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Abstract: Neonatal encephalopathy (NE) is a global burden, as more than 90% of NE occurs in low-
and middle-income countries (LMICs). Perinatal infection seems to limit the neuroprotective efficacy
of therapeutic hypothermia. Efforts made to use therapeutic hypothermia in LMICs treating NE
has led to increased neonatal mortality rates. The heat shock and cold shock protein responses
are essential for survival against a wide range of stressors during which organisms raise their core
body temperature and temporarily subject themselves to thermal and cold stress in the face of
infection. The characteristic increase and decrease in core body temperature activates and utilizes
elements of the heat shock and cold shock response pathways to modify cytokine and chemokine
gene expression, cellular signaling, and immune cell mobilization to sites of inflammation, infection,
and injury. Hypothermia stimulates microglia to secret cold-inducible RNA-binding protein (CIRP),
which triggers NF-κB, controlling multiple inflammatory pathways, including nod-like receptor
family pyrin domain containing 3 (NLRP3) inflammasomes and cyclooxygenase-2 (COX-2) signal-
ing. Brain responses through changes in heat shock protein and cold shock protein transcription
and gene-expression following fever range and hyperthermia may be new promising potential
therapeutic targets.

Keywords: newborn; hypoxic-ischemic encephalopathy; therapeutic hypothermia; infection; cold
shock proteins; heat shock proteins

1. Introduction

Neonatal asphyxia describes a condition in newborns due to deprivation of blood
carrying oxygen and nutrients (hypoxia-ischemia, HI) from the placenta to the fetus before
or during delivery. Hypoxic-ischemic encephalopathy (HIE) is the feared neurological
consequence that may occur in newborns following neonatal asphyxia causing brain
inflammation and immunodepression [1]. Neonatal encephalopathy (NE) occurs in one to
three of every 1000 births in high-income countries (HICs) [2,3] and approximately 10 to
20 of every 1000 births in low- and middle-income countries (LMICs) [4]. It is estimated
that approximately 10% of the affected newborns die in their postnatal age, 25% develop
severe and permanent neurological disabilities [5] such as cerebral palsy, seizures, mental
retardation, learning impairment, and epilepsy [6–9]. Global statistics have shown that
about 99% of annual neonatal deaths occur in the LMICs, and 1% in HICs [10].

For decades, multiple pre-clinical studies have been employed either using animal
models of global or focal HI or cell culture models of oxygen-glucose deprivation, investi-
gating the ameliorating effects of many chemical compounds on neuronal lesions. Recent
pre-clinical and clinical research has shown that certain compounds have neuroprotective
effects, suggesting that their use could be generalized for clinical practice in the near future.
Additionally, the application of therapeutic hypothermia immediately after the hypoxic-
ischemic event could prolong the window of opportunity for pharmacological therapeutic
interventions. Therapeutic hypothermia is the standard treatment for NE of presumed HI
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origin in the HIC [11]. The controversy among physicians remains on whether hypother-
mia can also be administered safely and provide neuroprotection in other diseases, like
traumatic brain injury or metabolic diseases. Therapeutic hypothermia has demonstrated
efficacy in preventing perinatal brain injury following HIE [12]. There are several clinical
trials and meta-analyses of newborns with HIE [13,14], showing neuroprotection from
therapeutic hypothermia in HIC. However, it is not clear if therapeutic hypothermia is neu-
roprotective following birth asphyxia in LMIC. Emerging data have shown that therapeutic
hypothermia is not safe for neonates in LMIC [15]. Also, the decrease in neonatal body
temperature below 35 ◦C (accidental hypothermia) is the major cause of mortality in the
LMIC. It has been shown experimentally that perinatal infection limits the neuroprotective
effect of therapeutic hypothermia and clinically enhances neurotoxicity, and increases
mortality in term asphyxiated neonates in LMIC.

Our review will focus on the features of changes in body temperature that often accom-
panies infections and inflammation acting as a biological response modifier by regulating
signaling pathways and gene expression involved in immune defense, inflammation, cell
death, and survival. We discuss the etiology of perinatal infection, the potential benefit
of hypothermia, and how elements of the heat shock (HS) and cold shock (CS) response
pathways affect hypothermia’s success over immune response modifiers.

2. Perinatal Infection and Hypoxic-Ischemic Encephalopathy

Multiple etiological factors predisposing to NE have been described. They include
antenatal maternal factors, hypoxia-ischemia, placental pathologies, neonatal stroke/throm-
bophilia, genetics and epigenetics, metabolic disorders, and perinatal infection (Figure 1).
Infections during pregnancy can increase the expression of cytokines, causing inflammation
to the fetal brain, leading to brain damage in the fetus and, subsequently, the newborn [16].
Some types of infection that have been linked with neonatal brain injury include viruses
such as chickenpox, rubella, cytomegalovirus (CMV), and bacterial infections such as
infections of the placenta or fetal membranes, or maternal pelvic infections.
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Regarding global neonatal mortality, a prospective study by Karsten et al. [17] re-
ported that the global rate of severe infections accounted for 36% of all neonatal deaths,
29% were due to prematurity, and 23% were due to birth asphyxia. Evidence from recent
studies has shown that HI brain damage plus perinatal intrauterine infection are the major
etiological risk factors for cerebral palsy (CP). Both in vivo and in vitro neurologic assess-
ments reveal that term infants born to mothers with clinical chorioamnionitis, suffered from
a inflammatory cytokine storm, which is correlated with CNS abnormalities [18]. Also,
several data have shown that both infection and HI in the brain promotes the production of
proinflammatory cytokines, which may lead to further injury in the cerebral tissue [19–21].

Studies have shown that severe infection and prematurity-associated mortality is
increased due to mild (33–36 ◦C) and moderate (28–32 ◦C) hypothermia [22]. Perinatal
infection pre-sensitizes the fetal brain and makes it vulnerable to HI [23,24]. A previous
study showed that therapeutic hypothermia was not neuroprotective in a LPS-sensitized
HI brain injury model in newborn rats [25]. The authors observed a dramatic loss of brain
area after inflammation-sensitized HI brain injury, which was not reduced by therapeutic
hypothermia.

3. Mechanisms and Pathways of Perinatal Infection

Perinatal infection stimulates the innate immune and inflammatory responses, causing
the intracellular production of pro-interleukin 1 beta (IL-1β) following the stimulation of
the pattern-recognition receptors (PRRs) such as the Toll-like receptors (TLRs) and leading
to subsequent cell death [26]. The innate branch of the immune system relies heavily
on TLRs and Nod-like receptors (NLRs) to detect and dissemble invading pathogens.
Most of the important cell types expressing TLRs are the antigen-presenting cells (APCs),
including macrophages, dendritic cells, and B lymphocytes [27]. Experimentally, TLRs
are identified in most cell types and can be expressed either constitutively or inducible
during infection [28–30]. The expression of TLRs and NLRs on and in both migrating
and non-migrating cells is crucial for the rapid response to foreign invaders. The severity
of a perinatal infection-induced inflammatory storm in neonates is strongly associated
with nuclear factor kappa B (NF-κB) activation. It leads to nod-like receptor family pyrin
domain containing 3 (NLRP3) inflammasome activation, followed by an increase of IL-1β
expression, up-regulation of cyclooxygenase-2 (COX-2), and transient receptor potentials
(TRPs). The up-regulation of COX-2 and TRPs acting as both sensor and effector shuffling
among the nervous, vascular, and immune system will be discussed later. The activation
of functional pro-IL-1β requires proteolytic cleavage, predominantly by caspase-1, and a
component of the NLRP3 inflammasome multi-protein complex, resulting in secretion of
mature biologically active IL-1β (Figure 2) [17]. Activation of the NLRP3 inflammasome
triggers local mediators of the host cell damage in vivo, such as free radicals and DNA or
adenosine triphosphate (ATP).
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binding protein 1, a branch of the endoplasmic reticulum (ER) stress pathway, to direct 
the expression of microsomal prostaglandin E synthase-1 and prostaglandin-
endoperoxide synthase 2 (COX-2), which mediate the biosynthesis of prostaglandins 
(PGE2, PGD2, and PGF2α) from arachidonic acid. COX-2 production is associated with 
the production of a cytokine storm. Accordingly, ER stress signaling alone can cause a 
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Figure 2. The activation of nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3)
inflammasomes involves multiple endogenous or exogenous stimuli. LPS stimulation stimulates
Toll-like receptors (TLRs), which lead to the up-regulation of NLRP3, IL-1 via nuclear factor kappa
B (NF-κB) dependant Myeloid differentiation factor 88 (MyD88), IL-1 receptor-associated kinase
1/4 (IRAK4).

4. Cyclooxygenase 2 (COX-2)-Induced Fever in Perinatal Infection Following
Birth Asphyxia

COX-2 is an eicosanoid that generates arachidonic acid-derived lipid autacoids, in-
cluding prostaglandins (PGs), thromboxanes, and leukotrienes. COX-2 is a critical mediator
of inflammation, resolution, and tissue homeostasis. It is involved in a broad range of
physiological processes, such as inflammation, fever, allergy, and pain. The presence of
infection triggers the upregulation of inositol-requiring enzyme 1α–X-box binding protein
1, a branch of the endoplasmic reticulum (ER) stress pathway, to direct the expression
of microsomal prostaglandin E synthase-1 and prostaglandin-endoperoxide synthase 2
(COX-2), which mediate the biosynthesis of prostaglandins (PGE2, PGD2, and PGF2α)
from arachidonic acid. COX-2 production is associated with the production of a cytokine
storm. Accordingly, ER stress signaling alone can cause a slight increase in the level of IL-6
(Figure 3). All together, in the presence of PGE2, interferon-γ, and activated endoplasmic
reticulum stress, IL-6 production is greatly enhanced in glial cells. However, the key role of
COX-2 in neonatal asphyxia inflammation and resolution has not been fully understood;
studies have shown that cytokine overload in neonatal asphyxia contributes largely to
morbidity and mortality [31]. As increased proinflammatory cytokines remain the driving
force in severe neonatal asphyxia, the up-regulation activity of COX-2 following neonatal
asphyxia may regulate the cytokine storm through fever induction. Fever is one of the usual
clinical features that appear during the course of several infectious diseases. Fever is a
process in which the body temperature rises, deviating from normal values, and according
to Saladin and Porth [32], fever is a beneficial process as long as it does not persist or
reaches 44 ◦C to 46 ◦C, where it could be fatal or lead to irreversible brain damage. Fever
has been demonstrated to affect other immune cells as reflected by Harden et al. [33,34],
including different types of innate immune cells such as neutrophils, monocytes, and
T-cells or Natural Killer cells (NK) [35].
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is enhanced at late stages of inflammation. Activation of NLRP3, recruit the inflammasome adaptor 
ASC, which engages caspase-1. Subsequently, caspase-1 cleaves precursor IL-1β and IL-18 to their 
bioactive fragments, and also Gasdermin D (GSDMD) to trigger GSDMD N-domain pore formation 
in the plasma membrane. The GSDMD pores allow efficient IL-1β, eventually, cause the lytic cell 
death known as pyroptosis. 
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Figure 3. Components of the heat shock response (HSR) (HSP70 and HSF1) can directly or indirectly
block the activation and transcribing activity of NF-κB. HSR is mainly centered on the heat shock
transcription factor-1 (HSF1) that leads to the large production of the 70 kDa family of heat shock
proteins (HSP70, 90). HSF1 may be directly activated by PGE2-induced rise in temperature (fever),
by heat shock (HS), by estrogen (E2), and PGE2-derivative PGA2, whose physiological production is
enhanced at late stages of inflammation. Activation of NLRP3, recruit the inflammasome adaptor
ASC, which engages caspase-1. Subsequently, caspase-1 cleaves precursor IL-1β and IL-18 to their
bioactive fragments, and also Gasdermin D (GSDMD) to trigger GSDMD N-domain pore formation
in the plasma membrane. The GSDMD pores allow efficient IL-1β, eventually, cause the lytic cell
death known as pyroptosis.

Fever has been suggested to be an essential product of several biological processes,
where the detection of unchained pathogens sets up events that end up in favor of the
host [36]. It is of paramount importance to understand the mechanisms of infection, where
potential effects of fever on this process may have been overlooked. The induction of
fever during neonatal asphyxia is associated with COX-2 expression, and the exposure
of humans and rodents to temperatures ranged between 41–43 ◦C can induce heat shock
response (HSR), leading to induction of heat shock protein (HSP) synthesis [37]. HSR
is connected with immune responses and attenuates cytokines release [37], important
for the host immune response and pathogen mechanisms of evasion. Pathogen-induced
overexpression of HSPs is fundamental for the survival of the host organism during
macrophage infection [38–40].

5. Heat Shock Proteins Stabilize Correct Protein Folding during Fever Following
Birth Asphyxia

Heat shock proteins (HSPs) are present in all organisms and cell types. They are
phylogenetically conserved proteins having both structural and functional significance,
and they can be stimulated by stress signals (e.g., heat shock) and pathophysiological states
(e.g., fever, inflammation, and infection) as well as those induced by normal development
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stress [41–43]. It has been shown that increased core body temperature has a protective
role in the outcome of infection. Ostberg et al. [44] and others Jiang et al. [45] showed that
mild systemic heating at 39.5 ◦C enhances the concentration of tumor necrosis factor alpha
(TNF-α) and IL-6 in the blood and tissues of mice sensitized with bacteria endotoxin LPS.
Heat shock proteins’ function in protein folding prevents protein denaturation or cell death
under stressful conditions [46,47]. Although HSPs are intracellular proteins, they can be
recruited to the plasma membrane or released into the extracellular environment and have
immunomodulatory functions [48]. Most HSPs are involved in the synthesis and release of
proteins from various cells either during cell injury or during translocation to the plasma
membrane and are then secreted [49].

HSPs are known to have both positive and negative effects in regulating macrophage
function, and this may depend on the cellular location of these HSPs. It is proposed
that extracellular HSPs might serve as a danger signal to the immune response, whereas
intracellular HSPs could serve as a negative regulator to control the inflammation [50].
Previous studies have shown that extracellular HSPs exert immune-stimulatory effects [48].
Wang et al. [51] demonstrated that extracellular HSP70 binds to lipid raft microdomains
on the plasma membrane of macrophages and enhances their phagocytic ability. In fact,
HSP70-mediated phagocytosis is very crucial for the internalization of antigens to CD4+
T-cells. It is clear that extracellular HSPs can largely stimulate the release of TNF-α,
IL-6, IL-1β, IL-12, and nitrous oxide (NO). As well, chemokines are released by mono-
cytes/macrophages [52–55], orchestrated through the CD14/TLR (both TLR2 and TLR4)
complexes-activating downstream NF-κB and mitogen-activated protein kinase (MAPK)
pathway [56–58]. In addition, HSPs also assists in the trafficking and targeting complex
toward the Golgi apparatus [59]. This indicates that the elevation of extracellular HSPs
may serve as endogenous danger signals to alert the host defense system through their
cytokine-like function. HSPs have been studied for their potential to protect the brain
from ischemic injury. They protect from both global and focal ischemia in vivo, and cell
culture models of ischemia/reperfusion injury in vitro [60]; however, the mechanism of
protection is not well understood. Although several members of the HSPs have shown
to function as anti-apoptosis after HI brain injury, overexpression of HSP70 prevents the
release of cytochrome c from mitochondria and the activation of casepase-9 by binding
to apoptotic protease activating factor 1 (Apaf-1), thus blocking the caspase-dependent
apoptotic pathway [61]. HSP90 binds to phosphorylated protein kinase B (Akt/PKB) and
promotes the phosphorylation of the pro-apoptotic proteins Bax and caspase-9, and blocks
the mitochondrial apoptosis pathway [61].

One member of the HSP90 family is glucose-regulated protein 94 (GRP94). Its expres-
sion has been shown to inhibit the activation of caspase-3 and calpain, maintaining the
intracellular calcium homeostasis to protect neurons [61].

6. The Role of TRPV1 in Perinatal Infection Following Birth Asphyxia

Transient receptor potential vanilloid channel 1 (TRPV1) is highly expressed in high
temperate nerve fibers and is activated by heat, protons, and both endogenous and exoge-
nous agonists [62,63]. TRPV1 is a nonselective cation channel that plays a significant role in
thermoregulation, although the exact mechanisms in thermal regulation have yet to be fully
understood [62,64,65]. Intravenous infusion of dihydrocapsaicin (DHC), a chili-derived
TRPV1 agonist, and other capsaicinoids have shown the capacity to produce hypothermia
in rodents and larger mammals [66]. In contrast, perinatal infection-induced hyperthermia
was shown to occur through the TRPV1 channel [67–70]. It appeared that TRPV1 antago-
nists cause hyperthermia by blocking the tonic suppression of the autonomic cold defenses:
thermogenesis and skin vasoconstriction [67,71]. In the brain, TRPV1 mediates cellular
processes such as synaptic transmission, neurogenesis, and neuroinflammation [72,73].
Recently, TRPV1 has gained attraction from its functional expression in microglia and
astrocytes [74,75]. It stimulates janus kinase 2- signal transducer and activator of transcrip-
tion 3 (JAK2-STAT3) to regulate astrocyte and microglial activation and the expression
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of IL-1β and IL-6 [76–79]. TRPV1 deficiency in microglia and astrocytes has been shown
to attenuate the expression of ionized calcium-binding adapter molecule 1 (Iba1), glial
fibrillary acidic protein (GFAP), and IL-1β by reducing phosphorylation of NF-κB, JAK2,
and STAT3. As well, a decrease in IL-1β is associated with TRPV1 deficiency by inhibiting
activation of NLRP3 inflammasome. Not much is known about the role of TRPV1 in
perinatal infection and birth asphyxia. However, in a selective study of the TRPV1 receptor,
it was evident that TRPV1 expression is associated with a protective effect in the onset of
sepsis after endotoxin [80]. Additionally, neonatal HI-induced neuro-behavioral disorders
were significantly improved in mice lacking TRPV1 [81].

7. The Role of Cold Shock Protein in Hypothermia Following Birth Asphyxia

The two described CSPs in mammals are cold-inducible RNA-binding protein (CIRP)
and RNA-binding motif protein 3 (RBM3). The CIRP provides neuroprotection via its
intracellular activity, while its extracellular activity is detrimental in enhancing the inflam-
matory response. Interest in RBM3 has significantly increased due to its critical role in the
protective effect of hypothermia (Figure 4). The physiology of the therapeutic effects of
hypothermia provides key protective targets for reducing ischemic brain injury [82]. It is
well known that the transcription and protein levels of CIRP, RBM3, and splicing factor
arginine/serine-rich 5 (SRSF5) are affected by mild hypothermia [83–85]. The transcription
factor Sp1 and the promoters in the CIRP gene are critical in the enhancement of splicing
efficiency in the induction of CIRP [86–88]. However, the mechanisms of temperature
sensing and the signaling pathways by which hypothermia induces the expression of
cold-inducible proteins (CIPs) are partially understood. A study using antagonists in the
presence of shRNA against TRPV4 demonstrated that TRPV4 is required for the induction
of CIPs [85]. Hypothermia has been shown to down-regulates global protein synthesis and
cell metabolism. It also up-regulates cold shock proteins (CSPs).
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Figure 4. Systemic inflammation from perinatal insults can induce COX2 in reactive glia cells (astrocytes and microglia).
PGE2 production after COX2 activation leads to EP1 receptor mediated maturation arrest of oligodendrocyte progenitor cells
(OPCs). TRPs plays an important role in a wide range of temperature increase and stimulate hypothermia. Hypothermia-
induced neuroprotection via RNA-binding motif protein 3 (RBM3) and intracellular cold-inducible RNA-binding protein
(CIRP), and extracellular CIRP-induced deleterious inflammation via NLRP3 inflammasome (NLRP3, ASC, and caspase-1),
which mediate the activation of caspase-1 and then stimulated the cleavage of pro-IL-1β [81].
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RMB3 is a glycine-rich protein that promotes global protein synthesis at 32 ◦C by
accelerating ribosome assembly, stabilizing mRNA and decreasing microRNA expression.
In perinatal asphyxia models, RBM3 mediates the rescue from apoptotic neuronal death
during therapeutic cooling [89]. Up-regulated RBM3 expression is associated with hi-
bernation; it helps restore brain activity in awakening animals and protects cells against
cold damage. RBM3 has been shown to stimulate neuronal differentiation and inhibit
HI-induced apoptosis in the two main areas of persistent adult neurogenesis, the subven-
tricular and subgranular zones. Although cooling is a well-recognized therapy in cerebral
ischemia, a role for RBM3 is largely unclear.

The action of CIRP in ischemic brain injury is not well known. However, the level of
CIRP mRNA decreases 3–6 h after transient ischemia in rat hippocampus and increases by
five-fold in the cerebral cortex at 24 h after cerebral ischemia. However, no changes were
seen after 48 h [90]. Apart from ischemia, hypothermia has been shown to considerably
induce CIRP expression by approximately 30-fold until 24 h, and the combination of
hypothermia and ischemia did not further enhance the CIRP level [91]. An increase
of reactive oxygen species (ROS) is often the cause of oxidative stress during ischemia-
reperfusion injury in the brain [92]. H2O2-induced ROS production is associated with
down-regulation of CIRP expression levels [90]. The induction of endogenous or artificial
overexpression of CIRP inhibits H2O2-induced apoptosis, indicating a neuroprotective role
of CIRP [93,94]. Apart from the intracellular neuroprotective action of CIRP, the release
of CIRP into the blood system can activate detrimental immune responses. For example,
the secretion of CIRP from microglia after cerebral ischemia mediates TNF-α expression
leading to neuroinflammation and causing neuronal damage both in vivo and in vitro [95].
Therefore, as long as CIRP is intracellularly localized, it protects neurons from apoptosis;
but once CIRP is released from microglia, it mediates devastating neuroinflammation at
the cellular level [96].

8. Hypothermia

The temperature regulatory response to systemic inflammation consists of hypother-
mia and the development of fever. Fever is a conserved evolutionary adaptive physiological
response aimed at host survival [97], while hypothermia is maladaptive, associated with a
poor clinical outcome [98,99]. The mortality rate in hypothermic sepsis patients is twice
that of febrile patients [98,100], although the mechanisms for this detrimental effect of
hypothermia is poorly understood. During regulated hypothermia, the core body tempera-
ture is lowered in response to a decrease in the thermoregulatory set-point, which evokes a
variety of effector mechanisms that promote heat loss, diminishes heat production, and
lowers core body temperature. Several species exhibits regulated hypothermia in response
to food restriction [101], hypoglycemia [102,103], hypoxia [104,105], hemorrhage [106], de-
hydration [107], and infection [97,108,109]. The maintenance of normal body temperature,
particularly under conditions of low ambient temperature, is always compensated by large
energy loss. The adaptation to fever during infection is a highly energetic process and
conserved throughout evolution [97], suggesting that the effects of high temperature on
immune responses outweigh the high metabolic requirement. Induced hypothermia is
used clinically for the treatment under the conditions of oxygen deprivation in cerebral
ischemia, cardiopulmonary bypass surgery, and stroke [110,111]. The beneficial effect of
therapeutic hypothermia under these conditions of oxygen deprivation appears obvious,
but whether these conditions extend to inflammation condition is not yet known. The
adaptive value of hypothermia could be achieved under a condition of energy depletion,
which prevents the high energy cost of fever from host benefit. Hypothermia and fever
represent extremes of a thermoregulatory continuum whose control is dependent on the
metabolic capabilities of the host.
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8.1. Therapeutic Hypothermia

Therapeutic hypothermia is a neuroprotective therapy for neonatal HIE. Recently,
therapeutic hypothermia has been recognized by the World Health Organization (WHO)
as a contributing factor lowering morbidity and mortality risk in newborns [112–114].
Induced hypothermia is recommended at 33–34 ◦C for most of the therapeutic hypothermia
practices [115]. Effects of therapeutic hypothermia include slowing down blood overload
to the brain and reducing ATP consumption, including the retardation of destructive
enzymatic reactions, suppression of free-radical reactions, protection of membranes fluidity,
reduction of intracellular acidosis, inhibition of the biosynthesis, decrease of intracranial
pressure [116–118], release and uptake of excitatory neurotransmitters [119–121], and
depleted synapses, resulting in a reduction of brain activity, which results in less brain
damage [122] (Figure 5). Therefore, induced mild-moderate therapeutic hypothermia
provides the ability for tissues to endure anoxic no-flow states [123,124]. In this context,
it has been estimated that for every 1 ◦C decrease in temperature, the cerebral metabolic
rate decreases by 6–7% [125,126], and makes therapeutic hypothermia the most potent
treatment at the moment to reduce ischemic brain injury by itself in HICs [127]. The
question now is, is hypothermia neuroprotective following neonatal HIE in LMICs?
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Figure 5. Inflammatory and cooling cascades following neonatal asphyxia. Dependent on the etiology
of neonatal encephalopathy, therapeutic hypothermia can either be neuroprotective (following
hypoxia-ischemia) or not neuroprotective (infection associated hypoxia ischemia) by inhibiting or
activating different pathways leading to apoptosis or necrosis.

8.2. Accidental Hypothermia

Accidental hypothermia occurs when the core body temperature dropped to less
than 35 ◦C, causing acute clinical risk. Accidental hypothermia requires invasive central
rewarming interventions in order to prevent death [128]. There are common causes of
accidental hypothermia, including cold-water immersion, environmental exposure, in-
fection, metabolic conditions, drug-induced hypothermia, central nervous system (CNS)
lesson, and malnutrition, but for the interest of this review, we focus on infection-induced
hypothermia. Thermoregulatory responses to systemic inflammation are often regarded
as maladaptive responses by the host. It has been shown that rodents regulate core body
temperature during systemic inflammation with hypothermia by the selection of cool
ambient temperatures and that this endogenous hypothermia is associated with enhanced
survival [129]. Although the mechanisms regulating hypothermia are not fully understood,
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cytokines such as TNF-alpha, ILs, interferon (IFN)-gamma, and TRPV1 have been shown to
induce or modulate hypothermia. TNF-alpha may function as a pro-endogenous cryogen,
whereas IL-10 modulates TNF-alpha production and/or releases as a mechanism of hy-
pothermia attenuation. IL-1beta and IL-6 are typically regarded as endogenous pyrogens
but may regulate and/or induce hypothermia during viral and bacterial inflammation
(Figure 5). A role for endogenous IFN-gamma in hypothermia has not been demonstrated,
but the injection of this cytokine potentiates hypothermia through augmented production
of other cytokines. It is clear that additional research is required in this area. Suggested
areas for future research include a determination of the final mediator of hypothermia and
its specific anatomical site of action, as well as the role of cytokines in the regulation of
hypothermia under non-inflammatory conditions.

8.3. Accidental Hypothermia in the Context of Perinatal Asphyxia in LMIC

The studies conducted on the prevalence of neonatal accidental hypothermia due to
non-warming in LMIC can not necessarily represent a standard hypothermia intervention.

Previous hospital and community-based studies have examined case-fatality rates
(CFRs) between those babies with and without accidental hypothermia and concluded that
the risk of mortality is higher among those with hypothermia (Table 1). An analysis of
320 babies from a tertiary care facility in Recife, Brazil, indicated that moderate hypother-
mia (32.0–35.9 ◦C) on admission was an independent risk factor for neonatal death [130].
In the Islamic Republic of Iran, neonatal mortality was recorded high among babies with
rectal temperatures less than 36.5 ◦C in the first 20 min after birth (8.8%) compared with
normothermic babies (2.6%). However, these outcomes were not adjusted for weight and
gestational age [131]. In Nigeria, an unadjusted case-fatality study showed a two-fold
greater risk of mortality among the 62.0% of babies who were hypothermic upon admis-
sion [132]. In a community-based study in India, the case-fatality among 130 infants with
hypothermia was estimated at 15.4%. Unfortunately, the study size was small (763 infants
with only 20 deaths), and only a single fixed axillary temperature cutoff (35.0 ◦C) was
used to classify infants. In Guinea-Bissau, it was recorded that infants with temperatures
less than 34.5 ◦C were at five-times greater risk of mortality in the first week of life [133].
Population-based data from Nepal was used to examine the relationship between axillary
temperature over the entire range of hypothermia values and mortality after the first
temperature observed [134]. After adjusting for parameters like age, ambient temperature
at measurement, sex, weight, gestational age, and ethnicity, mortality was increased by
approximately 80% for every degree decrease in first observed axillary temperature. Mor-
tality associated with accidental hypothermia was substantially greater among preterm
infants [134].

Table 1. Selected Hospital/community association with hypothermia and mortality risk in the low- and middle-income
countries (LMICs).

Location No. of Patients Mortality Outcomes Author, Year

Bissau, Guinea-Bissau 2926

- Adjusted for weight, temperatures <34.5 ◦C were
associated with mortality 4.81 (95% CI: 2.90–8.00)
times greater in the first seven days of life
- Hypothermia-associated mortality risk was elevated
through two months of life

Sodemann, 2008 [133]

Sagamu, Nigeria 150
Unadjusted fatality rate among hypothermic infants
was 2.26 (95% CI: 1.14–4.48) greater than
normothermic infants

Ogunlesi, 2008 [132]

Sarlahi, Nepal 23,240

- Adjusted mortality risk increased 80% for every 1 ◦C
decrease in first observed axillary temperature
decrease
- Adjusted mortality risk was 6.11 (95% CI: 3.98–9.38)
times higher among infants <35.0 ◦C. Preterm babies
at higher risk of hypothermia-associated mortality

Mullany, 2010 [134]
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Table 1. Cont.

Location No. of Patients Mortality Outcomes Author, Year

Recife, Brazil 320
- Adjusted odds of death among babies with
hypothermia had a odds ratio of 3.49
(95% CI: 3.18–3.8)

da Mota Silveira, 2003 [130]

Gadchiroli, India 763 - Case-fatality of hypothermia was 15.4%, and was
significantly greater than those without hypothermia Bang, 2005 [135]

Tehran, Iran 900 - Unadjusted fatality was 8.8% among hypothermic
infants compared with 2.6% among normothermic Zayeri, 2007 [136]

9. Future Direction

The impact of infection on hypothermia outcome and the role of HSPs and CSPs
in response to hyperthermia and hypothermia have not been studied extensively. In the
currently available data, there is controversy whether TRPs regulate hypothermia, although
TRPs are known to function as an endogenous thermal sensor. Unfortunately, only some
data are available on the effects of endogenous TRPs on temperature regulation. However,
this data is required to delineate an endogenous role of any TRPs on thermoregulation.
Figure 4 provides a temperature range model of TRPs temperature interaction that mediates
hyperthermia in response to an inflammatory stimulus. Our current understanding of
COX-2-stimulating-PGE2-induced hyperthermia and the mediation of TRPs is discussed in
this review.

However, there are accumulated data on the role of cytokines in both hyperthermia
and hypothermia; huge gaps still exist in the current field of research. Following proposed
studies for future knowledge might include the determination of final mediators of hy-
pothermia and hyperthermia. Several studies have examined COX-2 and prostaglandins as
the inducer of hyperthermia, but these results have been contradictory. TRPs levels were re-
ported to increase during LPS-induced hyperthermia in rats [137], while COX-2 inhibitors,
such as non-steroidal anti-inflammatory drugs (NSAIDs), attenuate, exacerbate, or have
no effect on hyperthermia. Thus more studies are required to clarify the final mediators
involved as well as specific brain areas involved in the regulation of this response.

Determination of cytokine effects during infectious and non-infectious conditions on
hypothermia and hyperthermia using a specific cytokine antagonist, as this might have a
direct effect on the thermal set-point.

Finally, the majority of studies on cytokines and hypothermia have been performed in
rodents. The exact cytokine effects in humans during therapeutic hypothermia are not fully
understood. Given the large difference in surface area to body mass ratio between rodents
and humans and the reduced sensitivity of mice and rats to bacterial products such as LPS
(i.e., much larger doses are required to induce fever in rodents), extrapolation between
species is difficult. Furthermore, there is the concern that the thermoregulatory actions of
a cytokine may be beneficial, whereas other physiological effects may be harmful, thus
complicating our assessment of potential beneficial treatment effects. Only through careful
analysis of cytokine action in several models of systemic inflammation, with attention to
hypothermia as well as fever, can these obstacles be identified and overcome.

10. Conclusions

In this present review, we discussed how heat shock and cold shock proteins’ responses
to hyperthermia and hypothermia might be used to better understand the molecular
pathways in the face of infection and hypoxic-ischemic injury. Both HSPs and CSPs exert
immunomodulatory functions in the mobilization of immune cells. It is apparent that a
better understanding of the complex interaction between the HS and CS responses and the
inflammatory pathways is critical for infection, sepsis, and inflammation.
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