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Neural synchrony in the brain at rest is usually variable and intermittent, thus intervals

of predominantly synchronized activity are interrupted by intervals of desynchronized

activity. Prior studies suggested that this temporal structure of the weakly synchronous

activity might be functionally significant: many short desynchronizations may be

functionally different from few long desynchronizations even if the average synchrony level

is the same. In this study, we used computational neuroscience methods to investigate

the effects of spike-timing dependent plasticity (STDP) on the temporal patterns of

synchronization in a simple model. We employed a small network of conductance-based

model neurons that were connected via excitatory plastic synapses. The dynamics of this

network was subjected to the time-series analysis methods used in prior experimental

studies. We found that STDP could alter the synchronized dynamics in the network

in several ways, depending on the time scale that plasticity acts on. However, in

general, the action of STDP in the simple network considered here is to promote

dynamics with short desynchronizations (i.e., dynamics reminiscent of that observed in

experimental studies). Complex interplay of the cellular and synaptic dynamics may lead

to the activity-dependent adjustment of synaptic strength in such a way as to facilitate

experimentally observed short desynchronizations in the intermittently synchronized

neural activity.
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INTRODUCTION

Synchronization of neural activity in the brain is involved inmultiple neural functions (e.g., Buzsáki
and Draguhn, 2004; Fell and Axmacher, 2011; Fries, 2015; Harris and Gordon, 2015). Neural
synchronization that is either too strong or too weak may be one of the neurophysiological factors
behind symptoms of several disorders such as Parkinson’s disease and schizophrenia (Schnitzler
and Gross, 2005; Uhlhaas and Singer, 2006; Oswal et al., 2013; Pittman-Polletta et al., 2015). Thus,
the synchronization of neural activity is a ubiquitous phenomenon. In the rest state, the strength of
this synchronization is usually moderate. This means that the intervals of stronger synchrony are
interspersed with desynchronized intervals. This is probably not surprising given the plausibility of
the very general nature of the transient character of neural activity (Rabinovich et al., 2008).

Recent developments in time-series analysis allowed for the exploration of the temporal
patterning of synchronized activity in brain dynamics on very short time-scales. Studies of
different brain signals in different conditions and species suggest an apparently universal feature:
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synchronous activity is interrupted by very short (although
potentially numerous) intervals of desynchronized dynamics
(as opposed to few longer desynchronized episodes). This
phenomenon was observed in the synchrony between local field
potentials (LFPs) and spikes in different parts of the basal ganglia
and EEG in Parkinson’s disease (Park et al., 2010; Ratnadurai-
Giridharan et al., 2016; Ahn et al., 2018), in synchronization
between LFPs recorded in the prefrontal cortex and hippocampus
of normal and amphetamine-sensitized mice (Ahn et al., 2014),
in EEG of healthy human subjects (Ahn and Rubchinsky,
2013), and in EEG in autism spectrum disorders (Malaia et al.,
2020). The differences in the temporal patterning are correlated
with certain behavioral features but the prevalence of short
desynchronizations persisted nevertheless (Ahn et al., 2014, 2018;
Malaia et al., 2020). Therefore, short desynchronizations may be
functionally important and the properties and mechanisms of
desynchronization durations merit exploration.

These observations of the persistence of short
desynchronizations naturally suggest the question about
the biological mechanisms behind this phenomenon. The
modeling study (Ahn and Rubchinsky, 2017) suggested one
possible mechanism: the short desynchronization dynamics
was promoted by the substantial difference in the timescales of
spike-producing sodium and potassium currents. The relative
slowness of the potassium delayed-rectifier current may be one
of the reasons for why short desynchronizations are observed
in different neural systems. However, there may also be other
mechanisms. This paper is aimed at the exploration of one
potential mechanism related to synaptic plasticity. We use
computational modeling to explore how spike-timing dependent
plasticity (STDP) can affect the temporal patterning of neural
synchrony on short timescales.

STDP is a very common neural phenomenon with potentially
multiple effects on neural synchronization. In particular, a
synapse whose conductance is modulated by STDP can enhance
neural synchrony (Nowotny et al., 2003; Cassenaer and Laurent,
2007; Knoblauch et al., 2012; Ratnadurai-Giridharan et al.,
2015). We use a simple neural network of two conductance-
based model neurons coupled via excitatory synapses with
STDP and apply the same time-series analysis techniques as
were used in the prior experimental studies. While this model
network can hardly adequately model field potentials recorded
in some of the experimental studies mentioned above, it serves
as a simple model system exhibiting rich synchronization
dynamics, which is substantiallymodulated by synaptic plasticity.
Numerical analysis of this model shows that STDP may affect
not only the strength of synchronization, but also the temporal
patterning of synchronization, with an ability to facilitate the
short desynchronizations dynamics observed in experiments.

METHODS

Neuronal and Synaptic Modeling
We utilize the network model from Ahn and Rubchinsky (2017)
except that the synapses are plastic in this study. The model is
described below.

The neurons are modeled using a two-dimensional
conductance-based model of a Hodgkin-Huxley type that
is mathematically equivalent to the Morris-Lecar model
(Izhikevich, 2007; Ermentrout and Terman, 2010). The sodium
conductance is assumed to activate instantaneously and to have
no inactivation, while the potassium conductance is controlled
by its gating variable and so varies dynamically.

dv

dt
= −INa − IK − IL − Isyn + Iapp

dw

dt
=

w∞ (v) − w

τ (v)

Here v is the neuron’s transmembrane potential and w is the
gating variable for the potassium current. The synaptic current
between neurons, Isyn, is given below and Iapp is a constant input
current to each neuron to control the frequency of spiking. The
sodium, potassium, and leak currents are:

INa = gNam∞(v)(v− vNa)

IK = gKw(v− vK)

IL = gL(v− vL)

gNa, gK , and gL are the maximal conductances for the sodium,
potassium, and leak currents, respectively. The steady-state
values for the gating variables of the sodium and potassium
currents are:

m∞ (v) =
1

1+ exp
(

−2 v−vm1
vm2

)

w∞ (v) =
1

1+ exp
(

−2 v−vw1
β

)

The voltage-dependent activation time constant of the potassium
current is:

τ (v) =
1

ǫ
∗

2

exp
(

v−vw1
2β

)

+ exp
(

vw1−v
2β

)

All synapses are excitatory, and the synaptic current to neuron i is
given by:

Isyn,i = gsyn(vi − vsyn)
∑

j 6=i

sj
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Where gsyn is the maximal conductance of the synapse (i.e., the
synaptic strength), and sj is the synaptic variable for neuron j and
the summation is taken over all neurons that are connected to the
i-th neuron. The synaptic variable s is governed by:

ds

dt
= αs (1− s)H∞ (v− θv) − βss

H∞ is a sigmoidal function whose input is the presynaptic
neuronal voltage:

H∞ (v) =
1

1+ exp
(

− v
σs

)

The values of cellular and synaptic parameters are the same as
used in Ahn and Rubchinsky (2017): gNa = 1, gK = 3.1, gL = 0.5,
vNa = 1, vK = −0.7, vL = −0.4, vm1 = −0.01, vm2 = 0.15,
vw1 = 0.08, β = 0.145, Iapp = 0.045, ε1 = 0.02, ε2 = 1.2ε1,
vsyn = 0.5,∝s= 5, βs = 0.2, θv = 0.0, σs = 0.2.

STDP modeling follows (Zhigulin et al., 2003). If neuron i
spikes at time ti and neuron j spikes at time tj, then the strength
of the synapse from neuron i to neuron j is additively updated by
the amount

1gsyn = sgn(1t)Aexp
(

−k|1t|
)

where 1t = tj − ti. The synaptic conductance from neuron j
to neuron i is simultaneously updated by an equal, but opposite,
amount. While the additive update rule does not necessary need
to be symmetric (as it is here), there is experimental evidence
supporting the nature of the update, see for example (Zhang
et al., 1998; Feldman, 2012). We varied the values of our plastic
parameters, in particular A ∈ [0.0001, 0.01] , k ∈ [0.01, 50]. The
synaptic conductance is bounded below by zero.

Numerical Implementation
The system of differential equations was solved numerically in
Python using the built-in odeint function from the SciPy module
(v.1.4.1). This function implements either the Adams method
or a backward differentiation formula (BDF) method depending
on the stiffness of the problem. The solution was reported at
multiples of the time step dt = 0.1 (assuming the time units
are milliseconds), however the function uses an adaptive step size
and there was no lower bound on the length of the intermediate
time steps that may be used (similarly, there was no upper bound
restriction on the number of intermediate steps that were taken).
The absolute and relative tolerances for the method were kept
at the default value of 1.49 × 10−8. While the solution depends
on the initial conditions, its statistical properties (such as the
firing rate, synchrony pattern characteristics etc.) do not. The
system was solved on the time interval [0, 25000], the first 20%
of the time-series was removed from analysis. To implement
plasticity, the integration was paused after each time step and,
if necessary, the synaptic strength was updated. Specifically, the
voltage threshold to define an action potential was set at 0.2.

Synchronization Analysis
The time-series analysis of synchronized dynamics in the
network follows that of Ahn et al. (2011) and Ahn and
Rubchinsky (2017) and is similar to the analysis of the temporal
patterns of neural synchrony in the experimental studies
mentioned in the Introduction. We will briefly describe this
analysis here.

The phase, ϕ (t), of a neuron is defined as

ϕ (t) = tan−1

(

v (t) − v̂

w (t) − ŵ

)

where (ŵ, v̂) is a point selected inside the neuron’s limit cycle in
the (w, v) – plane. The synchronization strength is computed as

γ =

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

exp
(

i1ϕ
(

tj
))

∣

∣

∣

∣

∣

∣

2

where 1ϕ
(

tj
)

= ϕ1

(

tj
)

− ϕ2(tj) is the difference of the phases of
neurons 1 and 2 at time tj. N is the number of data points. The
value of γ ranges from 0 to 1, which represent a complete lack of
synchrony and perfect phase synchrony, respectively.

If there is some degree of phase locking present, then there is
a synchronized state, i.e., a preferred value of the phase difference
1ϕ. For each cycle of oscillation one can check if the actual
phase difference is close to this preferred value or not. Note that
the index γ only represents an average value of phase-locking
over the interval [t1, tN], however to describe the patterning
of synchrony one needs to look at the transitions to and from
a synchronized state on much shorter timescales. This is done
as follows.

When ϕ1 increases past zero, say at time tj,i, then ϕ2

(

tj,i
)

is

recorded. This generates a sequence of numbers
{

ϕ2

(

tj,i
)}M

i=1
.

Due to the presence of some synchrony, there is a clustering
about some phase value, say ϕ0. This is taken as the preferred
phase value, and if ϕ2

(

tj,i
)

= ϕi, for 1 ≤ i ≤ M, differs from it
by more than π

2 then the neurons are desynchronized, otherwise
they are synchronized. The choice of π

2 is not only convenient (it
partitions the (ϕi,ϕi+1) space into quadrants) but was also used
in the experimental studies described in the section Introduction.

The length of a desynchronization event is defined as
the number of consecutive times the system spends in
the desynchronized states. In other words, the length of
desynchronization is the length of the time interval the system
is away from the synchronized state (as defined above); this
length is measured not in the absolute time units, but in the
number of cycles of oscillations (in line with the experimental
studies mentioned in the Introduction). The lengths of all
desynchronization events are recorded and the distribution of
durations is reconstructed. The mode of this distribution is used
as a characteristic of the temporal patterning of synchronized
dynamics. For later reference, a “mode n” system means that
the mode of all lengths of desynchronization events for that
particular system is n. Thus, a mode 1 system (n = 1
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FIGURE 1 | Illustration of dynamics with different desynchronization durations (mode 1 and mode 2 dynamics). (A–D) depict voltage traces of two partially

synchronized neurons (solid and dashed lines). When the neurons exhibit the preferred time difference the voltage traces are thin lines, indicating proximity to a

synchronized state. However, when the phase difference is not close to the preferred one, the lines are thick to indicate the desynchronizations (as defined above).

(A,C) illustrate short desynchronizations (lasting one cycle of oscillations), (B,D) show longer desynchronizations (lasting two cycles of oscillations). (A,B) are artificially

generated examples, while (C,D) present examples generated by the network considered in the section below. In a longer time-series, the desynchronizations of

different durations may coexist, however, usually one duration will prevail. The distributions showing relative frequency of different desynchronizations for the dynamics

with predominantly short desynchronizations (like A,C) and with longer desynchronizations (like B,D) are presented in (E,F), respectively. The mode of the distribution

in (E) is 1, thus this is mode 1 dynamics; the mode of the distribution in (F) is 2, thus this is mode 2 dynamics.
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case) is the system with synchronized dynamics interrupted by
predominantly short desynchronization intervals. The larger n is,
the more prominent the tendency for long desynchronizations
is. This does not necessarily affect the overall synchrony
strength, because it depends not only on the duration of
desynchronizations, but also on their number. The mode is used
to characterize the durations because experimental studies used
the mode for this purpose.

An illustration of different desynchronization durations and
dynamics with different modes of desynchronizations is provided
in Figure 1. Voltages and distributions of desynchronization
durations for mode 1 dynamics are in the left column, the
ones for mode 2 dynamics are in the right column. The
synchronization is not perfect and synchronized dynamics
(phase difference is close to the preferred one) are interspersed
with desynchronized intervals. Note that the preferred phase
difference is not necessarily zero so that the zero lag state is not
necessarily a synchronized state.

Finally, we would like to reiterate that in this approach the
time is measured in terms of cycles of oscillations of the neural
activity, not in absolute time units. This allows one to compare
the properties of variability of synchrony of brain rhythms with
different frequencies.

The phase-locking strength index γ was observed to be usually
about 0.2–0.3 in this study (even after STDP adjustments). These
are moderate values, comparable with experimental results (in
particular with the results reported in the studies references in the
section Introduction). With this moderate synchrony strength,
synchronization effects are hard to see by the naked eye, however,
the quantitative time-series analysis techniques are able to
quantify the synchronized dynamics and its properties including
the temporal patterning of weakly synchronous dynamics.

RESULTS

Building on Ahn and Rubchinsky (2017), we used a simple
network consisting of two neurons connected via excitatory
synapses (see Figure 2); however the synapses are now plastic.
The two neurons have a slightly different firing rate, i.e., their
respective ε values differ slightly (see the list of parameter values
in section Methods). The initial value of the maximal synaptic
conductance is gsyn = 0.005, so that the coupling is weak.
This heterogeneity and weak synaptic coupling ensure that the
synchrony between the two neurons is relatively weak.

The dynamics of the non-plastic variant of this system was
studied in Ahn and Rubchinsky (2017). Based on that study,
we vary values of three parameters of the potassium current in
such a way as to change the dynamics of the non-plastic network
from exhibiting predominantly short desynchronizations (i.e.,
those observed in experiments) to one with a large mode
of desynchronization durations. These parameters are ε [the
reciprocal of the peak value of the activation time-constant
τ (v)], β [which characterizes the widths of the activation time-
constant τ (v) and the steady-state function w∞(v)], and vw1 [a
horizontal translation in w∞(v) and τ (v) which changes their
values over the specific voltage range]. Changes in all these

FIGURE 2 | The schematics of the network: two neurons coupled with

mutually excitatory synapses.

FIGURE 3 | An example of typical temporal evolution of synaptic weights in a

network with plasticity (ε = 0.15, A = 0.009, k = 0.3).

parameters effectively change the activation time-constant τ (v)
to either large or small, which delays or accelerates the activation
of potassium current, respectively. Consequently, the lengths of
the desynchronization events shift to predominantly short or
long. Next, we explore how the introduction of plasticity affects
the durations of desynchronization events. Hence our parameter
space is two-dimensional for each case considered, and consists
only of the plasticity parameters A and k.

In most of the simulations the synaptic weights do not reach
a steady state, but rather exhibit fairly stationary variations, as
illustrated in Figure 3.

Variation of ε
Let us mention here that ε ∝ 1

τ
and the maximum value of

τ (v) is 1
ε
. Hence as ε is increased, the value of τ (v) is decreased

across its entire domain as it is a unimodal function. This in turn
accelerates the activation of potassium current because dw

dt
∝

1
τ (v)

. From Ahn and Rubchinsky (2017) we know that smaller

values of ε promote shorter desynchronization events.
For ε = 0.05, the non-plastic system is mode 1. This

means the synchronized dynamics has the following property.
As the system is exhibiting partially synchronized dynamics,
it will be either close in the synchronized state or away from
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synchronized state, the latter is termed desynchronization. The
desynchronized interval length (measured in the number of
cycles of oscillations) varies in time. We obtain the distribution
of the desynchronization durations from numerical simulation
and find the mode of this distribution. If this mode equals
one cycle of oscillation, then the system is mode 1 (see section
Methods for a more detailed explanation). Mode 1 means the
desynchronizations are predominantly short.

Now the non-plastic system is changed to include STDP. The
changes in the temporal patterning of synchronization dynamics
are illustrated in Figure 4. Figure 4A is a diagram of the mode
of the desynchronization durations in the space of plasticity
parameters, A and k. The plasticity effects are negligible across
the top (very large k implies a quick decay of the change in
synaptic strength), and especially in the upper left corner (large
k and a small amplitude A). In these areas the values of the
plasticity parameters are such that the magnitude of the update,
1gsyn, is negligible (the average update is usually in the interval
[0.0, 10−5], on the larger end this corresponds to about 0.2% of
the initial value of gsyn). Hence, the plastic system continues to

be mode 1 in these areas.
The rest of the parameter space, in particular the central

region, displays a high proportion of mode 1 dynamics as well.
In these areas plasticity is not negligible, as the synaptic strength
can vary to a substantial degree. However, even in the presence of
STDP, mode 1 dynamics persist. For the diagram in Figure 4A,
about 85% of the parameter space points correspond to mode
1 systems.

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 4B–D. Plasticity
effects increase from left to right. The distribution of durations
changes: at a weak level of plasticity the durations are exclusively
length one, while at a stronger level of plasticity some longer
durations are observed. Yet the preponderance of length one
desynchronization durations is preserved.

Now let us look at the effect of plasticity on the dynamics in
systems with a mode larger than one. We consider ε = 0.15.
The non-plastic system is mode 2 (the synchronization index
γ is virtually unchanged from that of ε = 0.05, although the
frequency of oscillations increases by several times, Ahn and
Rubchinsky, 2017). Mode 2 means the desynchronizations tend
to be longer than those of the mode 1 case.

Figure 5 shows the effect of STDP on the system that is mode 2
in the non-plastic case. As explained earlier, the plasticity effects
are negligible across the top of Figure 5A, and especially in the
upper left corner. We note that this region of the parameter space
exhibits mode 2 dynamics (as expected). However, throughout
the entire parameter space it is seen that a majority of parameter
values correspond to mode 1 systems (the large central region
in Figure 5A). Overall, about 20% of the parameter space points
stay mode 2, while over 65% exhibit mode 1 dynamics (and less
than 15% correspond to larger than mode 2 systems).

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 5B–D. Plasticity
effects increase from left to right. Here we see that the
introduction of weak plasticity can be sufficient to shift the

system from mode 2 to mode 1 (Figure 5C). This means
desynchronizations tend to become shorter in the plastic case. At
stronger levels of plasticity (Figure 5D), the distribution widens,
however the vast majority of desynchronization events remain
length one.

Overall, we have seen that mode 1 dynamics are generally
preserved when STDP is introduced to a non-plastic mode 1
system. When STDP is introduced to a non-plastic mode 2
system, the dynamics largely shifts from mode 2 to mode 1. The
same was found with other non-plastic systems exhibiting higher
modes: the introduction of STDP generally shifts the mode of the
system down to one. Finally, we would like to note that there
are several points in the parameter space (see Figures 4A, 5A)
that have very large modes. For example, in Figure 4A when
A = 0.0006, k = 0.01, the resulting system is mode 38 (i.e., most
common desynchronizations are very long). Generally, these
cases have a wide distribution of desynchronization durations.
Therefore, while these systems have a large mode, the mode does
not present a strong tendency in the distribution. Nevertheless,
these situations are relatively rarely found.

Variation of β
The parameter β changes the widths of the voltage-dependent
time-constant of activation τ (v) and the width of the steady-state
activation functionw∞(v) for potassium current. In particular, as
β is decreased, the slope at the half-height of w∞(v) is increased,
and this decreases the width of the step (w∞(v) is a sigmoidal
function). Similarly, for τ (v), a decrease in β decreases the width
of the function around the peak. This causes an advancement in
the activation of the potassium current.

A larger value of β promotes shorter desynchronization
durations (Ahn and Rubchinsky, 2017). For β = 0.124, the non-
plastic system is mode 1. The effect of STDP on this system is
presented in Figure 6. Across the top and in the upper left corner
of Figure 6A we see that virtually every point corresponds to a
mode 1 system, as expected. Indeed, a substantial portion of the
entire parameter space displays mode 1 dynamics; about 80% of
the parameter space studied.

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 6B–D. Plasticity
effects increase from left to right. The introduction of plasticity
has a minimal effect on the distribution; there is very little change
visibly. Indeed, the proportion of desynchronization durations of
length one increases with plasticity.

Decreasing β increases the mode of a system. If β = 0.091, the
non-plastic system is mode 2. With the introduction of very weak
plasticity (across the top and the upper left corner of Figure 7A)
we see that the dynamics are relatively unchanged, i.e., the mode
of most systems remains two. However, if plasticity is not very
weak, the dynamics shift to mode 1 in a significant portion of
the parameter space. The effect is not as substantial as in the
previous section, but about 35% of parameter space becomes
mode 1 (about 45% remainsmode 2, i.e., themode is unchanged).

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 7B–D. Plasticity
effects increase from left to right. We see that the vast majority
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FIGURE 4 | A system exhibiting mode 1 dynamics in the non-plastic case is subjected to plasticity (ε = 0.05). (A) Mode is colored via gray scale, see legend on the

right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update, k, is varied

along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without plasticity. (C)

The system with very weak plasticity: A = 0.0047, k = 20.0. (D) The system with moderate plasticity: A = 0.0047, k = 0.05.

FIGURE 5 | A system exhibiting mode 2 dynamics in the non-plastic case is subjected to plasticity (ε = 0.15). (A) Mode is colored via gray scale, see legend on the

right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update, k, is varied

along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without plasticity. (C)

The system with very weak plasticity: A = 0.0047, k = 20.0. (D) The system with moderate plasticity: A = 0.0047, k = 0.7.
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FIGURE 6 | A system exhibiting mode 1 dynamics in the non-plastic case is subjected to plasticity (β = 0.124). (A) Mode is colored via gray scale, see legend on the

right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update, k, is varied

along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without plasticity. (C)

The system with very weak plasticity: A = 0.0052, k = 20.0. (D) The system with moderate plasticity: A = 0.0052, k = 0.7.

FIGURE 7 | A system exhibiting mode 2 dynamics in the non-plastic case is subjected to plasticity (β = 0.091). (A) Mode is colored via gray scale, see legend on the

right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update, k, is varied

along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without plasticity. (C)

The system with very weak plasticity: A = 0.0047, k = 20.0. (D) The system with moderate plasticity: A = 0.0047, k = 0.7.
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of desynchronization durations become length one as plasticity
becomes stronger.

Variation of vw1
The parameter vw1 affects a horizontal translation in w∞(v)
and τ (v). Increasing vw1 shifts both curves to the right, i.e.,
toward higher voltages; this results in a potassium current that
activates faster.

Smaller values of vw1 result in short desynchronization
durations (Ahn and Rubchinsky, 2017). For vw1 = 0.102, the
non-plastic system ismode 1. The effect of STDP on this system is
presented in Figure 8. We see that mode 1 dynamics is observed
not only for the weak plasticity region (top and upper left corner
of Figure 8A), but for most of the parameter space (about 85% of
the parameter space studied).

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 8B–D. Plasticity
effects increase from left to right. We see that as plasticity
increases to a higher level, the prevalence ofmode 1 is unchanged.

Varying vw1 to larger values leads to shorter desynchronization
durations becoming less prevalent. For vw1 = 0.161, the non-
plastic system is mode 2. The effect of STDP is presented in
Figure 9. When plasticity is added we see that the dynamics
are similar to the non-plastic case when plasticity is weak
enough (top and upper left corner of Figure 9A). However, when
the plasticity effects are moderate, the system exhibits mode
1 dynamics frequently (central region of Figure 9A). For the
domain of parameter space studied, the majority of points (about
45%) correspond to mode 1 systems, the rest are either mode 2
(about 40%) or higher.

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 9B–D. Plasticity
effects increase from left to right. We see that the mode
of the system shifts down from two to one as plasticity
becomes stronger.

Variation of βw and βτ
Varying either ε, β , or vw1 may affect not only the durations
of the desynchronizations, but also synchronization strength
and the frequency of activity in the system. To control
desynchronization durations while keeping both spiking
frequency and synchronization strength near constant in a non-
plastic system, one can consider the parameter β and separate
it into two independent parameters, βτ and βw. As a result, the
lengths of desynchronization events are almost independent of
the frequency and synchrony strength (Ahn and Rubchinsky,
2017).

Smaller βw and larger βτ result in shorter desynchronization
durations (Ahn and Rubchinsky, 2017). For βw = 0.098, βτ =

0.079, the non-plastic system is mode 1. Figure 10 illustrates the
impact of STDP on this system.Mode 1 dynamics is observed not
only for the weak plasticity region (top and upper left corner of
Figure 10A), but for the majority of the parameter space (about
60% of the parameter space studied).

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 10B–D. Plasticity
effects increase from left to right. We see that as plasticity

progresses to a moderate level, the proportion of short
desynchronizations stays largely unchanged. In particular, the
system is still mode 1.

If βw = 0.115, βτ = 0.071, the non-plastic system is
mode 2. Figure 11 illustrates the impact of STDP on this system.
With the addition of plasticity, we see that the system is largely
mode 2 if the plasticity is weak (top and upper left corner of
Figure 11A). However, stronger plasticity shifts the dynamics to
mode 1 for a substantial portion of the parameter space (about
55% of points considered).

To illustrate the effect of plasticity on a distribution of
desynchronization durations, refer to Figures 11B–D. Plasticity
effects increase from left to right. We see that the distribution
is largely unchanged for very weak plasticity, but as plasticity
increases, the system becomes mode 1.

DISCUSSION

This study considered intermittent synchronous dynamics
in a small network of simple conductance-based model
neurons. While strong synaptic strength in general can
promote synchronization between neurons, moderate values
of synaptic coupling lead to dynamics with relatively weak
synchronization, and where the episodes of synchronization
are interspersed with episodes of desynchronized dynamics.
Intermittent synchronization in the presence of moderate (and
fixed in time) coupling is quite typical for coupled oscillatory
systems (Pikovsky et al., 2001). In other words, temporal
variability of correlations is observed due to the relative weakness
of a fixed coupling strength. The temporal signatures of this
variability have been previously modeled in Ahn and Rubchinsky
(2017) and were in good agreement with the analysis of the
temporal variability observed in experimental data (see section
Introduction and references therein).

However, many actual synapses are plastic and thus
the synaptic coupling between neurons experiences temporal
variations. This variation may contribute to the temporal
variability of intermittent synchrony as well. This study
considered how one common type of neural plasticity—
spike-timing dependent plasticity—might affect this temporal
variability. Experimental data ubiquitously points to the
prevalence of short desynchronization dynamics in neural
synchrony. This kind of dynamics is naturally generated in
synaptically coupled conductance-based model neurons. We
showed here that the introduction of STDP under quite
general conditions preserves this realistic fine temporal structure
of intermittent neural synchrony. Moreover, when the non-
plastic system parameters are selected in such a way as
to predominantly express longer desynchronizations, STDP
changes the intermittently synchronous dynamics back to one
with short desynchronizations. This was observed while varying
several different parameters, so that STDP may reverse dynamics
from long to short desynchronizations regardless of how the
desynchronizations were obtained in the non-plastic system.

The overall dependence of the dynamics on the characteristics
of plasticity is quite complicated. Numerical simulations
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FIGURE 8 | A system exhibiting mode 1 dynamics in the non-plastic case is subjected to plasticity (vw1 = 0.102). (A) Mode is colored via gray scale, see legend on

the right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update, k, is

varied along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without

plasticity. (C) The system with very weak plasticity: A = 0.0047, k = 20.0. (D) The system with moderate plasticity: A = 0.0047, k = 0.7.

FIGURE 9 | A system exhibiting mode 2 dynamics in the non-plastic case is subjected to plasticity (vw1 = 0.161). (A) Mode is colored via gray scale, see legend on

the right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update, k, is

varied along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without

plasticity. (C) The system with very weak plasticity: A = 0.0047, k = 20.0. (D) The system with moderate plasticity: A = 0.0054, k = 1.0.
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FIGURE 10 | A system exhibiting mode 1 dynamics in the non-plastic case is subjected to plasticity (βw = 0.098, βτ = 0.079). (A) Mode is colored via gray scale, see

legend on the right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update,

k, is varied along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without

plasticity. (C) The system with very weak plasticity: A = 0.0049, k = 50.0. (D) The system with moderate plasticity: A = 0.0052, k = 0.7.

FIGURE 11 | A system exhibiting mode 2 dynamics in the non-plastic case is subjected to plasticity (βw = 0.115, βτ = 0.071). (A) Mode is colored via gray scale, see

legend on the right of the diagram. The amplitude of the synaptic update, A, is varied along the horizontal axis. The reciprocal of the time-scale of the synaptic update,

k, is varied along the vertical axis. (B–D) show the changes in the histogram of desynchronization durations as plasticity becomes stronger. (B) The system without

plasticity. (C) The system with very weak plasticity: A = 0.0049, k = 50.0. (D) The system with moderate plasticity: A = 0.0054, k = 0.7.
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indicate that some plasticity parameter values may promote
very unrealistic synchronized dynamics. However, under the
conditions considered, the short desynchronization dynamics
were obtained in large regions of the parameter space. This was
regardless of whether the corresponding non-plastic system was
mode 1, or had a higher mode.

The results of these numerical simulations suggest
that STDP may be one of the contributing factors behind
experimentally observed short desynchronization dynamics.
Moreover, STDP and cellular mechanisms proposed in Ahn
and Rubchinsky (2017) may act cooperatively in promoting
short desynchronizations.

The results discussed here were obtained in the framework
of relatively simple modeling. The actual neuronal synchrony
is, of course, a much more complicated phenomenon than the
model considered here, and there were multiple factors not
included in the model. For example, inhibitory synapses (e.g.,
see Nowotny et al., 2008). The experimental observations of
short desynchronizations were mostly done with LFP and EEG
signals, and the simple network considered here is too simple to
adequately model these signals. However, the similarity between
experimentally observed intermittent neural synchrony and the
temporal patterning of synchrony observed in our study with a
relatively simple model with STDP may speak to the very general
nature of this phenomenon.

The variability of the dynamics on short time-scales may be
a functionally beneficial phenomenon. Short desynchronization

dynamics (which is essentially a high degree of variability of
synchrony on very short time-scales) have been conjectured to
be conducive for quick and efficient formation and break-up of
neural assemblies (Ahn and Rubchinsky, 2013, 2017). As was
noted in these studies, the ease of formation and disappearance
of synchronized states at rest may suggest that a transient
synchronized assembly may be easily formed whenever needed
to facilitate a particular function. The results of this study suggest
that the temporal variability of synaptic strength due to STDP
may potentially further facilitate this phenomenon.
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