoietic organs and the
accumulation of CXCR4-positive immune cells in inflammatory
sites (34–38). Previous studies have shown that SDF-1 correlated
with HIV infection, cardiovascular disease and the mobilization
of hematopoietic stem and progenitor cells (39–43). Our study
demonstrated for the first time that CXCR4 signaling also
contributes to the migration of effector T cells and extends to
the alloimmune responses that characterize the development
of aGVHD.

In summary, aGVHD remains a major obstacle to achieving
favorable outcomes following alloHCT. Elucidating the
mechanisms by which donor T cells migrate into target organs
may represent novel therapeutic opportunities to reduce
aGVHD. We demonstrated that gd T cells with upregulated
expression of CXCR4 contributed to CD4 T cell migration into
aGVHD target organs after hematopoietic transplantation.
Depletion of gd T cells and treatment with an antagonist of the
SDF-1-CXCR4 axis significantly attenuated the severity of
aGVHD and prolonged the survival. These findings provide
novel insights into how innate-like gd T cells correlate with
alloreactivity. Disrupting SDF-1-CXCR4 interactions might be a
possible therapeutic strategy to decrease the incidence of severe
aGVHD following alloHCT.
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