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Abstract: Radiation dose optimization is particularly important in pediatric radiology, as children
are more susceptible to potential harmful effects of ionizing radiation. However, only one narrative
review about artificial intelligence (AI) for dose optimization in pediatric computed tomography (CT)
has been published yet. The purpose of this systematic review is to answer the question “What are
the AI techniques and architectures introduced in pediatric radiology for dose optimization, their
specific application areas, and performances?” Literature search with use of electronic databases was
conducted on 3 June 2022. Sixteen articles that met selection criteria were included. The included
studies showed deep convolutional neural network (CNN) was the most common AI technique
and architecture used for dose optimization in pediatric radiology. All but three included studies
evaluated AI performance in dose optimization of abdomen, chest, head, neck, and pelvis CT;
CT angiography; and dual-energy CT through deep learning image reconstruction. Most studies
demonstrated that AI could reduce radiation dose by 36–70% without losing diagnostic information.
Despite the dominance of commercially available AI models based on deep CNN with promising
outcomes, homegrown models could provide comparable performances. Future exploration of AI
value for dose optimization in pediatric radiology is necessary due to small sample sizes and narrow
scopes (only three modalities, CT, positron emission tomography/magnetic resonance imaging and
mobile radiography, and not all examination types covered) of existing studies.

Keywords: as low as reasonably achievable; computed tomography; convolutional neural network;
deep learning; dose reduction; generative adversarial network; image processing; machine learning;
medical imaging; noise

1. Introduction

Radiology is an indispensable part of modern healthcare. However, most of the medi-
cal imaging modalities, such as computed tomography (CT), positron emission tomography
(PET), and general radiography, use ionizing radiation for image production [1–16]. Al-
though the radiation dose involved in these imaging modalities is low (<100 mSv), and their
real risk is unclear, some epidemiologic and biologic studies have demonstrated that these
radiological examinations can cause cancers [17–23]. Hence, “as low as reasonably achiev-
able” (ALARA) has become the fundamental principle of radiology practice [17,24,25].
International Commission on Radiological Protection (ICRP) has introduced the diagnostic
reference levels (DRLs) initiative for radiological departments to identify examinations
with radiation doses exceeding their corresponding DRLs and trigger the radiation dose-
optimization process [26–32]. As the radiation used in radiological examinations is the
source of signal, a reduction of the radiation amount results in a decrease of signal strength
and an increase of image noise. Traditionally, the dose-optimization process involves the
manipulation of a range of exposure/scan parameters and identification of parameters that
deliver the lowest radiation dose but still producing images able to meet minimal diagnostic

Children 2022, 9, 1044. https://doi.org/10.3390/children9071044 https://www.mdpi.com/journal/children

https://doi.org/10.3390/children9071044
https://doi.org/10.3390/children9071044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/children
https://www.mdpi.com
https://orcid.org/0000-0002-5849-5857
https://doi.org/10.3390/children9071044
https://www.mdpi.com/journal/children
https://www.mdpi.com/article/10.3390/children9071044?type=check_update&version=3


Children 2022, 9, 1044 2 of 12

requirements [33–36]. Since the introduction of digital medical imaging, image processing
has played an important role in the radiation dose optimization [37–39]. However, typical
image processing techniques are unable to overcome the tradeoff between image noise
and spatial resolution [9–12]. For the last few years, artificial intelligence (AI) has been
introduced into radiology for radiation dose optimization. Studies have demonstrated
its ability in pushing the limit, i.e., able to further reduce the radiation dose but without
sacrificing image quality, such as noise and spatial resolution [1,6,9–12,15,16].

The dose optimization is particularly important for pediatric patients because they
have longer life and more rapid cell proliferation, leading to two to three times more
susceptibility to the potential harmful effects of ionizing radiation than the adult counter-
part [17,33,36,40]. Nonetheless, dose optimization in pediatric radiology is challenging, as
there is a greater variation of body size and composition within and across age groups [4,33].
Despite being an important and challenging topic area, apparently, only one narrative re-
view article on this area has been published yet, and it is about deep learning (a subset of AI)
image reconstruction (DLIR) for dose optimization in pediatric CT [17]. Hence, it is timely
to conduct a systematic review about the use of AI for dose optimization in pediatric radi-
ology. The purpose of this article is to systematically review published original studies to
answer the question “What are the AI techniques and architectures introduced in pediatric
radiology for dose optimization, their specific application areas, and performances?”

2. Materials and Methods

This systematic review on the AI for radiation dose optimization in pediatric radi-
ology was conducted as per the PRISMA guidelines and patient/problem, intervention,
comparison, and outcome (PICO) model [41,42]. This involved literature search, article
selection, and data extraction and synthesis.

2.1. Literature Search

The literature search with use of electronic scholarly publication databases, including
Google Scholar, PubMed/Medline, ScienceDirect, Scopus, and Web of Science was conducted on
3 June 2022 to identify articles about the AI for dose optimization in pediatric radiology
published between 2017 and 2022. The search statement used was (“Artificial Intelligence”
OR “Machine Learning” OR “Deep Learning”) AND (“Dose Optimization” OR “Dose
Reduction”) AND (“Pediatric” OR “Children”) AND (“Radiology” OR “Medical Imaging”).
The keywords used in the search were based on the review focus. The year range was
determined based on a narrative review about current and future applications of AI in
radiology, which showed the use of AI for dose optimization in radiology not evident
before 2017 [43].

2.2. Article Selection

A reviewer with more than 20 years of experience in conducting literature review
was involved in the article selection process [44]. Only peer-reviewed original research
articles that were written in English and focused on the use of AI for dose optimization in
pediatric radiology were included. Grey literature, conference abstracts, editorials, review,
perspective, opinion, commentary, and non-peer-reviewed (e.g., those published via the
arXiv research-sharing platform, etc.) articles were excluded because of the following
reasons: Well-established methodological guidelines were not available for proper selection
of grey literature. Conference abstracts could not provide complete study information.
Only secondary information was presented in editorials, review, perspective, opinion,
and commentary articles. Non-peer-reviewed articles might provide unsubstantiated
information [45,46].

Figure 1 illustrates details of the article selection process [41]. A three-stage screening
process through assessing (1) article titles, (2) abstracts, and (3) full texts against the selection
criteria was employed after duplicate article removal from results of the database search.
Every non-duplicate article within the search results was retained until its exclusion could
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be decided. Lists of references of the included papers were reviewed for additional, relevant
article identification [46].
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Figure 1. PRISMA flow diagram for systematic review of artificial intelligence for radiation dose
optimization in pediatric radiology.

2.3. Data Extraction and Synthesis

A data extraction form (Table 1) was developed based on a recent systematic review
on the use of AI in radiology [45]. The data, including names and countries of authors,
publication years, clinical domains (radiology/nuclear medicine), AI techniques (such
as machine learning and deep learning (DL)), model architectures (e.g., convolutional
neural network (CNN), generative adversarial network (GAN), etc.), specific application
areas (i.e., examination types and approaches that AI was used to achieve dose optimiza-
tion), imaging modalities, details of AI model development (i.e., whether homegrown or
commercially available model and arrangement of model training and testing), AI model
evaluation approach (e.g., phantom study, clinical study, etc.), and key findings of AI model
performance in dose optimization (including figures of dose reduction and diagnostic
values and subjective and objective image assessment scores), were extracted from each
included paper. To facilitate comparison of the AI model performance, percentage of dose
reduction (if not reported) was synthesized based on the available absolute dose figures.
When multiple image-quality-related figures were reported in a study, the most clinically
relevant figures were presented. Diagnostic values were considered the most clinically
relevant performance figures, while the objective image assessment scores were determined
least relevant [47,48]. Quality assessment scores were determined for all included articles
based on the quality assessment tool for studies with diverse designs (QATSDD) and ex-
pressed as percentages [49]. Less than 50%, 50–70%, and greater than 70% were considered
low, moderate, and high study quality, respectively [46].
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Table 1. Study characteristics of artificial intelligence for radiation dose optimization in pediatric radiology.

Author, Year,
and Country Clinical Domain AI Technique and

Architecture
Application Area for Dose

Optimization
Imaging
Modality AI Model Development AI Model Evaluation Approach Key Findings of AI Model Performance

Brady et al. (2021),
USA [1] Radiology DL-Convolutional

neural network

DLIR of contrast-enhanced
pediatric

chest-abdomen-pelvis CT
CT

Commercially available model
(AiCE, Canon Medical Systems,

Tochigi, Japan) trained by
image pairs of lower-dose CT
with HIR and high-dose CT
with MBIR and tested with

datasets not involved in
the training

Retrospective clinical study
involving 19 children (mean age:

11 ± 5 y; range: 3–19 y)

With SBIR as reference, 52% dose
reduction with noise texture and spatial

resolution maintained, highest
radiologists’ confidence rating (scale

1–10) among 4 approaches (DLIR: 7 ± 1;
SBIR & MBIR: 6.2 ± 1; FBP: 4.6 ± 1), and

object detectability improved by 51%,
18%, and 11% when compared with FBP,

SBIR, and MBIR, respectively.

Jeon et al. (2022),
Republic of Korea [2] Radiology DL-Convolutional

neural network
DLIR of non-contrast

pediatric abdominal CT CT

Commercially available model
(AiCE, Canon Medical Systems)

trained by image pairs of
lower-dose CT with HIR and
high-dose CT with MBIR and

tested with datasets not
involved in the training

Phantom study involving phantoms
with diameters, 16 (pediatric) and 32

cm (adult)

For 80–120 kV, CTDIvol of DLIR images
of pediatric phantom with CNR similar
to corresponding FBP images was 5% of
counterpart, representing 20-fold dose

reduction potential.

Kim et al. (2017),
Republic of Korea [3] Radiology DL-Gaussian

mixture model

Post-processing of
non-contrast pediatric
abdominal CT images

CT
Homegrown model without

training and testing
details disclosed

Phantom study involving PMMA
phantoms with diameters 12, 16, 20,

24, and 32 cm

Contrast-to-noise ratio dose increase by
1.7–4.9 times and 1.6–4.2 times for

settings of 80–140 kV and fixed-tube
current of 200 mA and 50–300 mA and

fixed-tube potential of
120 kV, respectively.

Krueger et al. (2022),
Germany [4] Radiology DL-Convolutional

neural network

Post-processing of
pediatric mobile chest and
abdominal X-ray images

acquired in intensive
care units

Mobile
radiography

Commercially available model
(SimGrid, Samsung Electronics
Co., Ltd., Suwon-si, Republic of
Korea) trained by 30,000 images

Retrospective clinical study
involving 210 images of 134 children

(mean age: 4.2 y; range: 0–18 y)

Subjective image quality assessment
demonstrated significant image quality
improvement for patients with weight
greater than 10 kg (odds ratio = 6.68,

p < 0.0001), indicating its dose
reduction potential.

Lee et al. (2021),
Republic of Korea [5] Radiology DL-Convolutional

neural network

Post-processing of
pediatric abdominal DECT

with lower CM
concentration and

noise-optimized virtual
monoenergetic IR

CT

Commercially available model
(ClariCT.AI, ClariPI, Seoul,

Republic of Korea) trained by
410,000 image pairs of low- and

standard-dose CT from 210
patients and tested with

datasets not involved
in the training

Retrospective clinical study
involving 29 children (mean age:

10.1 y; range: 2–19 y)

19.6% CTDIvol and 14.3% CM
concentration reductions in pediatric

abdominal DECT with noise-optimized
virtual monoenergetic IR when

compared with those of standard CT.

Nagayama et al.
(2022), Japan [6] Radiology DL-Convolutional

neural network
DLIR of contrast-enhanced

pediatric abdominal CT CT

Commercially available model
(AiCE Body Sharp, Canon

Medical Systems) trained by
image pairs of lower-dose CT
with HIR and high-dose CT
with MBIR and tested with

datasets not involved
in the training

Phantom and retrospective clinical
study involving 20 cm diameter

Catphan 700 phantom (The
Phantom Laboratory, Greenwich,
NY, USA) and 65 children (mean

age: 25.0 ± 25.2 months; range: 0–81
months), respectively

In pediatric contrast-enhanced 80 kV
abdominal CT, 53.7% SSDE reduction
with better image quality (e.g., lower

noise, noise texture, and edge sharpness
improvements, etc.) when compared

with standard-dose HIR.
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Table 1. Cont.

Author, Year, and
Country Clinical Domain AI Technique and

Architecture
Application Area for Dose

Optimization
Imaging
Modality AI Model Development AI Model Evaluation Approach Key Findings of AI Model Performance

Park et al. (2022),
Republic of Korea [7] Radiology DL-Generative

adversarial network

Post-processing of
contrast-enhanced

pediatric abdominal CT
CT

Homegrown model trained by
840 unpaired low- (42 patients;

mean age: 7.2 ± 2.5 y) and
standard-dose (42 patients;

mean age: 6.2 ± 2.2 y) pediatric
abdominal CT images and
validated with 41 datasets

(820 images; patient mean age:
7.4 ± 2.2 y) not involved in

the training

Retrospective clinical study
involving 660 images from

33 children

When compared with standard-dose CT,
36.6% CTDIvol reduction with image

noise (7.1 ± 2.7) and CNR (portal vein:
21.2 ± 10.1; liver: 8.5± 4.3) similar to

those of SAFIRE images (noise: 9.5 ± 4.0;
CNR: 21.2 ± 9.8 (portal vein) and 8.5 ±

5.0 (liver)), and visual assessment
(standard-dose and DL-processed image
differentiation) yielded a sensitivity and
specificity of 61.2% and 35.0%, indicating

similar image quality.

Sun et al. (2021),
People’s Republic of
China and USA [8]

Radiology DL-Convolutional
neural network

DLIR of pediatric neck,
chest, and abdominal CT

angiography
CT

Commercially available model
(TrueFidelity, General Electric
Healthcare, Chicago, IL, USA)

trained by image pairs of
low-dose CT projection (raw)

data and higher-dose CT
reconstructed by FBP from

phantoms and patients

Retrospective clinical study
involving 32 children with

Takayasu’s arteritis (mean age:
9.1 ± 4.5 y; range: 1–17 y)

High-strength DLIR had highest small
artery detection and diagnostic

confidence scores based on a 5-point
scale (3.53 ± 0.51 and 4.09 ± 0.30) when
compared with FBP (2.94 ± 0.25 and 2.91
± 0.30), ASIR-V 50% (3.03 ± 0.18 and

3.03 ± 0.18), and ASIR-V 100% (2.84 ±
0.37 and 3.00 ± 0.00) groups, respectively,

demonstrating its dose
reduction potential.

Sun et al. (2021),
People’s Republic of
China and USA [9]

Radiology DL-Convolutional
neural network

DLIR of pediatric chest
CT angiography CT

Commercially available model
(TrueFidelity, General Electric
Healthcare) trained by image

pairs of low-dose CT projection
(raw) data and higher-dose CT

reconstructed by FBP from
phantoms and patients

Retrospective clinical study
involving 33 children (mean age:

5.9 ± 4.2 y; range: 4 months–13 y)

High-strength DLIR images had highest
scores of subjective image assessment
with a scale of 1–5 (noise: 4.05 ± 0.21

(little); vascular edge: 4.05 ± 0.58 (clear
identification); vascular contrast:

4.14 ± 0.64 (good)) when compared with
ASiR-V 100% (3.36 ± 0.58; 2.86 ± 0.56;

4.00 ± 0.62) and ASiR-V 50% (2.27 ± 0.55;
3.77 ± 0.61; 3.14 ± 0.64), respectively,

demonstrating its potential for further
dose reduction.

Sun et al. (2021),
People’s Republic of
China and USA [10]

Radiology DL-Convolutional
neural network

DLIR of pediatric chest CT
angiography CT

Commercially available model
(TrueFidelity, General Electric
Healthcare) trained by image

pairs of low-dose CT projection
(raw) data and higher-dose CT

reconstructed by FBP from
phantoms and patients

Prospective case-control study
involving 54 children (control group:
n = 27; mean age: 9.5 ± 2.4 y; range:

5–13 y; and study group: n = 27;
mean age: 9.3 ± 3.1 y; range: 5–14 y)

High-strength DLIR with 70 kV, NI of 22,
and CM injection time of 4 s allowed 36%

radiation dose and 53% CM dose
reductions with scores of subjective

image assessment against a 5-point scale
similar to control group, ASiR-V 50%

with 80 kV, NI of 19, and CM injection
time of 8 s (artery contrast: 4.56 vs. 4.78;
image quality: 3.67 vs 3.44; diagnostic

confidence: 4.74 vs. 4.74; p > 0.05).
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Table 1. Cont.

Author, Year, and
Country Clinical Domain AI Technique and

Architecture
Application Area for Dose

Optimization
Imaging
Modality AI Model Development AI Model Evaluation Approach Key Findings of AI Model Performance

Sun et al. (2021),
People’s Republic of
China and USA [11]

Radiology DL-Convolutional
neural network

DLIR of pediatric chest CT
angiography CT

Commercially available model
(TrueFidelity, General Electric
Healthcare) trained by image

pairs of low-dose CT projection
(raw) data and higher-dose CT

reconstructed by FBP from
phantoms and patients

Prospective case-control study
involving 92 children (control group:
n = 46; mean age: 5.9 ± 4.2 y; range:

4 months–13 y; and study group:
n = 46; mean age: 5.9 ± 4.2 y; range:

4 months–13 y)

High-strength DLIR with 70 kV allowed
11% radiation dose and 20% CM dose

reductions with higher scores of
subjective image assessment against a
5-point scale (noise: 4 (little); vascular

contrast: 4 (good); vascular edge: 4 (clear
identification)) when compared with

control group, ASiR-V 50% with 100 kV
(noise: 2 (high); vascular contrast: 3 (fair);

vascular edge: 3 (identifiable)).

Sun et al. (2021),
People’s Republic of
China and USA [12]

Radiology DL-Convolutional
neural network

DLIR of non-contrast
pediatric head CT CT

Commercially available model
(TrueFidelity, General Electric
Healthcare) trained by image

pairs of low-dose CT projection
(raw) data and higher-dose CT

reconstructed by FBP from
phantoms and patients

Retrospective clinical study
involving 50 children (median age:

2 y; range: 0.1–14 y)

High-strength DLIR images with
0.625 mm slice thickness had similar
subjective image quality score and

measured noise when compared with
ASiR-V 50% 5 mm slice thickness images

(p > 0.05) but able to reduce radiation
dose by 85% and improve lesion

detection (69 vs. 65 detected) due to
spatial resolution increase.

Theruvath et al.
(2021), USA [13] Nuclear medicine

DL-2.5 dimensional
encoder-decoder

U-Net convolutional
neural network

Post-processing of
pediatric and adult

whole-body PET images
PET/MRI

Commercially available model
(SubtlePET 1.3, Subtle Medical,
Menlo Park, CA, USA) trained

by low- and high-count PET
image pairs from whole-body

PET/CT and PET/MRI studies
of pediatric and adult patients

and tested with adult brain and
whole-body studies

Prospective clinical study involving
20 pediatric and adult lymphoma
patients (mean age: 16.0 ± 6.0 y;

range: 6–30 y)

Up to 50% 18F-FDG dose reduction with
100% sensitivity and specificity for

correct assessment of pediatric and adult
lymphoma patients’ treatment response.

Wang et al. (2021),
USA and

Germany [14]
Nuclear medicine DL-Convolutional

neural network

Post-processing of
pediatric and adult

ultra-low-dose whole-body
PET/MRI images to

synthesize standard-dose
PET images

PET/MRI

Homegrown model
development based on Lim

et al.’s [50] open-source
enhanced deep

super-resolution network
model through transfer

learning with 17 standard-dose
PET, simulated 6.25%

ultra-low-dose PET and MRI
training datasets, and 6

independent testing datasets
acquired in USA

Prospective clinical study involving
34 pediatric and adult lymphoma
patients in USA (n = 23; mean age:

17 ± 7 y, range: 6–30 y) and
Germany (n = 11; mean age:

14 ± 5 y; range: 3–18 y)

Expert readers’ agreements of tumor
diagnosis between standard and

AI-processed 6.25% ultra-low-dose PET
images (kappa = 0.942 (USA datasets)
and 0.912 (Germany datasets)) were

significantly greater than the agreements
between standard and 6.25%

ultra-low-dose PET images (kappa =
0.650 (USA datasets) and 0.834 (Germany

datasets)). Diagnostic accuracy of
AI-processed 6.25% ultra-low-dose PET

images was adequate, representing
93.75% dose reduction capability.
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Table 1. Cont.

Author, Year, and
Country Clinical Domain AI Technique and

Architecture
Application Area for Dose

Optimization
Imaging
Modality AI Model Development AI Model Evaluation Approach Key Findings of AI Model Performance

Yoon et al. (2021),
Republic of Korea [15] Radiology DL-Convolutional

neural network

DLIR of pediatric contrast
enhanced abdominal and
non-contrast and contrast

enhanced chest CT

CT

Commercially available model
(TrueFidelity, General Electric
Healthcare) trained by image

pairs of low-dose CT projection
(raw) data and higher-dose CT

reconstructed by FBP from
phantoms and patients

Phantom and retrospective clinical
study involving The Phantom
Laboratory’s 20 cm diameter
Catphan 500 phantom and 51
pediatric patients (mean age:
11.5 ± 4.6 y; range: 1–18 y),

respectively

When compared with ASiR-V 50%,
medium- and high-strength DLIR images
of contrast enhanced abdominal (n = 23)
and non-contrast (n = 16) and contrast

enhanced (n = 12) chest CT had
statistically significantly higher

subjective image quality score and lower
noise (p < 0.001), illustrating its dose

reduction potential.

Zhang et al. (2022),
People’s Republic of

China [16]
Radiology DL-Convolutional

neural network

DLIR of non-contrast
pediatric abdominal and

chest CT
CT

Commercially available model
(TrueFidelity, General Electric
Healthcare) trained by image

pairs of low-dose CT projection
(raw) data and higher-dose CT

reconstructed by FBP from
phantoms and patients

Phantom and prospective clinical
study involving a pediatric

(equivalent to 5-year-old patient)
whole body phantom (PBU−70,
Kyoto Kagaku Co., Ltd., Kyoto,

Japan) and 20 children (mean age:
5.4 ± 1.2 y;

range: 4–6 y), respectively

When compared with ASiR-V 70%,
high-strength DLIR achieved about 70%
and 60% dose reductions for pediatric
non-contrast abdominal (n = 10) and

chest (n = 10) CT, respectively. However,
high-strength DLIR did not statistically
significantly improve subjective image

assessment score of chest CT.

18F-FDG, fluorine−18-fluorodeoxyglucose; AI, artificial intelligence; AiCE, Advanced Intelligent Clear-IQ Engine; ASiR-V, adaptive statistical iterative reconstruction-Veo; CM, contrast
medium; CNR, contrast-to-noise ratio; CT, computed tomography; CTDIvol, volume computed tomography dose index; DECT, dual-energy computed tomography; DL, deep learning;
DLIR, deep learning image reconstruction; FBP, filtered back projection; HIR, hybrid iterative reconstruction; IR, image reconstruction; MBIR, model-based iterative reconstruction; MRI,
magnetic resonance imaging; NI, noise index; No., number; PET, positron emission tomography; PMMA, polymethyl methacrylate; SAFIRE, sinogram affirmed iterative reconstruction;
SBIR, statistical-based iterative reconstruction; SSDE, size-specific dose estimate; y, year.
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3. Results

Sixteen articles met the selection criteria and were included in this review. Table 1
shows these study characteristics [1–16]. All but one article were published in the last two
years, representing that the AI for dose optimization in pediatric radiology has only just
become popular [1,2,4–16]. Nearly all (14) studies were determined high quality [1,4–16],
and the lower quality ones were “pure” phantom studies [2,3]. All studies used the DL
technique [1–16] and were conducted by 12 groups of researchers from USA (n = 8) [1,8–14],
People’s Republic of China (n = 6) [8–12,16], Republic of Korea (n = 5) [2,3,5,7,15], Germany
(n = 2) [4,14], and Japan (n = 1) [6]. Only two studies were about nuclear medicine
(whole-body PET/magnetic resonance imaging (MRI)) [13,14]. For the 14 radiology-related
studies [1–12,15,16], all except one were related to CT, covering body parts such as the
abdomen (n = 10) [1–8,15,16], chest (n = 8) [1,4,8–11,15,16], head (n = 1) [12], neck (n = 1) [8],
and pelvis (n = 1) [1], and four focused on CT angiography [8–11] as well as one on dual-
energy CT (DECT) [5]. Thirteen studies (81.3%) used commercially available AI models for
dose optimization (TrueFidelity, General Electric Healthcare (GE): n = 7 [8–12,15,16]; AiCE,
Canon Medical Systems: n = 3 [1,2,6]; ClariCT.AI, ClariPI: n = 1 [5]; SimGrid, Samsung
Electronics Co., Ltd.: n = 1 [4]; SubtlePET 1.3, Subtle Medical: n = 1 [13]). Ten studies (62.5%)
employed DLIR for CT dose optimization as a result of the dominance of GE TrueFidelity
and Canon AiCE with the CNN architecture [1,2,6,8–12,15,16]. Hence, the CNN was the
most popular (87.5%) AI architecture among the included studies [1,2,4–6,8–16].

Clinical evaluation of the AI model performance was conducted in all but two stud-
ies [1,4–16], and the use of phantom for an additional evaluation was also noted in three
(21.4%) of the clinical studies [6,15,16]. Collectively, these clinical studies covered pedi-
atric patients aged from 0 to 18 years [1,4–16]. All except one study recruited less than
100 patients for the model evaluation [1,5–16]. The only exception had 134 patients [4].
A retrospective approach was employed in about two-thirds (9 out of 14) of the clinical
studies [1,4–9,12,15]. About 70% of (11) included studies reported absolute dose figures
and/or dose reduction percentages. The performance of dose reduction of the AI models
with acceptable image quality ranged from 11% to 95% [1,2,5–7,10–14,16]. More than half
(6) of these studies reported that their AI models were able to achieve dose reductions
between 36% and 70% [1,6,7,10,13,16] although three other studies showed dose reductions
between 85% and 95% [2,12,14], and another two showed 11–20% dose reductions [5,11].
For the two most popular commercial AI models, GE TrueFidelity and Canon AiCE, great
variations of their dose reduction performances, namely 11–85% and 52–95%, were noted,
respectively [1,2,6,10–12,16].

4. Discussion

The findings of this systematic review on the AI for radiation dose optimization in
pediatric radiology are consistent with several recent narrative reviews about the use of AI
in radiology [17,43,51]. For the narrative review about the current and future applications
of AI in radiology published in 2018 [43], only one study regarding low-dose CT denoising
published in 2017 was cited [52]. However, recently, more studies about the use of AI
for dose optimization have been published, resulting in a narrative review about the
AI for dose optimization in pediatric CT available in 2021 [17]. This demonstrates that
the use of AI for dose optimization in pediatric radiology has attracted the attention of
the profession recently. That narrative review indicated the DLIR allowed 30–80% dose
reduction in pediatric CT but was still able to produce images with diagnostic quality. This
systematic review with inclusion of more studies about dose optimization in pediatric CT
and covering other imaging modalities shows that the majority of the AI models were able
to reduce the radiation dose by 36–70% [1,6,7,10,13,16]. Nonetheless, three studies included
in this systematic review demonstrated that the use of AI could achieve further radiation
dose reduction (up to 95%) [2,12,14]. Apparently, the large variation of dose reduction
performances is due to the retrospective nature of many included studies [1,4–9,12,15],
which did not allow further manipulation of examination/scan parameters to obtain ultra-



Children 2022, 9, 1044 9 of 12

low-dose images for evaluating whether the AI models could restore the quality of these
ultra-low-dose images to close to the original [9]. Although there is a greater flexibility for
phantom studies to manipulate the examination/scan parameters without any ethical and
radiation dose concerns, enabling further exploration of the potential of these AI models,
their evaluation outcomes tend to be less clinically relevant [47,48]. For example, Jeon
et al. [2] reported that Canon AiCE was able to reduce the CT dose by 95% with the contrast-
to-noise ratio values of the DLIR phantom images similar to those reconstructed by filtered
back projection, but it is unclear whether these findings could be translated into clinical
practice exactly. Nonetheless, Wang et al.’s [14] clinical prospective study showed that
their homegrown AI denoising model developed through transfer learning with the use
of 17 standard-dose PET simulated 6.25% ultra-low-dose PET, and MRI training datasets
were able to reduce the radiation dose by 93.8% for the whole-body PET examinations with
adequate diagnostic accuracy. This implies that it is feasible to use the AI denoising to
achieve about 90% dose reduction in the clinical practice although all included studies had
small sample sizes and/or number of training datasets [1,4–16], which is a common issue
of AI studies in radiology due to limited availability of medical images [53]. Nevertheless,
through the use of transfer learning (i.e., retraining an existing AI model using a smaller
number of datasets with or without modification of its architecture) to develop an AI model
for performing a similar task, such a model could provide a dose-optimization performance
comparable to commercially available models (e.g., Canon AiCE, GE TrueFidelity, etc.)
trained with more datasets [2,12,14,43].

It is within expectation that all but two studies used the AI models with the deep CNN
architecture because the CNN architecture emerged in 1980s, and hence, it has been widely
used in radiology, with satisfactory performances well-demonstrated [1,2,4–6,8–16,37].
However, one included study published in 2022 employed the more recent and advanced
DL architecture: GAN, which was designed in 2014 [7,51]. According to a narrative review
about the use of GAN in radiology published in 2021 [51], the CNN-based denoising models
could cause CT images having a plastic-like appearance, which is similar to those produced
by iterative reconstruction due to over-smoothing. In contrast, the GAN is a more complex
architecture with a generator and a discriminator, which requires simultaneous training of
these two, increasing the complexity of model development [37]. Nonetheless, the GAN-
based denoising models are able to preserve texture details and hence produce images with
quality matching standard images [51]. The GAN-based dose-optimization study included
in this systematic review also demonstrated similar findings that their readers were unable
to differentiate between the standard-dose and GAN-processed images although only
36.6% dose reduction was achieved in their study [7]. Another non-CNN-based dose-
optimization study included in this review employed the Gaussian mixture model (GMM)
architecture [3]. The use of GMM for medical image denoising was reported before the
emergence of GAN [54]. However, it is not widely adopted in radiology, and its clinical
performance in pediatric radiology dose optimization remains unclear [3,17,43,51].

This paper is the first systematic review on the AI for radiation dose optimization in
pediatric radiology covering the imaging modalities of CT, PET/MRI, and mobile radiogra-
phy and hence advancing the previous narrative review on the AI for dose optimization
in pediatric CT published in 2021 [17]. Although it is well-known that radiation dose
burden is a significant issue in pediatric CT [1–11,15,16], the dose involved in a PET scan
is comparable to that of a CT examination [14]. Furthermore, general radiography is the
most common radiological examination type for pediatric patients despite being a low-
dose modality [36]. Nonetheless, as per the ALARA principle, the value of AI for dose
optimization in other modalities that use ionizing radiation for pediatric examinations
should be explored in the future [17,24,25]. Moreover, given the relatively narrow focus
and small sample size of the included studies, future studies on this topic area for CT, PET,
and general radiography need to have greater scale and wider scope [1,4–16]. Besides,
further exploration of the use of GAN for dose optimization appears warranted [7,51].
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This systematic review has two major limitations. Article selection, data extraction,
and synthesis were performed by a single author, albeit one with more than 20 years of
experience in conducting literature reviews. According to a recent methodological system-
atic review [44], this is an appropriate arrangement provided that the single reviewer is
experienced. Additionally, through adherence to the PRISMA guidelines and the use of the
data extraction form (Table 1) devised based on the recent systematic review on AI in radi-
ology and QATSDD, the potential bias should be addressed to certain extent [41,45,46,49].
In addition, only articles written in English and published within last five years were
included, potentially affecting comprehensiveness of this systematic review. Nevertheless,
this review still has a wider coverage than the previous narrative review on the AI for dose
optimization in pediatric CT [17].

5. Conclusions

This systematic review shows that the deep CNN was the most common AI technique
and architecture used for radiation dose optimization in pediatric radiology. All but three
included studies evaluated the AI performance in dose optimization of abdomen, chest, head,
neck, and pelvis CT; CT angiography; and DECT through DLIR. The majority of studies
demonstrated that the AI could reduce radiation dose by 36–70% without losing diagnostic
information. Despite the dominance of commercially available AI models based on the
deep CNN, the homegrown models, including the one with the more recent and advanced
architecture, i.e., GAN, could provide comparable performances. Future exploration of the
value of AI for dose optimization in pediatric radiology is necessary, as the sample sizes of the
included studies appear small, and only three imaging modalities, namely CT, PET/MRI, and
mobile radiography, rather than all examination types were covered.
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