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a b s t r a c t 

Much concern has arisen regarding serious epidemics due to the Middle East Respiratory Syndrome 

(MERS) coronavirus. The first MERS case of Korea was reported on 20 May 2015, and since then, the MERS 

outbreak in Korea has resulted in hundreds of confirmed cases and tens of deaths. Deadly infectious dis- 

eases such as MERS have significant direct and indirect social impacts, which include disease-induced 

mortality and economic losses. Also, a delayed response to the outbreak and underestimating its danger 

can further aggravate the situation. Hence, an analysis and establishing efficient strategies for preventing 

the propagation of MERS is a very important and urgent issue. In this paper, we propose a class of non- 

linear susceptible-infectious-quarantined (SIQ) models for analyzing and controlling the MERS outbreak 

in Korea. For the SIQ based ordinary differential equation (ODE) model, we perform the task of parameter 

estimation, and apply optimal control theory to the controlled SIQ model, with the goal of minimizing the 

infectious compartment population and the cost of implementing the quarantine and isolation strategies. 

Simulation results show that the proposed SIQ model can explain the observed data for the confirmed 

cases and the quarantined cases in the MERS outbreak very well, and the number of the MERS cases can 

be controlled reasonably well via the optimal control approach. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

First confirmed on 20 May 2015, the latest outbreak of Middle

ast Respiratory Syndrome coronavirus (MERS-CoV) infections in

orea accounted for 186 laboratory-confirmed cases, including 36

eaths, 138 recovered individuals discharged from hospitals, and

2 remaining in hospitals up to 28 July 2015, a de facto end date

f the outbreak ( Ministry of Health and Welfare , MoH ). It spread

emarkably fast in hospitals, which has caused the largest MERS

utbreak outside the Middle East. The case fatality rate of 19.4%

s, however, much lower than the reported rate of 37.7% prior to

he outbreak in Korea, according to the World Health Organiza-

ion (WHO). The MERS-CoV is a novel betacoronavirus which was

rst identified from the sputum of a 60-year-old man in fall 2012

 Zaki et al., 2012 ). Clinical features of MERS range from mild ill-

ess to fatal conditions such as acute respiratory distress syndrome
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nd multi-organ failure resulting in death, especially in patients

ith underlying comorbidities ( Zumla et al., 2015 ). Although it is

nitially known as a zoonotic disease, human-to-human transmis-

ion occurs in health care settings and now is linked with signif-

cant morbidity ( Oboho et al., 2015 ). This outbreak of the MERS-

oV infection, including the index cases roommates, their care-

iver, and even the healthcare workers, in what is called as a

uper-spreading event ( Kupferschmidt, 2015 ), raised several impor-

ant issues for global public health surveillance and raised several

ssues regarding infection control policies, including the control of

osocomial transmission to avoid a repeated outbreak ( Keeling and

ohani, 2008 ). 

In this study, we carry out an epidemiological assessment of

he MERS-CoV outbreak in Korea in order to provide a mathe-

atical framework for understanding the complex dynamics of

he pathogen spread and establishing efficient guidelines for im-

lementing quarantine and isolation strategies. More specifically,

e propose a class of nonlinear susceptible-infectious-quarantined

SIQ) models for analyzing and controlling the MERS outbreak in

orea. The proposed SIQ model is innovative, in that the MERS

https://doi.org/10.1016/j.jtbi.2017.10.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2017.10.004&domain=pdf
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Fig. 1. The SIQ model. 
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transmission probability is time-dependent, monotone decreasing,

and squashing-type. More specifically, it is initially almost flat,

then decreasing rapidly, and finally gradually reaching a saturation

point, which is reasonable because this can reflect the change in

individuals’ hygienic behaviour with time. Recently, there has been

much interest in investigating some aspects of the time-dependent

nature of the disease transmission probability. In particular, sev-

eral methods have been considered to model the time-dependence

due to the impact of media coverage ( Cui et al., 2008; Liu et al.,

2007; Sun et al., 2011; Xiao et al., 2015 ). However, these stud-

ies have mostly focused on only a single factor under consider-

ation. In this paper, we consider all relevant factors that can af-

fect the MERS transmission probability ( e.g. , media coverage, in-

creased awareness, etc.) collectively, and try to model the resultant

time-dependent transmission probability using a sigmoidal func-

tion. Note that the sigmoidal functions are quite popular in the

field of machine learning when one needs to address monotone

and squashing-type phenomena. For the proposed SIQ model, we

perform the task of parameter estimation, and apply optimal con-

trol theory to the controlled SIQ model, with the goal of minimiz-

ing the infectious compartment population and the cost of imple-

menting the quarantine and isolation strategies. Simulation results

show that the proposed SIQ model can explain the observed data

for the confirmed cases and the quarantined cases in the MERS

outbreak very well, and the number of the MERS cases can be con-

trolled reasonably well via the optimal control approach. Finally in

the last two sections of this paper, discussion and concluding re-

marks are given along with brief descriptions of data treatment. 

2. Methods and results 

2.1. The SIQ model for the MERS analysis 

In this section, we will propose a nonlinear susceptible-

infectious-quarantined (SIQ) model for analyzing the MERS out-

break in Korea. The SIQ model is a generalization of an epidemi-

ological population model involving susceptible, infectious, and

quarantined compartments ( Hethcote et al., 2002; Keeling and Ro-

hani, 2008; Lenhart and Workman, 2007; Xiao et al., 2015 ). In

the SIQ model, the four compartment populations are used as the

model’s state variables: S ( t ), the number of individuals that are

susceptible to the MERS disease at time t; I ( t ), the number of in-

dividuals that are actively infectious at time t; S q ( t ), the number of

quarantined susceptible individuals at time t ; and C q ( t ), the number

of confirmed cases at time t . Note that in the SIQ model, Q stands

for the super-compartment comprising S q and C q (see Fig. 1 ). Also,

note that C q ( t ) is a collective sink-type compartment, which in-

cludes the number of the MERS patients under treatment, the re-

covered cases, and the dead cases altogether at time t . As shown

in Fig. 1 , the SIQ model considers two kinds of non-pharmaceutical

interventions: quarantine of the susceptible and infected individ-

uals, and isolation of the infectious individuals following contact

tracing. As a result of a contact tracing, a proportion, q , of indi-

viduals who are contacted in connection with a MERS patient is

quarantined. The quarantined individuals can move to compart-

ments C q or S q , depending on whether they are exposed to the

MERS coronavirus or not. Hence, the quarantined individuals, if un-

infected, move to the compartment S q at a rate of c(1 − β(t)) q,

where c is the contact rate, i.e. , the average number of contacts of

the whole population per unit time, and β( t ) is the probability of

the MERS transmission per contact at time t . Note that in the SIQ

model, the MERS transmission probability, β( t ), is time-dependent,

monotone decreasing, and squashing-type. Obviously, using time-

dependent transmission probability is more reasonable than using

the constant one, because it can reflect the change of individuals’

hygienic behavior with time. As shown in Fig. 1 , if infected, the
uarantined individuals move to the compartment C q at a rate of

 β( t ) q . Also, the remaining proportion ( i.e. , the proportion missed

rom the contact tracing), 1 − q, can move to compartment I or

tay in compartment S , depending on whether they are exposed

o the MERS coronavirus or not. The transmission dynamics of the

IQ model is illustrated in Fig. 1 , and its state equations are as fol-

ows: 

˙ S (t) = −c(1 − β(t )) qS(t ) I(t ) 
−cβ(t) qS(t) I(t) − cβ(t)(1 − q ) S(t) I(t) + λS q (t) 

˙ I (t) = cβ(t)(1 − q ) S(t) I(t) − θ I(t) 
˙ S q (t) = c(1 − β(t )) qS(t ) I(t ) − λS q (t) 
˙ I q (t) = cβ(t) qS(t) I(t) + θ I(t) 

(1)
he first equation of (1) describes the rate of change of the suscep-

ible compartment population, with four terms on its right-hand

ide. Its first term concerns the transition from S to S q due to quar-

ntine of susceptible individuals. This term can be explained in

erms of a bilinear incidence law having a contact rate c together

ith β( t ), the probability of the MERS transmission per contact at

ime t , and q , the probability of quarantine per contact. The sec-

nd and third terms model the transition from S to C q and the

ransition from S to I , respectively. The fourth term represents the

ransition from S q to S , and this transition means the release from

uarantine into the wider community. In the second equation of

1) , the rate of change of the infectious compartment population

s described by two terms. The first represents the transition from

he susceptible state to the infectious state, and the second term

enotes the transition from I to C q due to detection and isolation of

he infectious patients. The remaining equations of (1) describe the

ates of change of S q and C q in the super-compartment Q , respec-

ively, and the exact meaning of their terms can be explained sim-

larly. The natural birth and death rates are not considered in the

IQ model, and this omission allows us to focus on the core theme

f the paper. Note that consideration of these additional aspects is

elatively straightforward, and would lead us to some further re-

ated observations. For example, if the natural birth rate of a sus-

eptible population, �, and the natural death rate, d , are consid-
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Table 1 

Parameters for the SIQ model. 

Notation Meaning 

S 0 Initial value of S ( t ), the number of individuals in the susceptible compartment 

c Contact rate 

β( t ) Probability of MERS transmission per contact (see Fig. 2 ) 

q Probability of quarantine per contact 

λ Rate at which the quarantined susceptible individuals are released into the wider community 

θ Isolation rate for infectious individuals 

t β Inflection point of β( t ) 

s β Parameter determining the slope of β( t ) at t β

Fig. 2. Squashing-type function, β( t ), used in the SIQ model. 
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red, the resultant reduced SIQ system 

1 with a constant transmis-

ion probability, β0 , would have the disease-free equilibrium point

 0 = (�/d, 0 , 0) , which is locally asymptotically stable if the basic

eproduction number R 0 < 1, where R 0 = �cβ0 (1 − q ) / ( d(d + θ ) ) . 

As previously mentioned, the MERS transmission probability,

( t ), of our SIQ model, is time-dependent, monotone decreasing,

nd squashing-type. Since many factors ( e.g. , media coverage, in-

reased awareness, etc.) can alter individuals’ hygienic behavior,

e employ the squashing-type function of Fig. 2 for β( t ). 2 More

pecifically, we utilize 

β(t) = β0 − �βσ (s β (t − t β ))) , (2) 

here σ ( ·) is the logistic sigmoidal function ( Bishop, 2006 ) defined

s σ (x ) = 1 / (1 + exp (−x )) ; t β is the inflection point of β( t ); s β is

he parameter determining the slope of β( t ) at its inflection point.

ote that the use of logistic sigmoidal functions is quite popular

n the field of machine learning( Bishop, 2006 ) when one needs

o represent monotone and squashing-type phenomena. Also, note

hat using the logistic sigmoidal function of (2) lead to the follow-

ng simplification when we compute its derivative: 

˙ β(t) = −�βs βσ (s β (t − t β ))(1 − σ (s β (t − t β )) . (3) 

his property can be utilized effectively in further studies on the

ualitative properties of the SIQ model ( e.g. , study of the global

tability of the disease-free and endemic equilibrium points of

he SIQ model). An explanation of the SIQ parameters is given in

able 1 . 

By fitting the SIQ model to the reported data for the con-

rmed cases and the quarantined cases, we obtain the following
1 Because the state variable C q does not appear in the first three equations of 

ystem (1) , we can further simplify system (1) . In the stability analysis, considering 

he resultant reduced system is sufficient. 
2 Note that our paper addresses the time-dependent aspect for β . An impor- 

ant approach that can be addressed along these lines is the event-dependent ap- 

roach, where the transmission probability could be dependent on the number of 

he newly-added or accumulated MERS cases. 

m

a

o

f

M

t

arameters: 3 

S 0 = 1 . 6 × 10 

+04 , c = 7 . 2 × 10 

−03 , 

0 = 6 . 5 × 10 

−03 , �β = 3 . 3 × 10 

−03 , 

s β = 0 . 78 , t β = 2 . 18 × 10 

+01 , q = 2 . 3 × 10 

−01 , 

λ = 5 . 46 × 10 

−02 , θ = 3 . 8 × 10 

−01 . (4) 

e performed simulations based on the estimated parameters.

imulation results ( Fig. 4 ) show that the proposed SIQ model can

xplain the observed data ( Fig. 3 ) for the confirmed cases and the

uarantined cases in the MERS outbreak very well. Our parame-

er estimation results show that the MERS transmission probabil-

ty, β( t ), is initially almost flat, then decreasing rapidly, and fi-

ally gradually reaching a saturation point (see the solid line of

ig. 5 ). This has a natural interpretation, in that as information

n the MERS outbreak becomes more widely known with the pas-

age of time, health authorities’ and individuals’ effort s against the

pidemic intensify accordingly, which results in the MERS trans-

ission probability decreasing in the squashing-type fashion, as

n Fig. 5 . In retrospect, if the initial effort to reduce the MERS

ransmission probability were more effective, the magnitude of

0 could be decreased further. In order to investigate this aspect,

e additionally performed simulations for a scenario with β0 re-

uced to 90% of its estimated value (see the dashed line of Fig. 5 ).

ig. 6 shows that the infectious population could be reduced sig-

ificantly if the aforementioned effort were successful. In order to

larify why it is important to consider the incidence rate of the

ype shown in (2) , we also considered the constant beta case, and

rovided the corresponding simulation results ( Fig. 7 ). Comparing

igs. 4 and 7 shows the superiority of using the time-dependent β .

.2. The controlled SIQ (C-SIQ) model and optimal control 

Since quarantine and isolation strategies are the most impor-

ant and effective measures against the outbreaks of disease when

ne does not have valid medicines and vaccine (see e.g. , Castillo-

havez et al., 2003; Day et al., 2006; Yan and Zou, 2009; Yan et al.,

007 ), one can view the effort s of implementing quarantine and

solation strategies as the actions that control the entire model. In

his paper, we utilize optimal control theory ( Lenhart and Work-

an, 2007; Lewis and Syrmos, 1995 ) for the possibility of improv-

ng our control effort s. Note that recent applications of optimal

ontrol theory are increasingly used in communities of biological

ystems ( e.g. ( Buonomo and Messina, 2012; Joshi et al., 2006; Jung

t al., 2002; Kirschner et al., 1997; de Pillis et al., 2007 )), and in

articular, they have been widely used and discussed in the control
3 Since the proposed model is deterministic, we obtain the model parameters by 

inimizing the fitting error defined with a weighted sum of the squared error of C q 
nd the squared error of S q (For more details, please refer to Section 4.2 ). Note that 

ur model may be extended to incorporate stochastic terms such as noise arising 

rom variability in the transmission probability, in which case more sophisticated 

arkov Chain Monte Carlo (MCMC) methods need be used for parameter estima- 

ion. 
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Fig. 3. MERS confirmed cases & quarantine status. 
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of epidemics ( e.g. Caetano and Yoneyama, 2001; Feng et al., 2009;

Gupta and Rink, 1973; Joshi et al., 2006; Lenhart and Workman,

2007 ). By incorporating the control inputs, q ∗( t ) and θ ∗( t ) into our

SIQ model (1) , one can obtain the following state equations for the

controlled model: 

˙ S (t) = −c{ (1 − β(t )) q ∗(t ) + β(t ) } S(t ) I(t ) + λS q (t) 
˙ I (t) = cβ(t)(1 − q ∗(t)) S(t) I(t) − θ ∗(t) I(t) 
˙ S q (t) = c(1 − β(t )) q ∗(t ) S(t ) I(t ) − λS q (t) 
˙ I q (t) = cβ(t) q ∗(t) S(t) I(t) + θ ∗(t) I(t) 

(5)

Note that for the optimal control of (5) , it is enough to consider the

first three variables only. Hence, we consider the following con-

trolled SIQ (C-SIQ) model: 

˙ S (t) = −c{ (1 − β(t )) q ∗(t ) + β(t ) } S(t ) I(t ) + λS q (t) 
˙ I (t) = cβ(t)(1 − q ∗(t)) S(t) I(t) − θ ∗(t) I(t) 
˙ S q (t) = c(1 − β(t )) q ∗(t ) S(t ) I(t ) − λS q (t) 

(6)

From the data fitting based on the SIQ model, we have already ob-

tained the estimation results for the quarantine probability, q , and

the isolation rate, θ . In retrospect, however, control-theoretic in-

vestigation is desirable for the purpose of improving our response

to the outbreak. In the following, we consider the problem of im-

proving the quarantine probability and isolation rate further with

additional effort s ( �q ∗( t ) and �θ ∗( t )) by minimizing an objective

function in the form of J = 

∫ t f 
0 

g(I(t) , �q ∗(t) , �θ ∗(t)) dt . Note that

in this problem, the quarantine probability and isolation rate at

time t are represented by 

q ∗(t) = q + �q ∗(t) 
θ ∗(t) = θ + �θ ∗(t) , 

(7)

and the control inputs to be determined via optimal control the-

ory are the additional effort s described by �q ∗( t ) and �θ ∗( t ). Here

g ( · ) should be reasonably chosen to reflect the relative importance

of the quarantine and isolation effort s over the infection. More pre-

cisely, in order to minimize an objective function comprising the
nfection cost ( i.e. , the infectious compartment population) and the

ost of implementing quarantine and isolation strategies, we con-

ider the following optimal control problem: 

min u (·) 

∫ t f 

0 

[ I(t) + c q (�q ∗(t)) 2 + c θ (�θ ∗(t)) 2 ] dt (8)

ubject to the C-SIQ state equations (6) . 

In the cost rate of this problem, c q and c θ are the trade-off

onstants defining the relative importance of the implementation

osts over the infection cost. Note that the cost rate considers

uadratic cost terms for the control inputs, which is a commonly

sed strategy in related control problems dealing with epidemic-

odel-based systems ( e.g. , Lenhart and Workman, 2007 ). Also, note

hat the existence of an optimal control and corresponding opti-

al state trajectory comes from the convexity of the integrand of

he objective function with respect to the control and the Lips-

hitz property of the state system with respect to the state vari-

bles (see, e.g. , Fleming and Rishel, 1975 ), and based on the ex-

stence, we can now rely on the Pontryagin maximum principle

PMP) ( Pontryagin et al., 1987 ) for an optimal solution. As is well

nown, the necessary conditions for an optimal solution of (8) can

e obtained via the Pontryagin maximum principle. For this, the

amiltonian H of the optimal control problem (8) is defined as 

H(S(t) , I(t) , S q (t) , p 1 (t) , p 2 (t) , p 3 (t) , �q ∗(t) , �θ ∗(t)) 
= I(t) + c q (�q ∗(t)) 2 + c θ (�θ ∗(t)) 2 

+ p 1 (−c{ (1 − β(t))(q + �q ∗(t)) + β(t) } S(t) I(t) + λS q (t)) 
+ p 2 (cβ(t)(1 − (q + �q ∗(t ))) S(t ) I(t ) − (θ + �θ ∗(t )) I(t )) 
+ p 3 (c(1 − β(t))(q + �q ∗(t)) S(t) I(t) − λS q (t)) . 

(9)

nd its costate equations can be obtained via 

˙ p 1 = − ∂H 
∂S 

, ˙ p 2 = − ∂H 
∂ I 

, ˙ p 3 = − ∂H 
∂S q 

, 

p 1 (t f ) = p 2 (t f ) = p 3 (t f ) = 0 . 
(10)
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Fig. 4. Simulation results utilizing the SIQ model and the estimated parameters. 
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rom the optimality conditions, ∂H 
∂�q ∗ = 0 and 

∂H 
∂�θ∗ = 0 , we can

lso obtain the following condition for optimal control: 

�q ∗(t) = 

c{ p 1 (t)(1 −β(t))+ p 2 (t) β(t) −p 3 (t)(1 −β(t)) } 
2 c q 

S(t) I(t) , 

�θ ∗(t) = 

p 2 (t) 
2 c θ

I(t) . 
(11) 

lso, if upper bounds for the nonnegative control inputs are forced,

hen by confining the control input to be nonnegative and subject

o a positive upper bound �q max and �θmax , the optimal control

f (8) can be written in the following form: 

q ∗(t) = max 

(
0 , min 

(
c{ p 1 (t)(1 −β(t))+ p 2 (t) β(t) −p 3 (t)(1 −β(t)) } 

2 c q 
S(t ) I(t ) ,

�q max 

))
, 

θ ∗(t) = max (0 , min ( p 2 (t) 
2 c θ

I(t) , �θmax )) . 

(12) 
rom the above steps, we can conclude that any solution to the

ptimal control problem (8) must satisfy the following: 

˙ S (t) = −c{ (1 − β(t))(q + �q ∗(t)) + β(t ) } S(t ) I(t ) + λS q (t) , 
˙ I (t) = cβ(t)(1 − (q + �q ∗(t ))) S(t ) I(t ) − (θ + �θ ∗(t )) I(t ) , 

˙ S q (t) = c(1 − β(t))(q + �q ∗(t )) S(t ) I(t ) − λS q (t) , 

˙ p 1 (t) = −p 1 (t)(−c{ (1 − β(t))(q + �q ∗(t)) + β(t) } ) I(t) 

−p 2 (t)(cβ(t)(1 − (q + �q ∗(t ))) I(t )) 

−p 3 (t)(c(1 − β(t))(q + �q ∗(t)) I(t)) , 

˙ p 2 (t) = −1 − p 1 (t)(−c{ (1 − β(t))(q + �q ∗(t)) + β(t) } ) S(t) 

−p 2 (t)(cβ(t)(1 − (q + �q ∗(t ))) S(t ) − (θ + �θ ∗(t))) 

−p 3 (t)(c(1 − β(t))(q + �q ∗(t))) S(t) , 

˙ p 3 (t) = −p 1 (t) λ + p 3 (t) λ, 

�q ∗(t) = max (
0 , min ( 

c{ p 1 (t)(1 − β(t)) + p 2 (t) β(t) − p 3 (t)(1 − β(t)) } 
2 c q 

S(t) I(t) , �q max ) ) , 

θ ∗(t) = max 

(
0 , min 

(
p 2 (t) 

2 c θ
I(t) , �θmax 

))
, 
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Fig. 5. The MERS transmission probabilities. 

Fig. 6. Simulation results utilizing the SIQ model (Solid line: I ( t ) when β0 is the estimated value; dashed line: I ( t ) when β0 is reduced to 90% of its original value). 
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S(0) = S 0 , 

I(0) = I 0 , 

S q (0) = S q 0 , 

p 1 (t f ) = 0 , 

p 2 (t f ) = 0 , 

p 3 (t f ) = 0 . (13)
y solving this boundary value ordinary differential equation (ODE)

roblem numerically, we can obtain optimal control inputs for

roblem (8) . 

In order to illustrate the optimal control policy, we simulated

he optimally controlled C-SIQ system. The parameters considered

or the simulations are set to be the same as the estimation re-

ults except the control inputs, �q ∗( t ) and �θ ∗( t ). For the trade-
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Fig. 7. Simulation results utilizing the simplified SIQ model with constant β , and the estimated parameters. 

o  

d  

s  

s  

o  

o  

t  

t  

f  

t  

s

 

s  

e  

t  

I  

t  

d  
ff constants of (8) , we used c θ = 10 , 0 0 0 , c q = 1 . The initial con-

itions for the simulations were also taken from the estimation re-

ults, i.e. , S 0 = 16 , 0 0 0 , I 0 = 1 , and S q 0 = 0 . The simulations con-

idered two scenarios. The first scenario does not have bounds

n the control inputs, while the second scenario has the bounds

f �q max = 0 . 007 and �θmax = 0 . 05 . With the goal of keeping

he infection level low with reasonable control effort s, we solved

he boundary value ODE problem (13) using bvp4c , the MATLAB

unction to solve boundary value problems for ordinary differen-
o  
ial equations). Figs. 8–10 show the simulation results for the first

cenario. 

Figs. 8 and 9 show that under the optimal control of the first

cenario, the best method of fighting the infection is to initially

nter large amounts of �q ( t ) and �θ ( t ), and later after 30 days

o slowly reduce them to zero. The resultant state trajectory of

 ( t ) (the dashed line of Fig. 10 ) shows that, with the optimal con-

rol strategy, the infectious compartment population can be re-

uced significantly compared to the original case (the solid line

f Fig. 10 ). To consider the robustness of the quarantine and isola-
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Fig. 8. Optimal control law for �q ( t ) (the first scenario). 

Fig. 9. Optimal control law for �θ ( t ) (the first scenario). 
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tion control, we also conducted sensitivity analysis for the follow-

ing cases: (1) when c is 10% lower and 10% higher; (2) when λ is

50% lower and 50% higher. For each case we simulated the resul-

tant controlled system, and the results on the number of infectious

individuals are shown in Figs. 11 and 12 , respectively, for cases (1)

and (2). Comparing Figs. 11 and 12 shows that c is more important

for the quarantine and isolation control. 
Simulation results for the second scenario, which deals with

he bounded input case, are shown in Figs. 13–15 . Figs. 13 and 14

how that under the optimal control of the second scenario, the

est method of fighting the infection is to apply the maximum

mounts of the control inputs from the start, and then to slowly

educe them after 30 days to zero. The state trajectory of I ( t ) re-

ulting from the optimal control is shown in Fig. 15 . Note that the
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Fig. 10. Number of infectious individuals in the first scenario (Solid line: I ( t ) of the uncontrolled case; dashed line: I ( t ) under optimal control). 

Fig. 11. Number of infectious individuals resulting from the sensitivity analysis for c . 
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nfectious compartment population can be reduced significantly

ven with the bounds on control inputs. From the simulation re-

ults ( Figs. 8–15 ), we can conclude that the MERS disease spread

an be properly handled by the optimal control approach, and we

an obtain a practical guideline, whereby quarantine and isolation

ffort s in the early stage are critically important in effectively con-

rolling the MERS outbreak. 
. Discussion and conclusions 

In recent years, global pandemic viral infections, including the

003 severe acute respiratory syndrome, the 2009 H1N1 influenza,

nd the 2014 Ebola outbreak, have been devastating but pro-

ided valuable experience in outbreak responses. For public health

ontrol, increased vigilance by health professionals and voluntary
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Fig. 12. Number of infectious individuals resulting from the sensitivity analysis for λ. 

Fig. 13. Optimal control law for �q ( t ) (the second scenario). 

 

 

 

 

 

 

 

 

 

 

 

 

compliance by the public are essential in implementing rapid ef-

fective response interventions. In this study, we carried out an epi-

demiological assessment of the MERS-CoV outbreak in Korea in or-

der to provide a mathematical framework for understanding the

complex dynamics of the pathogen spread and establishing effi-

cient guidelines for implementing quarantine and isolation strate-

gies. The following have been observed by the assessment: 
• By fitting the SIQ model, which employs a squashing-type func-

tion of Fig. 2 for β( t ), to the real data on the confirmed

cases and the quarantined cases, we obtained reasonable per-

formance, as shown in Fig. 4 . Also, it turned out that the re-

sultant estimated parameters belonged to plausible ranges. By

comparison, the conventional SIQ model utilizing a constant
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Fig. 14. Optimal control law for �θ ( t ) (the second scenario). 

Fig. 15. Number of infectious individuals in the second scenario (Solid line: I ( t ) of the uncontrolled case; dashed line: I ( t ) under optimal control). 

 

 

 

 

 

 

 

 

 

 

 

transmission probability could not explain the observed data

well. 
• Our nonlinear epidemiological models showed that the MERS

transmission probability decreased in the squashing-type fash-

ion and then approached a saturation point in a time-

dependent manner. As information on the MERS outbreak be-
came widely known in the nation, effort s against this epi-

demic, including individuals hygienic behavior, and interven-

tions by health care facilities and by authorities were accord-

ingly strengthened. In our SIQ-based analysis, the inflection

point for transmission probability was found to be t β = 21 . 8 ,

corresponding to a couple of days after 7 June 2015. Interest-
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ingly, 7 June 2015 was the day when the Korean government

revealed the names of 24 MERS-affected hospitals to the public.

After releasing the names of affected medical facilities, the rate

of increase in new confirmed cases abated. As a practical guide-

line to avoid another similar unexpected outbreak, we draw the

conclusion that combined effort s in the early stage are critically

important, and sharing information including the names of af-

fected hospitals or countries, clinical situations, and prevention

methods might be important for global public health control. 
• We applied optimal control theory to the controlled SIQ model

with the goal of minimizing the infectious compartment popu-

lation and the cost of implementing the quarantine and isola-

tion strategies. Simulation results show that the number of the

MERS cases can be controlled reasonably well via the optimal

control approach. 

In conclusion, this paper proposes a nonlinear epidemiological

ODE for the MERS outbreak in Korea, the SIQ model, in which

the state variables are defined as the populations of four compart-

ments ( S ( t ), I ( t ), S q ( t ), and C q ( t )), and the MERS transmission proba-

bility, β( t ), is modelled by the time-dependent sigmoidal function.

We performed the task of parameter estimation for the SIQ model,

and the data fitting results explained the observed data for the

confirmed cases and the quarantined cases in the MERS outbreak

very well. We also applied optimal control theory to the controlled

SIQ model with the goal of minimizing the infectious compartment

population and the cost of implementing the quarantine and isola-

tion strategies. Our simulation results show that MERS propagation

was controlled reasonably well via the optimal control approach.

In future work, we will conduct further simulation studies, with

the aim of revealing the strengths and weaknesses of the proposed

method, and investigate stability and control issues for its various

extensions, including a stochastic differential equation (SDE) ap-

proach. 

4. Data treatment 

4.1. Data 

We retrieved publicly available data ( Ministry of Health and

Welfare , MoH ) from the Centers for Disease Control and Preven-

tion and the Ministry of Health and Welfare in the Republic of

Korea. The data included information on the cumulative number

of reported cases. The first MERS case in Korea was confirmed

on 20 May 2015, and the numbers of newly confirmed cases and

suspected patients who had been quarantined to prevent possible

spread of the MERS have reached 186 cases and 16,693 cases, re-

spectively, as of 28 July 2015. The data also included a brief de-

scription of each confirmed case with exposure date and onset of

symptoms, and they were sufficient to estimate our SIQ model for

the MERS outbreak epidemiology. In this model, we assumed MERS

is unlikely to spread to another region. 

4.2. Parameter estimation 

We implemented the parameter estimation procedure as a Mat-

lab program.We used fminsearch , a MATLAB function for uncon-

strained nonlinear optimization, along with some changes of vari-

ables in order to carry out the data fitting procedure for the SIQ

model (5) with the time-dependent variable β( t ) specified in (2) .

The performance index (PI) used in the optimization for parameter

estimation was defined as follows: 

P I = w 1 × ( square d error of C q ) + w 2 × ( square d error of S q ) . 
(14)

The objective function of (14) , PI , was based on the numbers of

the confirmed MERS cases and the quarantined cases between 20
ay and 07 July. The weight values ( w 1 = 10 4 and w 2 = 1 ) were

btained empirically via a tuning process based on the training

ata. Simulation results show that the above set of weight values

ielded reasonably good fitting results. Finally, note that a more

ophisticated Markov Chain Monte Carlo (MCMC) algorithm ( e.g. ,

asmussen et al., 2011 ) could be used for parameter estimation of

he SIQ model. However, the use of fminsearch , which was simpler

nd more transparent, was sufficient for the purposes of this paper.
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