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Abstract: Depression is a widespread mental disorder whose impact on an individual’s
health extends far beyond the psychological dimension. As a disease with a significant
burden, the effective treatment of depression has become a major challenge for global
public health. Although several hypotheses have been proposed for the pathogenesis of
depression, its pathophysiological mechanisms remain complex and not yet fully under-
stood. Recent studies suggest that dysfunctional autophagy may play an important role
in the development of depression. Autophagy, as an important intracellular degradation
mechanism, maintains neuronal function and health by removing excess proteins and
damaged organelles. Current evidence suggests that the regulation of autophagic processes
may provide new potential targets for the treatment of depression. In this paper, we review
the pharmacological mechanisms of autophagy by different antidepressant drugs and
the abnormal changes in autophagy in patients with depression and in multiple models.
Importantly, we focus on the role of autophagy in different pathological mechanisms of
depression and discuss current limitations as well as potential directions for future research.
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1. Introduction
Depression is a serious mental illness characterized by persistent low mood, an absence

of pleasure, and a wide range of cognitive and somatic symptoms. Globally, depression
has become a leading cause of disability, with the number of people with depression
worldwide increasing by nearly 50 per cent over the past 30 years, currently affecting
approximately 264 million people [1]. The global burden of mental disorders was further
exacerbated during the COVID-19 pandemic, with the number of people suffering from
depression surging by 53 million, an increase of 27.6% [2]. Depression is not limited to
mental health; it significantly increases the risk of cardiovascular disease, stroke, diabetes,
and obesity, and has become a major public health challenge worldwide [3]. Currently,
depression is classified into various subtypes based on symptom characteristics such as
postpartum depression [4], seasonal depression [5], and psychotic depression [6]. Although
researchers have proposed many hypotheses to explain the mechanism of depression,
including the classical monoamine hypothesis, hypothalamic–pituitary–adrenal (HPA) axis
hypothesis, neuroplasticity hypothesis, immunoinflammatory hypothesis, and neuroge-
nesis hypothesis, the specific pathophysiological mechanisms of depression are still not
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fully understood [7–9]. And the treatments for different depression subtypes are based on
different hypothesized mechanisms and therefore differ in their treatment approaches. For
example, psychotic depression is usually treated with a combination of antidepressants
and antipsychotics because it is accompanied by psychotic symptoms in addition to the
exhibition of depressive symptoms [10]. In contrast, in seasonal depression, bright light
therapy acts on depression by modulating circadian rhythms and affecting melatonin and
serotonin secretion [11]. Currently, most antidepressant drug development is still based on
the monoamine hypothesis, such as selective serotonin reuptake inhibitors (SSRIs), tricyclic
antidepressants, serotonin and norepinephrine reuptake inhibitors, and monoamine oxi-
dase inhibitors [12]. However, despite the fact that these medications are effective to some
extent, about one-third to one-half of patients with depression still do not respond to multi-
ple antidepressant medications, and among those in whom the medications are effective,
common side effects such as headache, gastrointestinal distress, sexual dysfunction, and
anxiety seriously affect patients’ quality of life [13]. In addition, the difference in the efficacy
of bright light therapy in seasonal and non-seasonal depression still needs to be further
verified [11]. Currently, the diagnosis of depression still lacks objective biomarker sup-
port [14]. Although genome-wide association studies have identified more than 200 genes
associated with depression, these findings have not yet been translated into practically
usable clinical diagnostic tools [15]. Therefore, there is an urgent need to explore new
research directions in order to provide guidance for clinical diagnosis and to improve the
effectiveness of treatment.

Autophagy is the process by which cells use lysosomes to degrade their own proteins
and damaged organelles, and it is essential for maintaining cellular homeostasis and re-
sponding to nutrient deficiencies and stress. Since neurons are highly specialized cells
and do not possess the ability to continue cell division, they are particularly dependent
on the autophagy pathway to remove excess proteins and damaged organelles [16]. Thus,
autophagy plays a key role in both the developmental stages of the brain and in adult-
hood, participating in the development and refinement of neuronal axons, dendrites, and
synapses. In recent years, more and more clinical and preclinical studies have shown that
abnormal autophagy is closely related to the occurrence and development of depression
and that the regulation of autophagy plays an important role in depression [17]. Therefore,
in-depth exploration of the mechanisms of autophagy pathways in depression is important
for the development of novel therapeutic strategies.

In this review, we provide a comprehensive overview of general knowledge of au-
tophagy mechanisms and describe the relationship between depression and aberrant
autophagy in individuals as well as in animal and cellular models. We also focus on the
role of autophagy in different pathomechanisms of depression and summarize the phar-
macological mechanisms of different drugs based on autophagy modulation to improve
depression, providing a scientific basis for autophagy-targeting antidepressants in the clinic
in the future.

2. Overview of Autophagy
Currently, autophagy can be classified into three main types according to how intra-

cellular substances are transported to lysosomes: macroautophagy, chaperone-mediated
autophagy (CMA), and microautophagy (Figure 1). Macroautophagy is the classical form of
autophagy, in which cytoplasmic material is encapsulated by autophagosomes in a double-
membrane structure and transported to the lysosome for degradation by fusion with the
lysosome. CMA is a form of selective autophagy, in which cargo proteins containing
specific pentapeptide motifs are recognized by a molecular chaperone, Heat Shock Cognate
70 (Hsc70), and guided to the lysosome. Microautophagy, on the other hand, directly wraps



Cells 2025, 14, 795 3 of 26

the contents of the cytoplasm for degradation through the invagination of the lysosomal
membrane. With further research on autophagy, it has been found that autophagy can
degrade some special organelles or macromolecules through selective degradation, which
is called selective autophagy, with forms such as mitophagy, ribophagy, pexophagy, and so
on [18]. Among these, mitophagy, as the most widely studied form of selective autophagy,
has been demonstrated to play an important role in maintaining intracellular homeostasis
and preventing cellular damage and the development of related diseases. In this paper, we
will focus on the mechanisms of macroautophagy, CMA, microautophagy, and mitophagy
to discuss their roles in intracellular material degradation and homeostasis maintenance.

 

Figure 1. Different types of autophagy and processes. (A) Macroautophagy. The process of macroau-
tophagy includes initiation, autophagosome formation, fusion, and degradation, which is the main
type of autophagy. (B) Chaperone-mediated autophagy (CMA). CMA recognizes KFERQ-like motif
proteins that interact with cytosolic Hsc70 and its chaperones to make them target lysosomes. (C) Mi-
croautophagy. Microautophagy delivers targets to lysosomes through invagination of lysosomal
membranes. (D) Selective autophagy—mitophagy. Mitophagy targets the removal of damaged
mitochondria through the autophagy pathway. ATG, autophagy-related genes; AMP, adenosine
monophosphate; ATP, adenosine triphosphate; AMPK, AMP-activated protein kinase; mTORC1,
mTOR complex 1; ULK1, unc51-like autophagy-activating kinase; FIP200, FAK-family interacting
protein of 200 KD; HSC70, Heat Shock 70 protein; OPTN, Optineurin; PE, phosphatidylethanolamine;
LAMP2A, lysosomal-associated membrane protein 2A; LC3, microtubule-associated protein 1 light
chain 3; NDP52, Nuclear Dot Protein 52; Mfn2, mitofusin 2; PINK1, PTEN-induced putative kinase 1;
TOM20, Translocase of outer mitochondrial membrane 20.

2.1. Macroautophagy

Macroautophagy is the most studied form of the autophagy pathway, hereafter re-
ferred to as “autophagy”. The process of autophagy is finely regulated at multiple levels to
ensure a balance between the synthesis and degradation of intracellular substances and
the use and recycling of resources. This regulatory network involves multiple signaling
pathways to ensure cellular homeostasis under different physiological or pathological
conditions. It has been shown that more than 40 autophagy-associated genes (ATGs) have
been identified in yeast, and the roles of the proteins encoded by these genes in the au-
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tophagy process have been intensively explored, with most of these proteins also having
corresponding homologs found in mammalian cells [19]. The initiation of autophagy is
tightly linked to the mammalian target of rapamycin complex 1 (mTORC 1) and unc 51-like
autophagy-activated kinase 1 (ULK 1) complexes [20]. Upon cellular stress, the intracellular
activation of the ULK1 complex through the inhibition of mTORC1 subsequently initiates
PI3K complex function, that is, the generation of phosphatidylinositol 3-phosphate (PI3P)
via vesicular protein sorting 34 (VPS34), which is involved in the nucleation of phagocytic
vesicles [21]. In addition, the accumulation of PI3P at the phagocytic vesicle assembly
site leads to the recruitment of autophagy-related genes and promotes the extension and
closure of autophagosomes [22]. Among them, ATG12 binds to ATG5 via the E1 ubiquitin-
activating enzyme ATG7 and the E2 ubiquitin transferase ATG10, and then forms a large
complex with the ATG16L1 composition via non-covalent interactions [19]. In addition,
ATG4 shears the carboxyl terminus of LC3, one of the mammalian ATG8 homologs, to
produce LC3-I, which is converted to LC3-II bound to the autophagosome membrane to
form mature autophagosomes via ATG7 and ATG3 binding to phosphatidylethanolamine
(PE) [23]. Then, mature autophagosomes fuse with lysosomes to form autophagic lyso-
somes to complete the degradation and recycling of contents.

2.2. Chaperone-Mediated Autophagy (CMA)

CMA achieves its purpose by recognizing the KFERQ-like targeting motif on the
substrate protein, which carries the motif and binds to HSC70 to form a complex. HSC70
not only recognizes and binds the substrate protein but also powers the substrate protein
through its ATPase activity, which directs the complex to the lysosomal membrane to bind
to lysosome-associated membrane protein 2A (LAMP2A) [24]. LAMP2 is an important
membrane protein on lysosomes, and three protein isoforms, LAMP2A, LAMP2B, and
LAMP2C, exist, of which only LAMP2A is involved in CMA, and it is an essential molecule
for the fusion of autophagosome and lysosome [25]. Upon the binding of HSC70 to
LAMP2A, the LAMP2A monomer assembles into a multimeric structure by recruiting
multiple LAMP2A molecules to form a transport complex that provides substrate proteins
with access to the lysosome [26]. It was found that high-fat diet (HFD)-induced obesity
may lead to depression-like behavior in mice by inhibiting autophagy [27]. Further studies
indicated that HFD alters lysosomal membrane lipid composition, decreases LAMP2A
stability, and inhibits CMA [28]. It can be seen that the expression of LAMP2A is closely
related to the activity of CMA, and its polymerization state and interaction with HSC70
directly affect the transport efficiency of substrate proteins, and alterations in its function
may affect the overall efficiency of CMA and the homeostasis of intracellular proteins. In
addition, the regulatory process of CMA is closely related to multiple signaling pathways.
For example, in the neurodegenerative disease Parkinson’s disease, the p38 MAPK pathway
exacerbates disease progression by promoting microglia activation through inhibiting the
degradation of NLRP3 inflammatory vesicles by CMA [29]. This finding suggests that
CMA is not only involved in intracellular protein quality control but may also play an
important role in neuroinflammatory responses.

2.3. Microautophagy

Compared with macroautophagy and CMA, microautophagy has been relatively un-
derstudied. Microautophagy mainly forms vesicles through localized depressions and
invaginations in the cell membrane, thereby encapsulating and endocytosing extracellular
fluid and solutes into the cell [30]. Unlike macroautophagy and CMA, the process of
microautophagy mainly relies on the direct remodeling of the lysosomal membrane. In this
process, specific membrane proteins present on the lysosomal membrane play a key role,
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which are not only involved in morphological changes in the membrane but also responsi-
ble for recognizing and targeting cytoplasmic components that need to be degraded [31].
For example, during microautophagy, certain proteins can be labeled by a K63-type ubiq-
uitination modification that is recognized by the endosomal sorting complex required for
transport (ESCRT), which in turn facilitates the targeted transport of these proteins to the
lysosome for degradation [32]. Microautophagy can not only target degradation through
the ubiquitination mechanism but also selectively phagocytose specific intracellular lipid
signals by recognizing the component, that is, microliphagy [33]. Additionally, selective
microautophagy can also be performed on a variety of intracellular components such as
mitochondria, the endoplasmic reticulum, and the nucleus [34]. In micromitochondrial
autophagy, damaged mitochondria release mitochondria-derived vesicles (MDVs), which
are rich in oxidized mitochondrial proteins, and MDVs ultimately become multivesicular
vesicles that fuse with lysosomes to complete degradation [35]. Although some progress
has been made in this field in recent years, gradually revealing the important role of
microautophagy in intracellular material degradation and homeostasis maintenance, the
exploration of microautophagy is still very different compared to that of macroautophagy
and CMA.

2.4. Mitophagy

Mitophagy, as a central mechanism for the selective removal of damaged mitochondria,
is essential for mitochondrial quality and quantity control [36]. Mitophagy is usually classi-
fied into two main types: PINK1/Parkin-dependent and non-PINK1/Parkin-dependent.
In PINK1/Parkin-mediated mitophagy, PTEN-inducible kinase 1 (PINK1) is blocked from
entering the inner mitochondrial membrane when the mitochondrial membrane potential
decreases and steadily accumulates in the outer mitochondrial membrane (OMM). PINK1
activates and recruits Parkin, an E3 ubiquitin ligase, to the outer mitochondrial membrane
through autophosphorylation [37]. Activated Parkin then forms ubiquitin chains by ubiq-
uitinating mitochondrial outer membrane proteins (e.g., TOM20, Mfn2), thereby labeling
damaged mitochondria and facilitating the recruitment of autophagy junction proteins
such as p62/SQSTM1, OPTN, and NDP52 [38,39]. These receptor proteins bind to LC3 via
their LC3-interacting region (LIR), which initiates the autophagosomal encapsulation and
degradation of damaged mitochondria [40]. In addition to the PINK1/Parkin-dependent
pathway, recent studies have identified multiple non-PINK1/Parkin-dependent pathways
in which specific receptor proteins also recognize and target damaged mitochondria for
autophagy. Examples include NIX (Nip3-like protein X), BNIP3 (Bcl2-interacting protein 3),
and FUNDC1 (FUN14 structural domain-containing 1) [41]. These receptor proteins di-
rectly interact with LC3 or γ-aminobutyric acid receptor-associated protein (GABARAP)
through their LIR motifs to promote autophagic clearance in mitochondria [42]. Among
them, the expression levels of BNIP3 and NIX are tightly regulated under normal cellular
conditions, but in a hypoxic environment, hypoxia-inducible factor 1α (HIF-1α) is able to
transcriptionally up-regulate their expression, which promotes mitochondrial removal and
helps the cells to adapt to the low-oxygen environment [43]. In addition, FUNDC1 tightly
links mitochondrial quality control to the autophagy process by regulating the process
of mitochondrial fission and fusion, ensuring that cells can effectively remove damaged
mitochondria [44].

Autophagy achieves intracellular homeostasis through a multilevel regulatory net-
work, and the diversity of its types and mechanisms reflects the flexible strategies of cells
to cope with stress. A large number of studies have found that the above four types of
autophagy are involved in the pathological process of depression. However, despite great
progress in understanding the mechanisms of autophagy, many questions remain.
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3. Molecular Mechanisms of Autophagy and Its Abnormalities
in Depression
3.1. Autophagy Dysfunction in Depression
3.1.1. Autophagy Dysfunction in Patients with Depression

Autophagy dysfunction has become an important direction of current interest in the
study of depression, especially in terms of changes in autophagy-related proteins and
their regulatory pathways. An analysis of postmortem prefrontal cortex (PFC) tissues
from patients with depression by single-cell sequencing revealed a significant decrease
in the proportion of astrocytes and a close relationship between the inhibition of their
autophagic pathway and the development of depression [45]. In addition, postmortem
human brain microarray analysis showed a significant increase in the transcript levels
of several autophagy-related genes such as ATG5, ATG6, ATG7, and ATG12 [46]. Mean-
while, another study showed that the mRNA and protein levels of p62 were significantly
increased in the blood of patients with depression, and this change was further verified
in an animal model [47]. In addition, a study examined the levels of NIX and LC3 in
the peripheral blood of patients with depression by qPCR and found that the levels of
these two autophagy-related molecules were significantly reduced, further suggesting that
dysfunction in autophagy may be a common feature of depression [48]. These findings
suggest that the abnormal changes in the expression of autophagy-related molecules in
patients with depression are closely related to dysfunction in autophagy, which may pro-
vide new perspectives on biomarkers of depression. Although a large number of studies
have explored these changes in autophagic pathways and molecular markers, there is
still some inconsistency between the results of different studies. This discrepancy may be
related to differences in patients, with them being at different stages of the disease, and the
clinical manifestations and biomarkers of depression may change as the disease progresses.
Therefore, future studies need to further explore, in depth, the role of autophagy and its
mechanisms in different disease stages of depression, with a view to providing a new
theoretical basis for the early diagnosis and treatment of depression.

3.1.2. Autophagy Dysfunction in Models of Depression

In the study of pathological mechanisms of depression, autophagy dysfunction is
believed to play a key role in the onset and development of the disease. A large number of
studies have shown that abnormalities in the autophagic process have a profound impact
on the pathogenic mechanisms of depression. For example, the expression of autophagy-
related proteins LC3-II and Beclin-1 was significantly reduced in brain tissue in a mouse
model of LPS-induced depression [49]. However, another study showed that corticosterone
(CORT) significantly activated cellular autophagy by damaging hippocampal neurons in
newborn neurons, which was accompanied by elevated levels of LC3-II and ATG5 pro-
teins [8]. Notably, the expression of ULK1, a key regulator in the autophagy process, did
not show significant changes during this process, suggesting that the activation of the
autophagy pathway may have different mechanisms in different depression models [8].
Socio-environmental factors, especially chronic stressful stimuli, are important external
factors in the development and progression of depression. In order to study the effects of
stress on depression, scientists have developed a variety of stress-induced animal mod-
els of depression, such as CUMS, the chronic social defeat stress (CSDS) model, and the
learned helplessness (LH) model [50]. It was shown that in the CUMS-induced mouse
model, there was a significant decrease in LC3 and Beclin-1 expression in brain tissue, along
with increased levels of p62 and mTOR expression [51]. These changes suggest that both
the inhibition of autophagy and the activation of the mTOR signaling pathway may be
involved in the stress-induced depression model. In addition, impaired mitophagy was
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observed in this model, as evidenced by a decrease in the number of autophagosomes in the
hippocampal region and a down-regulation in the expression of autophagy-related proteins
such as LC3-II/I, ATG5, PINK1, and Parkin [52]. Similar results were also seen in the CSDS-
induced mouse model of depression, where the expression of autophagy-related proteins
such as LC3-II/I, Beclin-1, ATG5, and ATG7 was significantly decreased in the hippocam-
pus after 10 days of stress exposure [53]. In the pathogenesis of depression, translocator
protein (TSPO), as an important regulator of mitophagy, has also received extensive atten-
tion. TSPO inhibits PINK1/Parkin-mediated mitophagy via a voltage-dependent anion
channel (VDAC1), thereby limiting the ubiquitination of related proteins [54]. In the LH
mouse model, it was found that the expression of mitophagy-associated proteins such
as TSPO, VDAC1, PINK1, and Beclin-1 was significantly decreased [55]. In addition, the
expression levels of LC3-II, PINK1, and Parkin were also significantly decreased in LPS-
and ATP-treated BV2 cells, whereas the expression of proteins such as p62, TOM, and
TIM was increased. Further immunofluorescence colocalization analysis showed that the
colocalization of the mitochondrial fluorescent probes MitoTracker and LC3-II was reduced,
suggesting that mitophagy function was inhibited [56]. Autophagic flux and mitophagy
were similarly inhibited in LPS-induced rat primary astrocytes, as evidenced by decreased
LC3 levels and increased p62 levels [57]. In CORT-treated HT22 cells, a reduction in the
number of autophagosomes was also observed, as well as a significant decrease in the
mRNA expression levels of PINK1, Parkin, ATG5, and LC3 [52]. The close association of
autophagy with the pathogenesis of depression is further supported.

Overall, these findings suggest that cellular autophagy is commonly impaired in
a variety of depression models. The impairment of cellular autophagy, an important
mechanism of cellular stress response, may lead to the impairment of normal cellular
function, which may have serious implications for overall function. These findings provide
new perspectives for further understanding the pathogenesis of depression and highlight
the potential role of autophagy function in the development of depression. (Detailed
information on autophagy-related changes in different depression models is shown in
Table 1).

Table 1. Changes in autophagy observed in patients with depression and in animal and cellular models.

Species The Model of
Animals or Cells Experimental Design Behavioral Changes Autophagy Changes Significance Ref.

Human

SnRNA-seq (n = 17) and
transcriptome data validation

from GEO

↓ LAMP2, LC3A, ATG4B,
ATG9A, LC3B, ATG4D genes

↓ Autophagy
initiation [45]

PB analyzed by RNA-seq
(n = 17–19) and verified by

qPCR (n = 32–33)
↓ LC3A mRNA

Analysis of postmortem PFC
microarray data in GEO

database (n = 29–56)

↑ ATG5, ATG6, ATG7, ATG12,
LC3B mRNA
↓ p62 mRNA

↑ Autophagy
initiation [46]

PB detected by RNA-seq
(n = 4), qRT-PCR (n = 50), and

ELISA (n = 44)
↑ p62 genes, mRNA and protein ↓ Autophagy

degradation [47]

Patients with MDD and
healthy volunteers (n = 10–14),

detected by qPCR
↓ LC3A, NIX mRNA ↓ NiX-mediated

mitophagy [48]
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Table 1. Cont.

Species The Model of
Animals or Cells Experimental Design Behavioral Changes Autophagy Changes Significance Ref.

Animal

LPS mice
Male C57BL/6 mice (n = 9),
detected by IF and WB in

the Hip

↓ Sucrose preference
↓ Number of

crossings in OFT

↓ LC3 immunofluorescence
↓ LC3-II, Beclin-1 protein

↓ Autophagosome
formation [49]

CORT mice

Male C57BL/6 mice (n = 12)
exposed to CORT for 8 weeks,

and hippocampal DG
detected by IF, WB, confocal

imaging, and TEM

↑ Immobility time in
FST and TST

↓ Open arm time in
EPM, central area

time in OFT,
exploration time in

NORT

↑ LC3-II, ATG5 protein
↓ p62 protein

↑ Autophagosome, lysosome
↑ LC3-NeuN

immunofluorescence
colocalization

↑ Adeno-associated virus
mCherry-GFP-LC3 fusion

protein

↑ Autophagy [8]

CUMS mice

Male C57BL/6 mice (n = 6),
CUMS for 6 weeks, brain
tissue detected by qPCR

and WB

↓ Sucrose preference
↑ Immobility time

in FST

↓ Beclin-1, LC3 mRNA
and protein

↑ p62, mTOR mRNA and protein

↓ Autophagy
degradation [51]

CUMS mice
Female C57BL/6 mice (n = 8),

CUMS for 8 weeks, Hip
detected by IF, TEM, and WB

↓ Sucrose preference
↑ Immobility time in

OFT, TST, FST
↑ Feeding latency

in NSFT

↓ PINK1, Parkin, ATG5,
LC3II/I protein

↓ Autophagosome
↓ PINK1 immunofluorescence

↓ PINK1/Parkin-
mediated

mitophagy
[52]

CSDS mice
Male C57BL/6 mice (n = 9),

CSDS for 10 days, Hip
detected by TEM and WB

↓ Sucrose preference,
total travel distance

in OFT, social
interaction rate

in SIT
↑ Immobility time in

TST, FST

↓ LC3-II/I, Beclin-1, ATG5,
ATG7 protein

↑ Autophagosome
↑ p62, p-PI3K, p-AKT,

p-mTOR protein

↓
PI3K/AKT/mTOR-
mediated autophagy

[53]

LH mice
Male ICR mice (n = 15), LH for

2 weeks, midbrain detected
by WB

↑ Immobility time in
FST, feeding latency

in NSFT

↓ TSPO, PINK1, Beclin-1 protein
↑ Parkin protein

↓ TSPO-mediated
mitophagy [55]

Cell

BV2 cell exposed to
LPS and ATP

Cultured with LPS (1 µg/mL)
for 24 h and ATP (5 mM) for
30 min, cells detected by IF

and WB

↓ LC3-II, PINK1, Parkin protein
↑ p62, TOM, TIM protein

↑ p62-TOM immunofluorescence
colocalization

↓ Mitophagy
degradation [56]

Primary astrocytes
exposed to LPS

Cultured with LPS (1 µg/mL)
for 24 h, cells detected by WB

and confocal imaging

↓ LC3 protein
↑ p62 protein

↓ Adeno-associated virus
GFP-mRFP-LC3 fusion protein

↓ Autophagy
degradation [57]

HT22 cell exposed
to CORT

Cultured with CORT (100 µM)
for 24 h, cells detected by IF,

qPCR, and TEM

↓ ATG5 immunofluorescence
↓ PINK1, Parkin, ATG5,

LC3 mRNA
↓ Autophagosome

↓ Mitophagy [52]

Note: SnRNA-seq, single-nucleus RNA sequencing; qPCR, quantitative polymerase chain reaction; GEO, gene
expression omnibus; PB, peripheral blood; RNA-seq, RNA sequencing; Hip, hippocampus; PFC, prefrontal
cortex; qRT-PCR, quantitative reverse transcription PCR; MDD, major depressive disorder; WB, Western blot;
IF, immunofluorescence; DG, dentate gyrus; CORT, cortistatin; TEM, transmission electron microscope; CUMS,
chronic unpredicted mild stress; CSDS, chronic social defeat stress; LPS, lipopolysaccharide; LH, learned help-
lessness; ATP, adenosine triphosphate; OFT, open-field test; FST, forced swimming test; TST, tail suspension test;
EPM, elevated plus maze; NORT, novel object recognition test; NSFT, novelty suppressed feeding test; SIT, social
interaction test; ↑, increase; ↓, decrease.

3.2. Autophagy Regulatory Pathways
3.2.1. mTOR-Dependent Pathways

The mammalian target of rapamycin complex (mTORC1/mTORC2)-dependent path-
way plays a crucial role in the regulation of cellular metabolism, autophagy, and neurologi-
cal function and has been the focus of several studies [58]. Mammalian target of rapamycin
(mTOR) is a serine/threonine kinase that plays a central role in a variety of biological pro-
cesses as a key regulator of intracellular metabolism and autophagy. Specifically, mTORC1
acts at different stages of autophagy by phosphorylating several important molecules in
the process [59,60]. It has been found that the inhibition of mTORC1 activates the AMPK
pathway and thus promotes mitochondrial function, which is essential for neuronal energy
metabolism [61]. In addition, inactivation of mTORC1 is able to impede mitophagy while
hindering mitochondrial function in neurons, thus worsening neuronal survival; this mech-
anism has potential applications in the treatment of neurodegenerative diseases [62]. In the
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nervous system, mTORC1 is not only crucial for neuronal energy metabolism but also plays
a central role in synaptic plasticity and the process of learning and memory. Depression is
closely associated with altered synaptic plasticity, and long-term chronic stress causes stress
hormone disruption, which in turn affects synaptic plasticity, decreasing the number of
synapses in several regions of the brain and leading to hippocampal neuronal atrophy [63].
The role of mTORC1 is particularly prominent in synaptic plasticity, where synaptic plastic-
ity and dendritic spine formation depend on the synthesis of new proteins from scratch.
However, mTORC1 can play a crucial role in the biological processes of learning and
long-term memory by regulating protein synthesis through phosphorylation mediating
the processes involved [64]. Recent studies further reveal that genetic deletion of mTORC1
alleviates the increase in excitatory synaptic transmission due to the loss of the Pten gene
and reduces the overgrowth of neuronal cytosolic dendrites and spines [65]. In addition,
in the Rptor-deficient mouse model, the deletion of the mTORC1 complex resulted in
defects in axonal innervation compartments of dopamine neurons in the midbrain, further
suggesting the importance of mTORC1 in neural development [66]. Recently, the poten-
tial of the mTORC1 pathway in the treatment of psychiatric disorders has also attracted
much attention. For example, fluoxetine promotes autophagy and reverses depressive-like
behaviors by targeting mTOR and modulating p-mTOR/mTOR levels in a rat model of
olfactory bulbectomy [67]. These studies not only open up new horizons for the application
of mTORC1 in neuropsychiatric disorders but also provide a theoretical basis for future
drug development.

3.2.2. mTOR-Independent Pathways

In the non-mTOR-dependent autophagy pathway, AMPK and extracellular signal-
regulated kinase (ERK), among others, play important roles in the regulation of autophagy;
AMPK, as a key energy sensor, is able to respond to the energy status of the cell by
sensing the changes in the intracellular AMP/ATP ratio and thus activate autophagy in
response to cellular stress [68]. Studies have shown that the activity of the AMPK-ULK1-
FUNDC1 signaling pathway is significantly inhibited in the neurotrophic tyrosine kinase
receptor 1 (NTRK1) knockout mouse model and that this inhibition blocks mitophagy
and leads to dysfunctional mitochondria, enhanced oxidative stress, and synaptic damage
in hippocampal neurons, ultimately leading to cognitive deficits [69]. However, it is
worth noting that contrary to the conventional view that AMPK promotes autophagy, the
activation of AMPK in the presence of amino acid deprivation inhibits autophagy [70]. It
was further shown that AMPK could inhibit the initiation of autophagy by phosphorylating
the Ser556 site of ULK1 [71]. This finding reveals that the mechanism by which AMPK acts
on autophagy is more inclined to inhibit than activate autophagy in an amino acid-deficient
environment. ERK1/2, as an important member of the mitogen-activated protein kinase
(MAPK) family, plays a key role in a variety of pathological processes, especially in the
development of diseases such as depression [72]. It has been found that the microbial
metabolite urolithin A can directly bind to ERK1/2 and promote its activation, followed
by the phosphorylation and activation of the autophagy initiation factor ULK1, thereby
initiating the autophagy process [73]. In addition, it has been shown that mitogen-activated
protein kinase phosphatase-1 (MKP-1) activates autophagy in the hippocampal region by
inhibiting the phosphorylation of ERK1/2, which in turn promotes the accumulation of LC3-
II and the impairment of synaptic plasticity, a process that exacerbates the manifestation of
depressive-like behaviors in the chronic unpredictable stress (CUMS) model of rats [74]. In
addition to AMPK and ERK, Ca2+ signaling, reactive oxygen species (ROS), and JNK–Beclin-
1 signaling pathways also play important roles in the regulation of the mTOR-independent
autophagy pathway [75]. These signaling pathways synergistically regulate the onset and
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progression of autophagy by interacting with different molecules related to autophagy,
further revealing the complexity and diversity of autophagy regulation.

3.3. Autophagy Markers and Depression
3.3.1. p62

As a multifunctional protein, p62 acts as an autophagy receptor that recognizes and
binds ubiquitinated proteins and delivers them to the autophagosome for degradation [76].
Specifically, p62 initiates autophagosome nucleation and elongation through the vesicle
aggregation of ubiquitinated substrates and the recruitment of autophagy-related proteins
and membrane sources [77]. It has been shown that the S-lipoylation modification of p62
significantly enhances its binding affinity to autophagosome membranes by increasing
its hydrophobicity, thereby regulating the recruitment of p62 vesicles to autophagosomes,
forming a dynamic regulatory loop [78]. This process makes the role of p62 in autophagy
more fine-grained and regulatable. In addition, it has been found that lipopolysaccharide
(LPS) or dextran sodium sulfate (DSS) exacerbates depression- and anxiety-like behaviors
induced by prolonged restraint stress in mice and is closely associated with decreased
p62 expression levels [79]. Further studies have shown that p62 overexpression can al-
leviate depression- and anxiety-related behaviors by improving mitochondrial function
in the hippocampus, as evidenced by a reduction in anxiety and a significant increase in
exploratory activity in mice tested in both the open-field and elevated plus maze tests [80].
In contrast, p62 deficiency resulted in anxiety, depression, and a loss of working memory,
accompanied by decreased serum brain-derived neurotrophic factor (BDNF) levels [81].
These results suggest that p62 is involved in the onset and development of mood disorders
through the regulation of autophagy and mitophagy and, in particular, plays a key role in
the modulation of symptoms such as anxiety and depression. However, although studies
have revealed the important role of p62 in autophagy, the specific effects of p62 deletion or
overexpression on mitochondrial autophagic fluxes still need to be further investigated. In
particular, the regulatory mechanisms of p62 may play different roles in different disease
processes, and its potential efficacy in mood disorders is still worth exploring.

3.3.2. Neighbor of BRCA1 Gene 1 (NBR1)

Similarly to p62, NBR1 is an autophagy receptor that was discovered shortly after p62.
NBR1 in animals is an evolutionarily conserved selective autophagy receptor that plays
a key role in the specific selection and recognition of autophagic substrates [82]. NBR1
has similar structural domains to p62, containing a ubiquitin-associated domain structural
domain and two LIR motifs, as well as the Phox and Bem1 (PB1) structural domain and the
ZZ zinc finger domain, in which the PB1 structural domain binds to p62 [83]. In addition,
NBR1 is able to recruit another autophagy receptor protein, TAX1BP1, to aggregates and
the postural protein FIP200, thereby promoting autophagosome formation [84]. Post-stroke
depression (PSD) is the most common psychiatric complication after stroke, and elevated
mRNA and protein expression of NBR1 in hippocampal tissues, along with elevated ULK1
expression, was found in a rat model of PSD constructs [85]. Furthermore, in the HIF-
1α knockout rat model of PSD, depressive-like behavior was improved; however, NBR1
overexpression reversed this effect [86]. The peroxisome is an important organelle for
maintaining intracellular redox homeostasis, and the level of ROS within it correlates with
the level of oxidative stress in vivo [87]. It is well known that free radicals generated by
oxidative stress can damage cellular structure and function, leading to neuronal damage or
death, thereby increasing the risk of depression. NBR1 expression was found to increase
peroxisome-targeted lysosomes for degradation through the autophagy pathway to control
their quality and quantity [88]. In summary, NBR1 can improve oxidative stress levels and
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depression-like behavior in vivo through autophagy, and it is likely to be a potential target
for the treatment of depression.

3.3.3. Mitophagy-Specific Markers (e.g., PINK1/Parkin)

PINK1 is a serine/threonine kinase that is widely involved in mitochondrial qual-
ity control and plays a crucial role in regulating mitophagy in particular. In the healthy
mitochondrial state, PINK1 is rapidly degraded by the mitochondrial protease PARL,
thereby maintaining normal mitochondrial function [89]. However, the dysregulation of
the PINK1/Parkin signaling pathway is closely associated with the development of a wide
range of diseases, particularly neuropsychiatric disorders. For example, the PINK1/Parkin-
mediated inhibition of mitochondria has been found in Alzheimer’s disease mice and
β-amyloid-induced cellular models of SH-SY5Y cells, along with the exacerbation of neu-
roinflammation and cellular focal death [90]. In a rat model of depression–insomnia co-
morbidity with CUMS combined with sleep deprivation, dysfunction in the PINK1/Parkin
signaling pathway led to impaired mitophagy in the pineal gland, which in turn triggered
a significant reduction in 5-HT levels and an increase in the release of markers of oxidative
stress (ROS, Malondialdehyde). Meanwhile, the activation of NF-κB further promotes the
release of the inflammatory factor IL-1β and ultimately triggers depressive behaviors [91].
In addition, defects in the PINK1/Parkin pathway can lead to the accumulation of damaged
mitochondria, which further exacerbates the dysfunction of the electron transport chain
and defects in ATP synthesis, thus triggering an energetic crisis in neurons and worsening
depressive symptoms [92]. It has been shown that by overexpressing PINK1 or Parkin,
the down-regulation of mitophagy-related proteins can be reversed, the Bax/Bcl-2 ratio
can be improved, and mitochondrial damage can be reduced, which in turn improves
behavioral abnormalities, such as immobility time in the forced swimming test and tail
suspension test [91]. Notably, melatonin analogs contribute to the restoration of mitophagy
and amelioration of behavioral abnormalities associated with cognitive deficits through the
activation of the AMPK/PINK1 signaling pathway, which offers a new potential strategy
for the treatment of depression [93]. Thus, the dysregulation of the PINK1/Parkin signaling
pathway plays a key role in the onset and progression of depression, and the enhancement
of PINK1/Parkin-mediated mitophagy may be a novel means of alleviating depression.

4. Interaction Between Autophagy and Pathological Mechanisms
of Depression

More and more studies have shown that the autophagy signaling pathway plays a
key role in the onset and development of depression. Animal model studies have shown
that dysfunction in autophagy has been widely observed in commonly used depression
induction models such as CSDS [53], LPS [94], and CORT [8]. Through these studies,
it is suggested that the dysregulation of autophagy may be an important component of
the pathology of depression. Through a comprehensive analysis of relevant datasets,
researchers have identified four potential autophagy-associated genes that are considered
diagnostic markers for depression [95]. Further clinical studies have shown that changes
in the levels of the autophagy marker Beclin-1 are strongly associated with the response
to medication for depression and that Beclin-1 may serve as an independent predictor of
the efficacy of medication for depression [96]. These pieces of evidence fully indicate that
the role of autophagy in depression cannot be ignored, and more basic and clinical studies
are urgently needed to further elucidate its specific mechanisms. With the deepening of
research on depression, more and more evidence suggests that autophagy is involved
in multiple pathophysiological pathways of depression, including neuroinflammation,
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neurogenesis, dysbiosis of gut microbiota, and functional abnormalities of the HPA axis
(Figure 2).

 

Figure 2. Overview of different pathological mechanisms linking autophagy and depression. Autophagy
affects the development of depression by participating in neuroinflammation, hippocampal neurogen-
esis, the HPA axis, and gut microbiota. HMGB1, high-mobility group box-1 protein; TLR4, Toll-Like
Receptor 4; RAGE, Receptor for Advanced Glycation End-Products; PI3K/AKT, phosphatidylinositol
3kinase/protein kinase B; STAT3, Signal Transducer And Activator Of Transcription 3; NF-κB, Nuclear
factor-kappa B; IL-18, Interleukin-18; IL-6, Interleukin-6; IL-1β, Interleukin-1β; TNF-α, Tumor Necrosis
Factor-α; GSDMD, Gasdermin D; NLRP3, NOD-like receptor protein 3; NSC, neural stem cell; NPC,
neural progenitor cell; CRH, corticotropin-releasing hormone; ACTH, Adrenocorticotropic Hormone;
GR, glucocorticoid receptor; BDNF, brain-derived neurotrophic factor; FKBP51, FK506-binding protein
51; Trp, tryptophan; TpH1, Tryptophan Hydroxylase 1; SCFAs, Short-chain fatty acids; Kyn, kynurenine;
5-HT, 5-Hydroxytryptophan; IDO1, indoleamine 2,3-dioxygenase 1.
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4.1. Autophagy and Neuroinflammation in Depression

Numerous studies have shown that neuroinflammation plays a key role in the de-
velopment of depression [97]. Specifically, research data show that depression is often
accompanied by elevated levels of pro-inflammatory cytokines in the blood and cere-
brospinal fluid of patients with depression [98]. The activation of the NLRP3 inflamma-
some has been observed in several animal models of depression, such as LPS, stress, and
ovariectomy induction models [99–101]. The NLRP3 inflammasome consists of the sensor
molecule NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment
domain ASC, and the effector molecule Caspase-1, which regulates pro-inflammatory
cytokine levels in response to cellular stimulation. Caspase-1 regulates the secretion of
pro-inflammatory cytokines such as IL-1β and IL-18 [102]. The activation of NLRP3 and
the release of IL-1β and IL-18 may be involved in the pathogenesis of depression through
multiple mechanisms. For example, activated NLRP3 inflammatory vesicles can promote
depression by prompting microglia to activate indoleamine 2,3-dioxygenase (IDO) and
exacerbate neuroinflammation through kynurenine pathway signaling [103]. It has been
shown that IL-1β and IL-18 released upon the activation of NLRP3 inflammatory vesi-
cles may be key molecules in triggering the immune response in depression and further
exacerbate the pathological process through Gasdermin D (GSDMD)-mediated cellular
pyroptosis response [102]. Notably, the activity of NLRP3 inflammatory vesicles is regu-
lated by autophagy. It has been shown that autophagy induction significantly inhibits the
assembly of the NLRP3-ASC–Caspase-1 complex, thereby reducing the overproduction of
pro-inflammatory cytokines [104]. For example, in a mouse model of DSS-induced ulcera-
tive colitis, NLRP3 inflammatory vesicle levels were significantly elevated, accompanied by
the emergence of depressive-like behavior [105]. Microglia are the most abundant immune
cells in the CNS, and their activation is modulated by inflammatory signals released by
a variety of neurons, which in turn drive enhanced neuroinflammatory responses [106].
In a mouse model of chronic mild stress exposure, immunofluorescence staining revealed
the significant activation of Iba-1-positive microglia in the hippocampus and cortex, as
well as significantly elevated expression levels of pro-inflammatory microglia markers
such as IL-1β, TNF-α, and IL-6, suggesting phenotypic shifts in microglia [107]. In ad-
dition, preclinical studies have found that the HMGB1/STAT3/p65 signaling axis plays
an important role in the activation of microglia and the regulation of their autophagy
levels in the prefrontal cortex of depressed mice [108]. In summary, autophagy not only
reduces the overproduction of pro-inflammatory cytokines by inhibiting the assembly of
NLRP3 inflammatory vesicles but also plays a key role in the anti-inflammatory process by
regulating the activity of immune cells.

4.2. Autophagy and Neurogenesis in Depression

Neurogenesis is the process by which neural stem cells (NSCs) or neural progenitor
cells (NPCs) differentiate to produce neurons that migrate to and make synaptic connec-
tions in specific functional regions of the brain to form neural networks and perform neural
functions. Neurogenesis in mammals occurs primarily in two specific regions: the subven-
tricular zone and the subgranular zone of the dentate gyrus of the hippocampus. Neurons
generated in these regions migrate to the olfactory bulb and are involved in the processing
of olfactory information and the functional regulation of other brain regions [109]. In recent
years, a growing body of research has shown that reduced neurogenesis is closely related
to the pathogenesis of depression [110]. When neurogenesis in the hippocampus is im-
paired, the neuroendocrine regulation of stress in the hippocampus will be impaired, which
leads to a lowering of the stress threshold, which in turn exacerbates the emergence of a
depressive-like phenotype [111]. In addition to this phenomenon found in depression, in
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Parkinson’s disease, we have found that neurotrophins are specific to the promotion of neu-
rogenesis in the brain and could have potential in the treatment of Parkinson’s disease as a
complement to cellular replacement therapies [112]. The relationship between autophagic
processes and neurogenesis has also been extensively studied in models of depression. In
mice subjected to CORT to simulate psychological stress, autophagic death of NSCs was
found to be severely compromised as well as the integrity of neurogenesis [113]. Nuclear
Receptor-Binding Factor 2 (NRBF2), an important component of the PI3K complex, plays
an important role in autophagy [114]. It was found that in chronic stress model mice, the
level of NRBF2 in the hippocampal dentate gyrus was significantly decreased, leading to
abnormal autophagy function in the NSCs in this region, which in turn resulted in the
depletion of the NSCs and damage in neurogenesis [114]. In addition, BDNF plays an
important role in neurogenesis and mood regulation. BDNF not only promotes neuronal
survival by regulating apoptosis but also plays a role as an antidepressant by promoting
neurogenesis. In BDNF-administered animal models, researchers have found that BDNF
has a significant antidepressant effect [115]. In a CORT-induced depression model, it was
found that increasing the expression of ATG5 could lead to overactive neuronal autophagy,
which would lead to the significant degradation of BDNF, thus hindering the conversion of
NSCs to mature neurons. Conversely, reducing ATG5 expression in neurons was able to
alleviate this pathology and improve depression-like behavior in mice [8].

4.3. Autophagy and Gut Microbiota in Depression

In recent years, a growing body of research has revealed a strong link between gut
microbiota and depression. The gut microbiota is involved in the onset and development of
depression by influencing the function of the central nervous system through the gut–brain
axis (GBA) [116]. Studies have shown significant changes in the composition of the gut
microbiota in patients with depression, commonly characterized by a reduction in the diver-
sity of the gut microbiota and changes in the abundance of certain specific microbiota [117].
For example, some studies have found that the abundance of pro-inflammatory bacteria is
significantly increased in patients with depression, particularly the relative abundance of
taxa such as Ruminococcus, Eggerthella, Enterobacteriaceae, and Proteobacteria, and that
these changes in the bacterial microbiota may act through a number of mechanisms, the
most notable of which is by promoting intestinal and systemic inflammatory responses,
thereby affecting brain function and mood regulation [118]. In addition, GBA interaction
mechanisms involve multiple metabolic pathways. For example, one study found that the
composition of the gut microbiota was significantly altered in a mouse model of CRS, and
the study further observed that bacteria such as Enterorhabdus and Parabacteroides were
negatively correlated with kynurenine (Kyn) levels in the brain [119]. The Kyn metabolic
pathway is one of the major branches of tryptophan (Trp) metabolism, and Trp is a key
pathway for the synthesis of the important neurotransmitter 5-HT. Abnormalities in the
Kyn pathway may lead to decreased levels of 5-HT, which in turn may affect mood regula-
tion and the development of depression [120]. In a mouse model of depression induced
by long-term corticosterone injections, it was found that intestinal dysbiosis led to mito-
chondrial dysfunction and reduced neurogenesis in the hippocampal region of the brain,
which in turn led to depressive behaviors [121]. Further studies have also shown that
the development of depression is closely related to autophagy mechanisms in the GBA.
For example, Zifan et al. showed that gut microbiota metabolites are important factors in
CNS homeostasis, and they found that supplementation of propionic acid from differential
gut microbiota metabolites to Alzheimer’s disease (AD) model mice contributed to the
maintenance of in vivo and in vitro mitochondrial homeostasis through the enhancement
of PINK1/Parkin-mediated mitophagy in the pathophysiology of AD [122]. Furthermore,
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for the CUMS mouse model, supplementation with the probiotic Lactobacillus plantarum
CR12 not only rebuilt the composition of the gut microbiota but also increased the level of
autophagy in the hippocampal region and significantly ameliorated anxiety and obsessive–
compulsive-like behaviors in depressed mice [123]. Thus, it is evident that the interaction of
gut microbiota metabolites with the autophagy pathway plays a key role in regulating brain
function and improving depressive symptoms. By influencing the autophagy mechanism,
the gut microbiota not only helps to maintain the functional homeostasis of the central
nervous system but may also provide new targets for the treatment of depression.

4.4. Autophagy and HPA Axis Dysregulation in Depression

Recent studies have shown a close interaction between cellular autophagy and the
HPA axis in the pathogenesis of depression. The dysfunction of the HPA axis is widely
recognized as an important pathological features of depression, and it plays an impor-
tant role in the onset and progression of depression. The HPA axis regulates the stress
response in vivo through the hypothalamic–pituitary–adrenal pathway, and its overac-
tivity is closely related to symptoms of depression [124]. Multiple stressors in the social
environment can activate the HPA axis and further lead to its dysfunction, ultimately
leading to significantly elevated cortisol levels, which not only induce neuroinflammation
but may also cause long-term damage to the central nervous system [125]. There is a
strong correlation between cortisol signaling and depression, and it has been shown that
chronic glucocorticoid exposure leads to a decrease in the levels of BDNF mRNA and its
proteins, as well as a decrease in the expression of its receptors, which can severely affect
neuronal function [126]. In animal models of chronic stress exposure, HPA axis dysfunction
is characterized by persistently elevated cortisol concentrations and abnormal changes in
associated neuroendocrine factors [127]. Further studies have shown that the HPA axis is
in a hyperactive state in a mouse model of chronic stress exposure and that salt-inducible
kinase 1 (SIK1) plays an important role in this process. Specifically, SIK1 expression levels
are up-regulated in the paraventricular nucleus of the mouse hypothalamus, which in turn
drives the hyperactivation of the HPA axis by positively regulating the synthetic path-
way of corticotropin-releasing hormone (CRH) [128]. Autophagy, as an important cellular
self-protection mechanism, may be involved in the process of depression by regulating
the function of the HPA axis or interacting with its dysregulation. It has been shown that
autophagy levels are decreased in patients with depression, and this decrease is closely
related to the activation state of the HPA axis. In depression, the abnormal activation
of the HPA axis has been found to increase glucocorticoid secretion and, through it, to
produce a link with cellular autophagy [129]. It was further found that aberrant activation
of the HPA axis may exacerbate neuronal damage by reducing neuronal acidic vesicular
organelles, decreasing lysosomal content and attenuating autophagy [130]. FK506-binding
protein 51 (FKBP51) acts as a key regulator of the glucocorticoid receptor (GR), which
forms complexes with molecules such as FKBP51 in the resting state, and when GR is
bound, FKBP51 is released from the complex [131]. It has been shown that FKBP51 binds to
Beclin-1, promotes Beclin-1 phosphorylation, and activates the autophagy pathway [132].
Therefore, the dysfunction of the HPA axis may lead to abnormalities in the autophagy
process, further triggering neuronal damage and death. In addition, recent studies have
revealed bidirectional regulation between autophagy and the HPA axis, and the restoration
of autophagy function may regulate the overactivation of the HPA axis through a negative
feedback mechanism [133]. For example, some experiments have shown that the level
of CRH released by the HPA axis can be restored by attenuating autophagy disorders
in a rat model of post-stroke depression, thereby preventing hippocampal synaptic loss
and attenuating depressive-like behaviors [134]. In addition, autophagy plays a crucial
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role in maintaining neuroplasticity and neuroprotection by removing damaged proteins
and injured mitochondria, which helps to attenuate the neurological damage associated
with HPA axis overactivation [135]. In conclusion, the current study suggests that the
overactivation of the HPA axis and defective autophagy may be important mechanisms in
the pathogenesis of depression. Modulating the autophagy pathway may be a potential
therapeutic strategy to alleviate symptoms associated with depression, while modulating
the function of the HPA axis may also play a key role in autophagy recovery.

5. Autophagy Modulation as a New Strategy for the Treatment
of Depression
5.1. mTOR Pathway Modulators
5.1.1. Rapamycin and Its Analogs

Rapamycin and its analogs are first-generation mTOR inhibitors, and in depression,
aberrant activation of the mTOR pathway may lead to the inhibition of autophagy, mi-
tochondrial dysfunction, and the impairment of synaptic plasticity. Rapamycin forms a
complex by binding to FK506-binding protein 12 (FKBP12), which in turn binds to the FRB
structural domain of mTORC1, thereby inhibiting mTORC1 activity and deregulating its
negative regulation of autophagy [136]. The classic autophagy inducer rapamycin has been
found to have antidepressant-like effects, emphasizing the role of the mTOR pathway in
this respect [137,138]. It has been shown that rapamycin reduces cellular focal death and
ameliorates behavioral abnormalities in the hippocampus of mice in an animal model of
H. pylori-induced depression [139]. Meanwhile, rapamycin inhibits NLRP1 inflammatory
vesicle activation, ameliorates chronic social failure stress-induced depression-like behav-
ior, and exhibits neuroprotective effects in mice with depression-like symptoms [53]. In
addition, the rapamycin analog tesirolimus reduced depression-related resting time in a
forced swimming test [137]. Meanwhile, in the hippocampus of LPS-induced depressed
mice, rapamycin significantly enhanced the expression of LC3-II/I and Beclin-1 and sig-
nificantly attenuated the expression of p62, suggesting the activation of autophagy [140].
Furthermore, rapamycin activated autophagy to prevent cognitive dysfunction and neu-
ronal apoptosis in aged rats, and this effect was abolished by the neuroprotective activity
of rapamycin following co-treatment with the autophagy inhibitor 3-methyladenine [141].

5.1.2. Natural Products

Notably, natural products have superior anti-inflammatory properties in depression
with greater efficacy and lower toxicity. Numerous natural products have been found to
improve depression by modulating the mTOR pathway (Table 2). For example, apigenin,
one of the most common flavonoids found in herbs and vegetables, was shown to alleviate
depressive-like behaviors by activating the AMPK/mTOR pathway in CRS-stimulated mice
treated with it, and improved levels of autophagy-associated molecules, such as LC3-II/I,
as well as p62, were also found in the hippocampus [142]. In addition, PI3K/Akt/mTOR is
also an important signaling pathway that regulates cellular autophagy. A modified formula
based on the traditional Chinese medicine Xiaoyao San formula was found to inhibit the
M1 phenotype of microglia in depressed mice by enhancing autophagy, and this effect
was achieved by promoting the PI3K/Akt/mTOR signaling pathway [143]. Resveratrol
is a naturally occurring polyphenol compound that affects a variety of cellular biological
processes and has been shown to have benefits in modulating neurotransmitters and
promoting neuroplasticity in psychiatric disorders such as depression [144]. Resveratrol
supplementation was found to reduce the immobilization time of the FST and TST in CUMS
mice to exert antidepressant effects [145]. In addition, resveratrol increased the expression
of ATG5 and Beclin-1 but decreased the levels of p-Akt and p-mTOR in a model of mice
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with postpartum depression [146]. These findings suggest that the regulation of autophagy
in depression by resveratrol may be related to the Akt/mTOR pathway. These findings
suggest that natural products and traditional herbs may work together to coordinate the
regulation of neural signaling and neuronal cell function as antidepressants with autophagy
modulation by modulating mTOR pathway-mediated autophagy.

5.2. Mechanisms of Autophagy Regulation by Antidepressant Drugs

Antidepressant medication is a common and effective intervention in the management
of depression. SSRIs, tricyclic antidepressants, serotonin and norepinephrine reuptake
inhibitors, and monoamine oxidase inhibitors are widely used antidepressants in clinical
practice. Among them, fluoxetine, the first SSRI, is widely used for its significant clinical
efficacy and good safety [147–149]. It was found that in a model of depression induced by
bilateral olfactory bulbectomy, fluoxetine treatment significantly alleviated abnormalities in
the AMPK and mTOR signaling pathways and repaired the levels of LC3-II, Beclin-1, and
p62 in the hippocampus of rats by promoting autophagy [67]. In addition, in a mouse model
of chronic unpredictable stress (CMS)-induced autophagy, fluoxetine initiated mitophagy
by enhancing the translocation of Parkin from the cytoplasm to the mitochondria, which, in
turn, increased the expression of LC3 and autophagosome formation in the hippocampal
region of mice [150]. Microglia, as resident immune cells in the CNS, have an important
impact on the pathological process of depression in terms of regulating inflammation,
synaptic plasticity, and hippocampal neurogenesis [151,152]. Especially after microglia
activation, the increased inflammatory response can further damage neurons, so efficient
autophagy mechanisms are especially critical for maintaining normal cell function [153].
Fluoxetine can restore autophagy function, inhibiting the levels of inflammatory cytokines
in CUMS mice and CORT-activated microglia and normalizing the expression levels of
Beclin-1, p62, and LC3 [154]. Meanwhile, in primary mouse microglia, fluoxetine also
activated the autophagic pathway, as evidenced by elevated LC3 levels and increased
lysosome formation [155]. Similarly, astrocytes, the most abundant glial cells in the CNS,
have also been found to promote mitophagy in CMS mice and primary astrocytes, where
fluoxetine was found to remove damaged mitochondria from the cells [150]. Sertraline,
another SSRI, induces autophagy by decreasing intracellular ATP levels, thereby activating
the AMPK/mTOR pathway, and this effect significantly inhibits the microtubule-associated
protein tau [156]. A high-throughput screening study showed that sertraline promotes
the accumulation of PINK1 protein, which triggers mitophagy and reduces mitochondrial
membrane potential and ATP production, but its effect on the rate of oxygen consumption
is not significant, which provides a new idea for improvement in symptoms associated
with neurodegenerative diseases [157]. In addition, a variety of antidepressants such
as paroxetine and amitriptyline rely on autophagy mechanisms to modulate metabolic
imbalances and immune responses in patients or cellular models of depression, providing
new insights into the clinical efficacy of depression [158].
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Table 2. Effects of different types of antidepressant drugs on autophagy.

Drug Experimental Design Molecular Mechanism Significance Ref.

Natural products

Apigenin Male BALB/c mice (n = 10), CSD for 21 days, Hip
detected by WB

↑ LC3II/I, AMPK, ULK1 protein
↓p62, mTOR protein

↑ AMPK/ULK1/mTOR-mediated
autophagy [142]

Modified Xiaoyao San formula Male ICR mice (n = 10), LPS (1 mg/kg) for
2 weeks, PFC detected by WB and IF

↑ p62, ATG5 protein
↓ULK1, mTOR, PI3K, Akt protein
↑ LC3B-Iba-1 immunofluorescence

colocalization

↑ PI3K/Akt/mTOR-mediated
autophagy [143]

Resveratrol
Female C57BL/6 mice (n = 9), ovariectomized,
underwent estradiol benzoate treatment, Hip

detected by IF and WB

↑ LC3II/I, p62, ATG5, SIRT1 protein
↓p62 protein

↑ SIRT1 immunofluorescence
↑ SIRT1-mediated autophagy [146]

Antidepressant

Fluoxetine
Male SD rats (n = 8), bilateral olfactory

bulbectomy, Oral fluoxetine (10 mg/kg) for 30
days, Hip detected by WB

↑ LC3II, Beclin-1, AMPK, protein
↓p62, mTOR, ULK1 protein

↑ AMPK/mTOR-mediated
autophagy [67]

Fluoxetine

Male C57BL/6 mice (n = 6), CMS for 5 weeks, oral
fluoxetine (10 mg/kg) for 4 weeks, Hip detected
by TEM and WB; primary astrocytes exposed to
1.2 mM CORT, cultured with fluoxetine (10 µM)

for 24 h, cells detected by IF and WB

↑ Parkin protein
↓LC3II/I, p62, TOMM20 protein

↑ Autophagosome
↑ LC3–MitoTracker immunofluorescence

colocalization

↑ Mitophagy [150]

Fluoxetine
Primary microglia cells cultured with fluoxetine

(7.5 µM) and LPS (100 ng/mL) for 3 h, cells
detected by IF and WB

↑ LC3-II protein
↑ LC3 immunofluorescence ↑ Autophagy [155]

Sertraline
Sertraline treatment of nematode strains

expressing mCherry::LGG-1 and nematode strains
expressing mitochondria-targeted GFP

↑ PINK1 protein
↑ Autophagosome and mitochondrial

fragmentation
↑ PINK1-mediated mitophagy [157]

Note: CSD, chronic stress depression; WB, Western blot; IF, immunofluorescence; Hip, hippocampus; PFC, prefrontal cortex; TEM, transmission electron microscope; ↑, increase;
↓, decrease.
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6. Conclusions and Outlook
Depression, the most common mental disorder, affects the health of millions of people

worldwide. Although the pathogenesis of depression is intricate, extensive research in
recent years has found a strong association with the dysregulation of autophagy in the
development of depression [159]. Cytosolic autophagy is a cellular degradation process
that occurs in eukaryotic organisms and is essential for neuronal survival and function by
removing damaged mitochondria and proteins and maintaining intracellular homeosta-
sis [160]. Altered neuronal autophagy is thought to be involved in the pathogenesis of
Alzheimer’s disease and Parkinson’s disease, which has broad prospects for research into
and the clinical management of depression [161]. In addition, we reviewed the changes in
autophagy observed in depression, suggesting that targeting autophagy may be a promis-
ing therapeutic avenue.

Indeed, although some research progress has been made in the mechanism of au-
tophagy’s role in depression, many questions and challenges remain. Currently, the role
of autophagy in depression is dual, as it may either promote the development of depres-
sion through overactivation or lead to the development of depression through inhibition.
In addition, autophagy involves multiple signaling pathways and may intersect with
depression-related pathological processes. However, current studies mostly focus on the
single pathways of AMPK/mTOR and Akt/mTOR, and systematic analyses of multidi-
mensional regulatory networks are lacking. Future studies should further delve into the
specific mechanisms of autophagy’s role in depression, especially the interactions between
autophagy and the dysregulation of neuroinflammation, neurogenesis, the gut microbiota,
and the HPA axis. In addition, the development of novel antidepressant drugs based on
autophagy modulation is promising. For example, activating autophagy by modulating the
mTOR pathway or using natural products may provide new strategies for the treatment
of depression.
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