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Abstract: The anti-La mab 312B, which was established by hybridoma technology from human-La
transgenic mice after adoptive transfer of anti-human La T cells, immunoprecipitates both native
eukaryotic human and murine La protein. Therefore, it represents a true anti-La autoantibody.
During maturation, the anti-La mab 312B acquired somatic hypermutations (SHMs) which resulted
in the replacement of four aa in the complementarity determining regions (CDR) and seven aa in the
framework regions. The recombinant derivative of the anti-La mab 312B in which all the SHMs were
corrected to the germline sequence failed to recognize the La antigen. We therefore wanted to learn
which SHM(s) is (are) responsible for anti-La autoreactivity. Humanization of the 312B ab by grafting
its CDR regions to a human Ig backbone confirms that the CDR sequences are mainly responsible
for anti-La autoreactivity. Finally, we identified that a single amino acid replacement (D > Y) in the
germline sequence of the CDR3 region of the heavy chain of the anti-La mab 312B is sufficient for
anti-La autoreactivity.

Keywords: anti-La/SS-B antibodies; autoimmunity; La/SS-B autoantigen; systemic lupus erythe-
matosus; primary Sjögren’s syndrome

1. Introduction

The nuclear autoantigen La, also known as Sjögrens’ syndrome associated antigen
B (SS-B), is highly conserved during evolution, including between humans and rodents
(for a sequence comparison, see Supplemental Figure S1). Autoantibodies to the nuclear
autoantigen La/SS-B are frequently found in sera of patients with systemic lupus erythe-
matosus (SLE) and primary Sjögrens’ syndrome (pSS) [1]. In longitudinal studies, anti-La
antibodies (abs) have been described as the first detectable autoantibodies [2]. So far,
different mechanisms have been put forward for the development of autoimmunity in SLE
and pSS patients, including for example, epitope spreading and molecular mimicry [3–9].
Furthermore, an impaired clearance of apoptotic cell material or an immune response
to hidden or post-translationally modified epitopes was postulated for the generation of
autoimmunity [10–12]. In autoimmune-prone mice, Guo et al. observed that abs to nuclear
antigens (ANAs) can occur as the result of somatic hypermutation (SHM) of originally
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non-autoreactive B cells [13]. In this mouse model, the SHMs were shown to occur in
germinal centers. However, it remained unclear whether or not the SHMs were dependent
on T cell help, and it was not determined which amino acid (aa) replacements finally led
to autoreactivity.

Until now, many groups have tried to elicit monoclonal antibodies (mabs) to nuclear
antigens, including to the La/SS-B antigen [14–25]. With few exceptions, detailed epitope
mapping data are missing for most of the anti-La mabs. The most frequently used anti-La
mab, SW5, is directed to a discontinuous epitope (aa 112–138 and aa 171–183) of human
La protein [19–21]. It immunoprecipitates human La protein from total extracts of human
cells but not mouse La protein from total extracts of murine cells. After SDS-PAGE and
immunoblotting under denaturing conditions, it still recognizes human La protein and
fails to react with mouse La protein. In contrast to the eukaryotically expressed mouse La
protein, it recognizes mouse La protein if recombinantly expressed in E. coli. Therefore,
the epitope region recognized by the anti-La mab SW5 should be post-translationally
modified in native eukaryotic mouse La protein [26]. In contrast to the anti-La mab SW5,
the anti-La mabs 5B9 and 7B6 react with short continuous aa sequences. Neither the anti-La
mab 5B9 nor the anti-La mab 7B6 immunoprecipitates La protein from total extracts of
human or murine cells. Therefore, both peptide epitopes are cryptic and not accessible in
native eukaryotic human La protein [26]. The anti-La mab 5B9 recognizes the aa sequence
KPLPEVTDEY (aa 95–104 of human La protein), which is a part of the random coiled
“wing like” region in the N-terminal domain of the La protein connecting the La motif
with the RNA recognition motif (RRM) 1 [26]. The anti-La mab 7B6 recognizes the aa
sequence EKEALKKIIEDQQESLNK (aa 311–328 of human La protein). This aa sequence
is part of the α3 helix in the RRM2 of La protein [24,26]. The epitope is thereby part
of a previously described nuclear retention element and potential dimerization domain.
According to recent data, La protein is a redox sensor that undergoes conformational
changes in a redox-dependent manner whereby the human epitope region recognized by
the anti-La mab 7B6 becomes accessible [26,27]. The murine counter part of the 7B6 epitope
is post-translationally modified and is not recognized by the anti-La mab 7B6. In a series of
studies (e.g., [27–43]), both the 5B9 and the 7B6 La epitopes have been used as peptide tags
and thereby verified.

At least to our knowledge, besides these well characterized anti-La mabs, none of
the other previously described anti-La mabs cross-reacts with native eukaryotic mouse La
protein. Consequently, none of the known anti-La mabs is a bona fide anti-La autoantibody.
Most recently, however, we described novel anti-La mabs. Among them is the anti-La mab
312B, which co-precipitates native eukaryotic human and murine La protein [26] (see also
below). The ab recognizes a discontinuous epitope present in the La motif (for a schematic
view, see also Supplemental Figure S1) which is sensitive to oxidoreduction [26,27].

As deduced from the primary aa sequence, the anti-La mab 312B underwent SHM (see
also below) which resulted in 11 aa replacements. When we reverted all the SHMs in the
primary aa sequence of the autoreactive anti-La mab 312B back to its germline sequence,
the resulting ab no longer reacted with La protein [27] (see also Figure 1). Bearing in
mind that the germline 312B B cell was allowed to leave the bone marrow after successful
recombination, we expect that the ab was most likely not autoreactive from the beginning.
Consequently, these data led us to the conclusion that autoreactivity can be acquired during
B cell maturation due to T cell-dependent SHMs, including in tolerant mice. In order to
confirm this idea, we had to answer the obvious remaining question: which of the SHM(s)
finally converted the non-autoreactive B cell to the B cell secreting the autoreactive anti-
La ab? Here, we show that the replacement of just one aa—an aspartate residue in the
complementarity determining region (CDR) 3 of the variable heavy chain domain (VH)
with a tyrosine residue—restores the anti-La autoreactivity of the non-anti-La reactive
germline 312B derivative.
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Figure 1. The Complementarity Determining Regions (CDRs) of the anti-La mab 312B confers anti-La
reactivity. (A) Schematic representation of recombinant 312B ab constructs. Based on the murine
(mature), germline, and humanized variable heavy and light chain domains of the anti-La mab
312B, different single-chain fragment variables (scFvs) were constructed and fused to the human
IgG4-Fc domain to obtain recombinant murine (mature), germline, or humanized 312B ab constructs.
(B) Recombinant 312B constructs were isolated by protein A affinity chromatography from cell
culture supernatant of permanent 3T3 production cell lines. Purified proteins (312B: mature ab;
gl312B: all SHMs were mutated back to the germline sequence; hu312B: CDRs of the murine 312B
ab were grafted to the best fitting human framework regions) were separated by SDS-PAGE and
subsequently stained with Coomassie-Brilliant Blue. (C) The purified 312B ab constructs were tested
by SDS-PAGE/immunoblotting against human recombinant La protein (rh-La) and a mutant La
version in which the three cysteine residues were mutated to alanine (TCM-La), which makes La
protein insensitive to oxidation. m, protein ladder (kDa).
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2. Results and Discussion
2.1. The CDRs of the Anti-La Mab 312B Are Relevant for Anti-La Reactivity

In a recent study, we were able to show that the replacement of all SHMs acquired in
the primary aa sequence of the anti-La mab 312B back to its predicted germline sequence
results in a loss of anti-La reactivity [26]. In order to facilitate this analysis, we cloned
and expressed two single-chain fragment variables (scFvs) of the respective mature and
germline variable domains of the 312B heavy (VH) and light chain (VL) sequences, which
were then fused to the Fc domain of human IgG4 molecules [26]. Figure 1A shows a
schematic view of this ab derivative. Such recombinant ab derivatives keep their specificity
and most of their binding affinity compared to the original mab (see also below). Both
constructs were transduced into the murine 3T3 cell line for permanent ab production.
Both recombinant abs were purified from cell culture supernatants using protein A affinity
chromatography. As shown in Figure 1B, both constructs encoding either the mature 312B
ab binding domains (Figure 1B, 312B) or the predicted 312B germline ab binding domains
(Figure 1B, germline 312B) are well expressed.

It is commonly accepted that the CDRs of an ab form the paratope, which binds to
the epitope of the antigen. In order to confirm that the CDRs of the anti-La mab 312B are
indeed responsible for its anti-La reactivity we grafted them to human framework regions.
For this purpose, the murine CDRs of the anti-La mab 312B were in silico fused to the
best fitting human framework, resulting in the humanized 312B VH and VL sequences.
Based on these domains, an additional scFv was constructed and fused to the human
IgG4-Fc domain (Figure 1A). The obtained humanized 312B ab construct was permanently
transduced into murine 3T3 cells. After purification from cell culture supernatant via
protein A affinity chromatography, humanized 312B ab was analyzed by SDS-PAGE and
subsequent Coomassie-Brilliant Blue staining (Figure 1B, hu312B).

Next we compared the anti-La reactivity of the recombinant murine 312B ab
(Figure 1C, 312B), the germline 312B ab (Figure 1C, gl312B), and the humanized 312B
ab constructs (Figure 1C, hu312B) by SDS-PAGE/immunoblotting. Besides their reactivity
to recombinant human La (Figure 1C, rh-La), we tested their reactivity against a mutant La
protein version in which the three cysteine residues present in the primary aa sequence
were mutated to alanine. This triple cysteine mutant was termed TCM-La (Figure 1C,
TCM-La) [27]. From previous studies, we know that the replacement of the three cysteine
residues makes La protein insensitive to oxidation [27]. The major reason to test both La
protein versions was as follows. After description of the anti-La mab 312B, we learned that
La protein is sensitive to oxidation [27]. Oxidation leads to a conformational change of
the La motif, which also effects the reactivity of the anti-La mab 312B, showing a higher
binding affinity towards the permanently reduced TCM-La. Therefore, we wanted to rule
out that the lack of anti-La reactivity of the germline 312B ab is somehow related to such
a redox-dependent conformational effect and decided to compare the reactivity of all the
312B ab derivatives against recombinant human wildtype La protein (Figure 1C, rh-La)
and the triple cysteine La mutant (Figure 1C, TCM-La). As shown in Figure 1C, the murine
312B ab (Figure 1C, 312B, rh-La, TCM-La) and the humanized 312B ab (Figure 1C, hu312B,
rh-La, TCM-La) react with both La proteins, while the germline 312B construct does not
recognize either wildtype La protein (Figure 1C, gl312B, rh-La) or the mutant La protein
(Figure 1C, gl312B, TCM-La). Consequently, the lack of anti-La reactivity of the germline
312B ab is not related to oxidoreduction. Most importantly, these data show that the CDRs
of the anti-La mab 312B can transfer anti-La reactivity; thus, we can confirm that the CDRs
of the anti-La mab 312B are responsible and sufficient for its anti-La reactivity while the aa
replacements in the framework regions may be less important for anti-La reactivity.

In order to support the immunoblotting data, we determined the apparent KD values
of the recombinant abs by ELISA (for a comparison of the binding curves, see also below).
Bearing in mind that wildtype La protein always represents an undefined, varying mixture
of fully and partially oxidized as well as reduced La protein, the KD values were estimated
using the TCM-La protein, which is no more sensitive to oxidation. We estimated a KD value
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of 0.5 (±0.4) nmolar for the original anti-La mab 312B. For the murine scFv-based IgG4
derivative (312B), which was constructed as schematically summarized in Figure 1A, we
measured a KD value of 0.3 (±0.2) nmolar. Consequently, the recombinant derivative shows
no loss of affinity compared to the original hybridoma-derived mab, but even a slightly
improved binding. For the humanized version of the 312B construct, we determined a
KD value of 1.5 (±1) nmolar. Thus, there is a minor loss of affinity during humanization,
which is, however, in the same range as observed in previous humanization approaches.
The remaining affinity is still in the range of a high affinity ab. For the germline 312B
construct, we could not estimate any KD value at all. In summary, these data confirm
the immunoblotting data and show that the recombinant scFv-based IgG4 construct has
comparable binding capability to the original hybridoma ab.

2.2. A Closer Look at the Primary Sequence of the Anti-La Mab 312B

As indicated by the somatic hypermutations (SHMs) present in both the VH and VL
of the anti-La mab 312B (Figure 2: germline sequence, red; mature murine 312B sequence,
blue), the adoptively transferred anti-human La T cells somehow provided help to the
germline 312B B cell. This is in line with the failure to obtain anti-La hybridomas from hu-
man La transgenic mice after adoptive transfer of T cells from non-immunized animals [26].
Besides SHM, there is also evidence for the editing of the VH sequence as indicated by
the presence of a series of N-nucleotides between the V and the D gene elements that
were used during recombination of the 312B VH gene. Due to the random nature of the
N-nucleotide insertions and the not exactly predefined 5’-start and 3’-end of the D-element
used during the VDJ recombination step, there will always remain some uncertainty about
the exact origin of the respective VDJ gene sequence. Based on the nucleotide sequence
of the 312B VH domain, we currently favor the following course of events that happened
during recombination of the 312B VH gene elements. During the first DJ recombination step
of the used D gene element (IGHD2-3*01 or DSP2.9) with the used J element (IGHJ2*01),
the D element was truncated at the 3’-end (TCTATGATGGTTACTAC) whereby the two
triplets (TACTAC) were deleted. Fusion of the resulting DJ-element to the V-element
(IGHV1-9 according to NCBI and IMGT/DomainGapAlign) resulted in an unproductive
out-of-frame VH domain. The reading frame was rescued by a relatively long insertion
of 10 N-nucleotides (TCAAGGTCTA) encoding the aa sequence SRS (Figure 2: heavy
chain, dashed line) between the V and the DJ elements. Of course, the insertion of the
N-nucleotides also determined the reading frame of the DJ element and also the isoleucine
following the aa sequence SRS. It is noteworthy that we kept these N-nucleotides in our
germline construct because otherwise, the VH sequence could not be translated into a
functional heavy chain. For this reason, the N-nucleotides are present in the non-anti-La
reactive 312B germline B cell sequence. As this germline encoded ab fails to react with La
protein, the N-nucleotides are less important for anti-La reactivity. Of course, we have to
keep in mind that these N-nucleotides determined the used reading frame of the DJ element
and thereby the aa sequence of the CDR3 region. After the successful recombination of
the 312B VH gene, the 312B B cell successfully recombined the light chain. The resulting
germline 312B B cell was able to produce an ab. However, this germline ab did not react
with La protein as shown recently [26] (see also Figure 1C, gl312B and below). Most likely,
it was also not autoreactive as it was not eliminated but able to leave the bone marrow.
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Figure 2. Comparison of the primary VH and VL aa sequence of the anti-La mab 312B with its germline sequence. The
aa mutated in the germline sequence by somatic hypermutation (SHM) are labeled in red and those replaced by the aa
are labeled in blue for the mature, murine 312B VH and VL aa sequences. The aa given in bold are most likely caused by
the degenerated PCR primers used for amplification of the VH and VL domains. The CDRs are underlined. All tyrosine
residues are highlighted in yellow. Red box: the only tyrosine residue which is not encoded by the germline sequence is
caused by a SHM leading to replacement of the aspartate residue. Dashed line in the CDR3 region: during recombination of
the VH gene, N-nucleotides were inserted between the V and the DJ gene elements. The inserted N-nucleotides encode the
aa SRS in the CDR3 region of the VH domain.

Following this view, the non-anti-La reactive germline ab-expressing 312B B cell was
attracted by the adoptively transferred activated T cells to the lymph node (spleen). The
presence of SHMs in the mature 312B B cell suggests that the adoptively transferred T cells
provided help. Therefore, we believe that a (first) mutation occurred which accidentally
converted the reactivity of the germline B cell to an anti-La (auto)reactive B cell. Thanks
to the presence of the adoptively transferred anti-La helper T cells, the immature B cell
received further help which supported additional SHM(s) in the VH domain, finally leading
to the anti-La autoreactive 312B B cell. To confirm this hypothesis, we had to unravel the
SHM(s) that caused this anti-La autoreactivity.

Overall, the primary sequence of the VH domain of the anti-La mab 312B contains 11 aa
replacements compared to the predicted germline sequence. As shown in Figure 2, seven
aa replacements occurred in the framework regions, with only four aa replacements in the
CDR regions. According to the CDR grafting experiment, one of the four aa replacements in
the CDR regions should be key for anti-La autoreactivity. Looking at these four mutations
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in the CDR regions, the replacement of an aspartate residue to a tyrosine residue (Figure 2,
red box) came into our focus, which happened in the CDR3 region of the VH domain.

It is generally accepted that the CDR3 region of the VH domain has the highest contri-
bution to the variability and therefore specificity of an ab. The additional tyrosine residue
further increases the already high content of tyrosine residues in the primary aa sequence of
the anti-La mab 312B, including in its CDR3 region. It is noteworthy that the high content
of tyrosine residues is not unique for the anti-La mab 312B. From our previous studies, the
primary aa sequences of 11 anti-La mabs are available, including those of the anti-La mabs
SW5, 5B9, and 7B6, which were obtained by three independent hyperimmunization experi-
ments [26]. In addition, we determined the primary aa sequences of the recently described
anti-La mabs 312B, 2F9, 32A, 27E, 24BG7, 22A, 16C, and 13C5B, which were obtained after
adoptive transfer of anti-human La T cells to a human La transgenic mouse [26]. When
looking at these primary aa sequences, the relatively high number of tyrosine residues
(including in the CDRs) of all these anti-La abs is striking. It is well known that in the
tertiary structure of an ab, all CDRs are brought into close vicinity to form the paratope
region. Thus, all the tyrosine residues in the anti-La abs (at least the ones in their CDR
regions) are brought into close vicinity during the three dimensional folding of the primary
heavy- and light-chain protein sequences. A closer look at the tyrosine residue content
shows that the overall amount of tyrosine residues in these anti-La abs ranges from 10 to
21 tyrosine residues. Both the anti-La mabs SW5 and 7B6, which are specific for human
La but not for mouse La protein, contain 12 tyrosine residues. Five of these 12 tyrosine
residues are part of the CDR regions, and seven of them are part of the framework region.
It is noteworthy that of the seven tyrosine residues present in the framework regions, six
of them are adjacent to CDRs, meaning that actually 11 of the 12 tyrosine residues are
either directly in or close to the CDR regions. With 15 tyrosine residues, the anti-La mab
5B9, which recognizes a continuous but cryptic epitope on both human and mouse La
protein, even contains three more tyrosine residues. As described recently, all the IgG type
anti-La mabs (312B, 2F9, 32A, 27E, 24BG7, and 22A) which were obtained after the adoptive
transfer of anti-human La T cells recognize discontinuous epitopes. With two exceptions,
all these anti-La mabs contain an even higher amount of tyrosine residues: they contain
between 17 and 19 tyrosine residues, of which 9–10 tyrosine residues are present in the
CDRs. If we include in this calculation those tyrosine residues adjacent to the CDR regions,
then even 14–17 of the tyrosine residues are either in or close to the CDR regions. In the
case of the anti-La mab 312B, 9 of its 18 tyrosine residues (or even 17 if the adjacent tyrosine
residues are included) are in (or close to) the CDRs. It is noteworthy that all tyrosine
residues except for the additional one in the CDR3 region (Figure 2, red box) already exist
in the germline sequence (Figure 2, tyrosine residues highlighted in yellow). We therefore
expected that these tyrosine residues might somehow play a role in the anti-La reactivity,
and therefore, the additional tyrosine residue caused by SHM of the aspartate could play a
key role in anti-La reactivity.

At a first glance, the extremely high content of tyrosine residues in the IgM type
anti-La ab 13C5B seems to argue against this idea. With 21 tyrosine residues, of which
10 tyrosine residues are part of the framework regions and 11 tyrosine residues are part
of the CDRs, this polyreactive IgM type anti-La mab 13C5B contains the highest number
of tyrosine residues of all anti-La mabs known so far. However, according to our recent
sequence analyses, this polyreactive IgM type anti-La mab should not represent a precursor
of the IgG type anti-La mabs. Therefore, we speculate that the anti-La reactivity of the
13C5B mab is part of its polyreactivity: the presence of the high number of tyrosine residues
may simply increase the chance that those tyrosine residues, which are required for anti-La
reactivity, are also present in the primary sequence.

2.3. The Lucky Punch

Bearing in mind the high number of tyrosine residues in anti-La mabs on the one
hand, and the replacement of the aspartate residue in the CDR3 region of the VH domain to
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a tyrosine residue on the other hand, we therefore decided to start our mutational analysis
by constructing a germline 312B derivative in which the aspartate residue is replaced
by tyrosine. This mutant 312B ab was termed gl312B-D > Y (germline mutant in which
the aspartate residue in the CDR3 region of the VH domain is replaced by a tyrosine
residue). To facilitate its cloning and expression, we followed again the above described
strategy: We constructed a scFv consisting of the mutated germline 312B VH and VL
sequences, which was then fused to the human IgG4-Fc domain. In this mutated germline
variant, the VH domain contained the D to Y mutation in the CDR3 region. The resulting
construct was again permanently transduced into eukaryotic cells. Secreted recombinant
abs were purified via protein A affinity chromatography from cell culture supernatants.
The isolated abs were analyzed by SDS-PAGE and stained with Coomassie-Brilliant Blue
(Figure 3A). The gl312B-D > Y mutant ab was tested for anti-La reactivity using SDS-PAGE
and immunoblotting (Figure 3B). Luckily, the single aa replacement already restored the
anti-La reactivity to both wildtype human La protein (Figure 3B, gl312B-D > Y, rh-La) and
the TCM-La mutant protein (Figure 3B, gl312B-D > Y, TCM-La).
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Figure 3. A single aa replacement in the germline sequence restores anti-La reactivity. The SHM
causing the mutation of the D residue to a Y residue in the CDR3 region of the VH domain of the 312B
ab came into our focus. A 312B IgG4 construct was cloned, in which the D in the germline region was
replaced with the Y residue present in the 312B aa sequence. This mutant was termed gl312B-D > Y
(germline mutant of 312B in which D is replaced by Y). (A) The resulting construct was expressed by
permanent 3T3 production cell line. The purified ab gl312B-D > Y was analyzed by SDS-PAGE and
stained with Coomassie-Brilliant Blue. (B) SDS-PAGE/immunoblot of recombinant human La (rh-La)
and the triple cysteine mutant (TCM-La) against the gl312B-D > Y ab. m, protein ladder (kDa).

The SDS-PAGE/immunoblotting experiment shown in Figure 3 was performed under
denaturing conditions, meaning that the analyzed La proteins were heat denatured prior
to SDS-PAGE. Thus, it was not determined whether the gl312B-D > Y mutant ab also
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recognizes native La protein such as the mature murine 312B ab. To answer this question,
we performed a co-immunoprecipitation experiment using a total extract of the human
HeLa cell line. As shown in Figure 4, the gl312B-D > Y mutant (Figure 4, gl312B-D > Y)
precipitates native La protein such as the murine (Figure 4, 312B) and the humanized
312B ab (Figure 4, hu312B) while, as expected, the germline 312B fails to precipitate native
La protein present in the total extract (Figure 4, germline 312B). Consequently, the single
D > Y aa replacement in the CDR3 region of the VH domain is sufficient to directly confer
anti-La autoreactivity to the non-anti-La reactive germline 312B ab in just one step.
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Figure 4. Co-immunoprecipitation of native human La protein. Native human La protein present
in total HeLa cell extract (as confirmed in the positive control (POS)) was co-precipitated with the
respective 312B ab derivate, including the humanized 312B ab (hu312B); the germline 312B ab, in
which all SHMs were mutated back to the germline sequence (gl312B); the mature, murine 312B ab
(312B); and the germline ab variant of 312B, in which the aspartate residue in the VH CDR3 region was
replaced by a tyrosine residue (gl312B-D > Y). Co-precipitated native human La protein was detected
by SDS-PAGE/immunoblotting using the anti-La mab 5B9 and anti-mouse IgG abs-conjugated with
peroxidase. POS, positive control (HeLa extract); NEG, negative control (PBS); m, protein ladder; La,
human La protein; LaN, N-terminal proteolysis product of La protein.

In order to get initial information about the contribution of the aspartate to tyrosine
mutation on the overall affinity of the 312B ab, we estimated the apparent KD value of
the gl312B-D > Y ab derivative (Figure 5). As mentioned above, to avoid artefacts by
oxidation, the KD value was determined using the TCM-La mutant protein. We thereby
measured a KD value of 2.0 (±1.6) nmolar, which is in the same range as the affinity of the
humanized ab hu312B. Thus, it is slightly reduced compared to the mature, murine 312B ab
but already in the range of a high affinity ab. As one can expect, the additional SHMs in the
primary sequence of the mature 312B ab have further improved its binding capability, but
the aspartate to tyrosine mutation was already sufficient for high-affinity anti-La reactivity.
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Figure 5. Comparison of the binding curves obtained by ELISA for the different 312B ab derivatives
using the TCM-La protein as substrate. Increasing amounts of the respective ab were analyzed
ranging from 0.1 to 5.000 ng/mL, including the anti-La mab as secreted from the hybridoma (anti-La
312B mab), the IgG4 construct of the humanized 312B ab (hu312B), the murine 312B ab (312B), the
germline ab (gl312B), and the mutant in which the aspartate present in the VH germline sequence is
replaced by a tyrosine residue (gl312B-D > Y). Each data point is the result of three estimations.

This interpretation is also supported by comparison of the binding curves obtained
for the original hybridoma anti-La mab 312B (Figure 5, anti-La 312B mab); the murine 312B
IgG4 construct (Figure 5, 312B); the germline IgG4 construct (Figure 5, gl312B); the human-
ized 312B IgG4 construct (Figure 5, hu312B); and the germline mutant IgG4 construct, in
which the aspartate residue is mutated to a tyrosine residue (Figure 5, gl312B-D > Y). As
shown in Figure 5, the anti-La mab 312B produced from the original hybridoma (Figure 5,
anti-La 312B mab) shows similar binding capability to the corresponding recombinant
murine 312B IgG4 ab (Figure 5, 312B). Again the 312B derivative in which all the SHMs
were mutated back to the germline sequence does not show any binding (Figure 5, gl312B).
There is no binding at all, even at high ab concentrations. In contrast, the replacement of
the aspartate residue to the tyrosine residue in the CDR3 region of the VH domain restores
the binding capability (Figure 5, gl312B-D > Y). Interestingly, the binding curve of the
humanized 312B ab (Figure 5, hu312B) is almost identical to the germline 312B-D > Y
mutant. These data suggest that the D to Y replacement was the key step which converted
the non-anti-La reactive germline 312B B cell to the autoreactive anti-La 312B B cell while
the additional SHMs only further increased its affinity.

In summary, here, we present for the first time (to our knowledge) experimental
evidence that a single aa replacement can convert a non-autoreactive B cell into an au-
toreactive one. The replacement and further maturation may be triggered by help via
activated T cells. Bearing in mind that La protein can form complexes with viral nucleic
acids, including for example, small viral RNAs (e.g., EBER or VA RNAs [44,45]), but also
with viral mRNAs or genomic RNA (e.g., poliovirus RNA, Hepatitis C; e.g., [46]) such an
accident in combination by chance may also occur during an immune response against an
infectious agent or nucleic acid La complex: T helper cells may accidentally provide help
to non-anti-La B cells, accidentally triggering an SHM which converts the B cell into an
autoreactive B cell.
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3. Materials and Methods
3.1. Recombinant Human La Protein Expression and Characterization

Recombinant human La protein (rh-La) and the triple cysteine mutant (TCM-La) were
expressed as described in [27]. The proteins were subsequently purified from bacteria
lysates via their 6xHis-tag using Ni-NTA affinity chromatography. Purity and concentration
of the proteins was analyzed by SDS-PAGE and subsequent Western Blotting [47] or
Coomassie-Brilliant Blue G250 staining [48].

3.2. Construction, Expression, and Purification of Recombinant 312B Antibody Derivatives

Based on the VH and VL sequences of the anti-La mab 312B [26], four different recom-
binant IgG4 ab constructs were created: murine 312B-IgG4 (312B); humanized 312B-IgG4
(hu 312B); germline 312B-IgG4 (germline 312B); and the mutated germline 312B-IgG4
(gl312B-D > Y), which carries an aspartate to tyrosine mutation in the CDR3 region of
the VH domain. Identification of the murine 312B VH and VL sequences and comparison
against germline VH and VL sequences was performed using the NCBI and IMTG data
library as previously published [26]. The mutated germline VH domain (D > Y) was gener-
ated by replacing the aspartate (D) residue in the CDR3 region in the germline sequence
with a tyrosine (Y) residue. For humanization of the VH and VL domains, homologous
human VH and VL sequences were identified using the NCBI IgBlast sequence analysis and
the IMGT/DomainGapAlign tool [49,50]. Annotations of the FWRs and CDRs were done
according to the Kabat [51] and IMTG database. Based on the best fitting human FWRs and
the murine CDRs, humanized 312B VH and VL sequences were designed in silico. Cloning
of all four 312B-IgG4 constructs was performed according to a previously published strat-
egy [40,41]; construction of the murine 312B-IgG4 (312B) and germline 312B-IgG4 (gl312B)
were already detailed in [26]. Briefly, the respective murine, humanized, germline, or
mutated germline variable domains were in silico fused in VH–VL orientation via flexible
linkers consisting of three G4S motifs. Corresponding DNA sequences were purchased
from Eurofins Genomics (Ebersbach, Germany) and subsequently cloned via SfiI/MreI
restriction sites upstream of the CH2 and CH3 domains of human IgG4 abs in the lentiviral
expression vector p6NST50. Plasmids were subsequently used to establish permanent 3T3
production cell lines by lentiviral transduction. All recombinant IgG4 derivatives possess
an N-terminal murine Igκ leader sequence promoting secretion of abs. Recombinant IgG4
constructs were purified from cell culture supernatants using the Protein A HP Spin Trap
(Sigma-Aldrich Chemie GmbH, Steinheim, Germany), according to the manufacturer’s
instructions. The concentration and purity of the abs were determined with SDS-PAGE
and Coomassie-Brilliant Blue staining or Western Blotting as described above. Human and
murine specific sequences of La protein were described previously [52].

3.3. Immunoblotting

Two µg of rh-La or TCM-La protein were separated via SDS-PAGE and subsequently
transferred onto a nitrocellulose membrane by Western Blotting. After blocking, the mem-
brane was incubated with the respective IgG4 ab constructs (312B/gl312B/hu312B/gl312B-
D > Y) using ab dilutions of 1.5 µg/mL in Blocking Solution (DIG wash and block buffer
set, Roche Diagnostics GmbH, Mannheim, Germany). Ab binding was detected using
anti-human IgG4-horseradish peroxidase (HRP) secondary ab (Southern Biotech, BIOZOL
Diagnostica Vertrieb GmbH, Eching, Germany).

3.4. Immunoprecipitation

For preparation of total cell extracts (TE), HeLa cells were resuspended in Lysis Buffer
(50 nM Tris/HCl, pH, 8.0, 150 mM NaCl, 1% IGEPAL® CA-630 (CAS 9002-93-1, Santa
Cruz Biotechnology, Inc., Heidelberg, Germany)), incubated on ice for 10 min, and then
centrifuged at 10,000 × g. The supernatant (total extract, TE) was subsequently used for
the immunoprecipitation and as positive control (POS). Therefore, the TE was mixed with
2 µg of purified ab or PBS (negative control, NEG) and Protein G MicroBeads (Miltenyi
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Biotec B.V. & Co. KG, Bergisch Gladbach, Germany) and incubated on ice for 30 min.
The magnetically labeled beads were then separated from TE using magnetic µColumns
(Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany) and eluted from the columns
with heated Elution Buffer (50 mM Tris/HCl, pH 6.8, 50 mM DTT, 1% SDS, 40 µg/mL
bromophenol blue, 10% Glycerin). Afterwards, co-precipitated immune complexes were
analyzed by SDS-PAGE and immunoblotting. La protein was detected using anti-5B9 mab
and TrueBlot® anti-mouse IgG-HRP ab (Rockland Immunochemicals Inc., Gilbertsville,
PA, USA).

3.5. ELISA

The BD OptiEIA™ Reagent Set B (BD Biosciences Pharmingen, Heidelberg, Germany,
#550534) was used for ELISA. A number of 96-well plates (Sigma-Aldrich Chemie GmbH,
Steinheim, Germany, #CLS3590-100EA) were coated with 0.3 µg TCM-La per well at 4 ◦C
overnight. After blocking, increasing concentrations of the respective abs were added and
incubated for 1 h at 37 ◦C. The bound recombinant abs were detected with an anti-human
IgG-HRP ab (Sigma-Aldrich Chemie GmbH, Steinheim, Germany). After addition of the
substrate solution (NanoQuant infinite M200 Pro, Tecan Group AG), OD was measured
at 450 nm. KD values and statistical evaluation were calculated with GraphPad Prism
9 software (GraphPad Prism Inc., La Jolla, CA, USA).

Supplementary Materials: Available online at https://www.mdpi.com/article/10.3390/ijms222112046/s1.
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