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812 19 Bratislava, Slovakia; milan.pavuk@stuba.sk

* Correspondence: martin.weis@stuba.sk (M.W.); martin.putala@uniba.sk (M.P.); Tel.: +421-910942310 (M.W.);
+421-2-90149323 (M.P.)

Abstract: A series of bithienyl-terminated surfactants with various alkyl chain lengths (from C8
to C13) and phosphono or chlorodimethylsilyl anchoring groups were synthesized by palladium-
catalyzed hydrophosphonation, or platinum-catalyzed hydrosilylation as a key step. Surfactants
were tested in pentacene or α-sexithiophene-based organic field-effect transistors (OFETs) for the
modification of the dielectric surface. The studied surfactants increased the effective mobility of
the α-sexithiophene-based device by up to one order of magnitude. The length of alkyl chain
showed to be significant for the pentacene-based device, as the effective mobility only increased
in the case of dielectric modification with bithienylundecylphosphonic acid. AFM allowed a bet-
ter understanding of the morphology of semiconductors on bare SiO2 and surfaces treated with
bithienylundecylphosphonic acid.

Keywords: bithienyl; chlorodimethylsilane; OFET; pentacene; phosphonic acid; self-assembled
monolayer; sexithiophene; surface modification

1. Introduction

In the field of organic electronics, increased attention is paid to organic semiconductor
interfaces. Organic semiconducting materials (OS) are used as the active layer in many
electronic applications, such as organic-field effect transistors (OFET), organic photovoltaic
cells, organic light-emitting diodes or memory devices [1].

An organic field-effect transistor (OFET) efficiency is given mainly by the first two
layers of the organic semiconductor at the dielectric surface where the charge transfer takes
place [2]. Therefore, the quality of the interface between OS and insulator has a crucial
role [3–6]. It should be mentioned here that this complex topic includes the impact of vari-
ous effects. Charge carriers trapping at the organic semiconductor/gate dielectric interface
due to the polaron nature of the dielectric surface, the presence of defects and chemical
groups of the dielectric surface, and structural defects in the organic semiconductor, or
the presence of adsorbed water molecules. In detail, the random orientation of the dipole
moments of the gate dielectric surface leads to a significant broadening of the density of
states in an organic semiconductor (dipolar electrostatic disorder). Gate dielectric surface
with electroactive sites (e.g., hydroxy groups) acts as traps and suppress electron transport.
Water molecules adsorbed on the gate dielectric surface also induce charge trapping in
p-type organic semiconductors and cause voltage bias-stress instability.

Improvement in the electrical response can be achieved [1,7–9] (increasing mobil-
ity or reducing the threshold voltage) by modification of electronic and morphological
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properties of the interface, such as surface functionalization using specially designed or-
ganic molecules-surfactants forming a self-assembled monolayer (SAM, Figure 1a) [10].
The surfactant can also improve the wettability of the surface, providing new function-
ality to the substrate and can affect the structural order of organic semiconductor by
directing the growth of semiconductor to obtain the suitable orientation for high FET
performance [11–16].
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Figure 1. (a) Schematic view of the organic field-effect transistors (OFET) using the active layer of OS deposited on a
SAM-modified gate insulator layer; (b) proposed modification of SiO2 surface by SAM formation with phosphonic acid and
silane anchoring group.

The typical structure of such surfactants consists of α,ω-functionalized alkanes with
an anchoring group at one end and terminal group at the other end (Figure 1b). The
anchoring group is responsible for binding to the dielectric surface. The aliphatic chain
contributes to the self-assembling process through interchain van der Waals interactions.
The role of the terminal group is either to provide stronger interaction to the OS [9] or to
act as an organic semiconductor in monolayer OFET devices [17].

While developing organic semiconductors with bithienyl substituted naphthalenes
in our research group [18–20] we found problems with their deposition on the substrate
during application in OFET due to low surface wettability, even in the case of the surface
processed with commercially available octadecylsilyl trichloride (OTCS). Therefore, we
designed surfactants containing bithienyl terminal groups to provide π–π interaction with
our semiconducting materials. For interface modification on SiO2, SAMs with silane
and phosphonic acid anchoring groups have been widely studied [9,17,21,22]. Since
several types of silane anchoring groups, such as tri-, di-, and monochlorosilanes, or
trimetoxysilanes, are used in SAM materials and are differing in reactivity, we have chosen
the medium moisture-sensitive and medium reactive monochlorosilane group. Phosphono
anchoring group was chosen as moisture insensitive, which significantly simplifies their
storage and working conditions and does not undergo self-condensation. The designed
surfactants were aimed to be tested with two typical p-type organic semiconductors—
pentacene or sexithiophene in OFET.

The chemical structure of the designed derivatives for the SAM formation is displayed
in Figure 2. Each derivative consists of bithienyl terminal group, C8 to C13 alkyl linker and
phosphono or chlorodimethylsilyl anchoring group. The bithienyl group should provide
π–π interaction between neighboring molecules in both steps for possible guidance in
controlled surface modification and later on for controlled self-assembling of selected
semiconducting material on the modified surface. Due to the observed significant odd-
even effect of aliphatic linker lengths on molecular packing of SAM [23,24], we selected
structures with both even and odd numbers of carbon atoms in the alkyl chain.
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Figure 2. Chemical structures of designed derivatives with phosphono and chlorodimethylsilyl
anchoring groups.

2. Materials and Methods
2.1. Materials

Solvents were purified by standard methods before use [25]. The 4,4,5,5-tetramethyl-
1,3,2-dioxaphospholane 2-oxide was purchased from TCI Chemicals (TCI Europe N. V.-
Tokyo Chemical Industry, Brussels, Belgium). All bromoalkenes, 1,8-dibromooctane,
bithiophene, and tetrakis(triphenylphosphine)palladium (0) (Pd(PPh3)4) were purchased
from Fluorochem. n-Butyllithium (1.6 M solution in hexane), Karstedt′s catalyst and
chlorodimethylsilane were purchased from Sigma Aldrich (Merck, KGaA, Darmstadt,
Germany), and bromotrimethylsilane was purchased from Acros Organics (Thermo Fisher
Scientific, Geel, Belgium). All chemicals were used as purchased without further purifi-
cation. Thin-layer chromatography was performed on Merck TLC plates of silica gel 60,
F-254, visualization under UV 254 nm and 365 nm, for column chromatography was used
silica gel 60 (Merck).

2.2. Experiment
2.2.1. Synthesis ofω-Bromoalk-1-enes (1e–f)

To a combined solution of LiCl (254 mg, 6 mmol, 12 mL THF) and CuCl2 (403 mg,
3 mmol, 12 mL THF), which was stirred overnight, 1,8-dibromooctane (4.08 g, 15 mmol)
was added in one portion. The reaction mixture was cooled to 0 ◦C, and but-3-en-1-
ylmagnesium bromide (2.43 g, 18 mmol, 10 mL of 2M solution in Et2O) was added
through a cannula. After addition, the mixture was stirred overnight at room temper-
ature. Then, 1 M HCl was added, and the mixture was stirred for another 30 min. The
aqueous layer was extracted with diethyl ether. Combined organic layers were washed
with brine, dried over Na2SO4, and the solvent was evaporated. The crude mixture was
separated by flash chromatography (SiO2, hexanes). Further characterizations are reported
in Supplementary Materials.

2.2.2. General Procedure for Preparation of 5-(Alk-ω-en-1-yl)-2,2′-bithiophenes (2a–f)

To a solution of bithiophene (39.00 g, 234 mmol) in dry THF (20 mL), n-BuLi (27 mL,
43 mmol) was added dropwise at 0 ◦C. The reaction mixture was allowed to warm to room
temperature and stirred for an additional 20 min. Then, corresponding ω-bromoalkene
(4.9 mL, 29 mmol) was added, and the mixture was refluxed overnight. After cooling to
room temperature, water (40 mL) was added, and the organic phase was separated. The
aqueous phase was extracted with dichloromethane (3 × 40 mL). The combined organic
phases were dried over Na2SO4, filtered through SiO2 pad and after the evaporation of the
solvent, the product was purified by vacuum distillation. Further characterizations are
reported in Supplementary Materials.

2.2.3. General Procedure for 2-[ω-(2,2′-Bithiophen-5-yl)alkyl]dioxaphospholane
2-oxides (3a–f)

Corresponding 5-(alk-ω-enyl)-2,2′-bithiophene (500 mg, 1.8 mmol), 4,4,5,5-tetramethyl-
1,3,2-dioxaphospholane 2-oxide (300 mg, 1.8 mmol.) and Pd(PPh3)4 (106 mg, 0.9 mmol,
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0.05 equiv.) were dissolved in dry toluene (6 mL) in Schlenk flask. The mixture was heated
at 110 ◦C for 12 h. The solvent was removed under vacuum, and the crude product was
purified by chromatography on silica gel with hexanes and ethyl acetate (0→100% EtOAc)
as eluents. Further characterizations are reported in Supplementary Materials.

2.2.4. General Synthesis ofω-(2,2′-Bithiophen-5-yl)alkylphosphonic Acids TTCnP

Corresponding 2-[ω-(2,2′-bithiophen-5-yl)alkyl]-4,4,5,5-tetramethyldioxaphospho-lane
2-oxide (500 mg, 1.1 mmol) was dissolved in dry dichloromethane (5 mL) and BrSiMe3
(450 mg, 2.9 mmol, 2.5 equiv.) was added dropwise at 0 ◦C. The reaction mixture was
stirred at 40 ◦C for 3 h, then allowed to stir at room temperature overnight. The solvent
was removed, and the remaining solid was dissolved in methanol, and the product was
precipitated with pentane. The solid was filtered and washed with pentane. Further
characterizations are reported in Supplementary Materials.

2.2.5. General Synthesis ofω-(2,2′-Bithiophen-5-yl)alkylchlorodimethylsilanes TTCnSi

To corresponding 5-(alk-ω-enyl)-2,2′-bithiophene (5.43 mmol) in dry toluene (100 mL),
chlorodimethylsilane (13.7 mL, 11.80 g, 108 mmol, 20 equiv.) and Karstedt’s catalyst
(108 µL, 2% Pt in xylene, 0.16 mmol, 0.03 equiv.) were added at 32 ◦C. The reaction mixture
was stirred at 35 ◦C overnight. The unreacted chlorodimethylsilane and solvent were
removed by distillation, and the greenish residue was purified by bulb-to-bulb distilla-
tion under reduced pressure (203 ◦C/0.4 Torr). Further characterizations are reported in
Supplementary Materials.

2.3. Device Fabrication

The organic field-effect (OFET) devices have been fabricated in top-contact geometry.
Heavily doped silicon wafers (boron-doped, 1–10 Ω·cm) were used as the substrates, where
the thermally grown oxide (SiO2) of 110 nm has been used as a gate insulator layer with
a capacitance per unit of area of 33 nF/cm2. Prior to the organic film deposition, the
substrates were sonicated in isopropyl alcohol and pure water, consecutively, and then
cleaned up by UV/ozone treatment. SAM materials were dissolved in methanol with a
concentration of 0.5 wt.%. Silicon substrates were immersed in SAM solution for 48 h in an
inert atmosphere (nitrogen). Organic semiconductors pentacene or α-sexithiophene (both
from Merck) were deposited onto bare and SAM-modified substrates using SPECTROS
100 deposition system (Kurt J. Lesker, East Sussex, UK) by thermal evaporation from a
Knudsen cell (Al2O3 crucible) in a vacuum better than 10−4 Pa. The deposition rate was
fixed at 3 nm/min and monitored by a quartz crystal microbalance (Kurt J. Lesker, East
Sussex, UK). Copper electrodes were subsequently deposited by thermal evaporation
in a vacuum through the shadow mask. The channel length varied from 50 to 200 µm,
whereas the channel width was 2 mm for all the fabricated devices. All output and transfer
characteristics of fabricated OFET devices of the structure shown in Figure 1 were measured
in an ambient atmosphere.

2.4. Characterization

Melting points were determined with a Melting Point M-656 Büchi (BÜCHI Labortech-
nik AG, Flawil, Switzerland) apparatus and were uncorrected. IR spectra were determined
with a Agilent Cary 630 FTIR Spectrometer (Agilent Technologies, Santa Clara, CA, USA).
NMR spectra were recorded on the Varian VNMRS (Agilent Technologies Inc., Palo Alto,
CA, USA) (600 MHz for 1H, 151 MHz for 13C, and 243 MHz for 31P). Chemical shifts are
reported in δ ppm referenced to an internal SiMe4 standard for 1H NMR, and all measure-
ments were performed at 20 ◦C if not stated differently. Compounds were measured in
chloroform-d1 (CDCl3) or dimethyl sulfoxide-d6 (DMSO) The following abbreviations are
used: s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = mul-
tiplet. HRMS was determined with an Orbitrap Velos Pro (Thermo Fisher Scientific Inc.,
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Waltham, MS, USA). The spectral characteristics of synthesized compounds are reported in
Supplementary Materials.

The fabricated devices were characterized by standard steady-state current-voltage
measurement using the 4155 C Semiconductor Parameter Analyzer (Agilent Technologies,
CA, USA) to determine threshold voltages and effective mobilities.

Surface morphology study of organic films was performed with the Dimension Edge
Atomic Force Microscope (AFM) system (Veeco Instruments, CA, USA) operating in the
tapping mode. The AFM probe (model FESPA-V2 from Bruker, MA, USA) with a soft
cantilever (nominal spring constant, k = 2.8 N/m) was used to measure the film surface.
The nominal tip radius was8 nm. The AFM images have been captured over the area of
1.2 × 1.2 µm2 and 2.4 × 2.4 µm2 for α-sexithiophene or pentacene films, respectively. The
surface morphology images were taken from the middle of the OFET channels.

3. Results and Discussion
3.1. Synthesis of Surfactants

The synthetic strategy towards derivatives with phosphono anchoring group is out-
lined in Scheme 1. While shorter ω-bromoalkenes were commercially available, longer
bromoalkenes 1e and 1f were synthesized by previously described copper-catalyzed cross-
coupling from 1,8-dibromooctane and corresponding Grignard reagent [26,27]. The forma-
tion of disubstituted products causes a lower yield of these derivatives. However, these
by-products can be easily separated by column chromatography. The bithienyl alkenes 2a–f
were obtained by the reaction of in-situ prepared 2-bithienyllithium withω-bromoalkenes
in good yields from 70% to 86%. Excess bithiophene in the reaction mixture was distilled
off, and the residue was further purified by column chromatography. The synthesis of
undecenylbithiophene 2f has been previously described by Muzafarov et al. [28]. The
monoalkylated bithiophenes 2a–f were converted to dioxaphospholane oxides 3a–f by
Tanaka-Pd catalyzed hydrophosphorylation [29] using pinacol phosphonate (4). Alkylphos-
phonic acids TTCnP (n = 8–13) were obtained by treating corresponding dioxaphospholane
oxides 3a–f with BrSiMe3 [30,31] followed by anhydrous methanol [32] in good yields. All
derivatives were characterized by 1H, 13C, 31P NMR, HRMS and FTIR. In some cases, 2D
NMR was recorded to assign split carbon signals due to 13C–31P coupling.
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Scheme 1. Synthesis of derivatives for surface modification TTCnP with phosphono anchoring group and various lengths
of alkyl linker.

The chlorosilane derivatives TTCnSi (n = 8, 11) were obtained by a hydrosilylation
reaction of bithienyl alkenes with chlorodimethylsilane in the presence of Karstedt’s cata-
lyst (Scheme 2). Despite high conversion in these reactions, yields of the corresponding
products TTCnSi were relatively low due to partial decomposition in vacuum distillation.
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We verified the presence of chlorine atom in the silane group by controlled hydrolysis
confirmed by 1H NMR. After measurement of 1H NMR spectrum of the products TTCnSi,
water was added to the NMR tube, and the 1H NMR spectrum was remeasured. Hydrolysis
caused the change in shifts of silane methyl groups from 0.47 for RSiMe2Cl to 0.14 ppm
for RSiMe2OH (Figure 3).
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3.2. OFET Performance

Pentacene and α-sexithiophene have been chosen as representative of typical and
widely used organic semiconductors. Typical output characteristics of pentacene OFET
devices with organic semiconductor layer deposited on bare SiO2 surface or SAM-modified
surface are depicted in Figure 4. All fabricated devices exhibited standard transistor
behavior. The surface modification does not influence the device performance significantly
for the SAM with TTC11Si (chlorodimethylsilyl anchoring group), whereas the SAM with
TTC11P (phosphono anchoring group) increases the output currents.

The transfer characteristics have been used to evaluate the threshold voltage and
the saturated effective mobility for all devices, as depicted in Figure 5. Interestingly, for
pentacene-based devices, the effective mobility is slightly reduced with increasing alkyl
chain length of phosphono-based surfactants TTCnP and significantly rises for an alkyl
chain length of n = 11. Surprisingly, the SAM with TTCnSi (SiMe2Cl anchoring group) does
not follow this tendency, and the effective mobility is suppressed. The anchoring groups are
greatly affecting the packing density and molecular orientation. As a result, the bithienyl
terminal group and pentacene have different interactions due to change mutual order. It
should be noted here that since the organic semiconductors exhibit a certain distribution of
material parameters, the effective mobility has been evaluated from a group of devices and
the standard deviation was estimated (plotted as an error bar in Figure 5). The other way to
verify the credibility of claimed effective mobilities is the evaluation of the reliability factor
r [4]. The pentacene-based devices exhibit the reliability factor r of 92% ± 12%, whereas the
α-sexithiophene-based devices had reliability factor on the level of 86% ± 12%. The trend
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of effective mobility is not accompanied by the threshold voltage that is almost conserved.
The conservation of the threshold voltage indicates that the SAM modification does not
cause additional trapping states on the organic semiconductor/gate insulator interface.
On the other hand, the α-sexithiophene OFET devices exhibit a significant increase in
effective mobility for all investigated SAM modifications of gate insulator surface. The
threshold voltage is greatly shifted from a positive voltage to a zero value or a negative
one. Observed shift points out the modification of the internal electric field due to charge
trapping and/or interfacial dipole. Here, the SAM with silyl surfactants TTCnSi reaches
almost identical results as the SAM with phosphono-based TTCnP.

Materials 2021, 14, x FOR PEER REVIEW 7 of 11 
 

 

3.2. OFET Performance 

Pentacene and α-sexithiophene have been chosen as representative of typical and 

widely used organic semiconductors. Typical output characteristics of pentacene OFET 

devices with organic semiconductor layer deposited on bare SiO2 surface or SAM-modi-

fied surface are depicted in Figure 4. All fabricated devices exhibited standard transistor 

behavior. The surface modification does not influence the device performance signifi-

cantly for the SAM with TTC11Si (chlorodimethylsilyl anchoring group), whereas the 

SAM with TTC11P (phosphono anchoring group) increases the output currents. 

 

Figure 4. Output characteristics of pentacene OFET devices (channel length L of 50 μm) with (a–c) 

pentacene or (d–f) α-sexithiophene layer deposited on (a,d) bare SiO2 surface or SAM-modified sur-

face with (b,e) TTC11Si and (c,f) TTC11P. 

The transfer characteristics have been used to evaluate the threshold voltage and the 

saturated effective mobility for all devices, as depicted in Figure 5. Interestingly, for pen-

tacene-based devices, the effective mobility is slightly reduced with increasing alkyl chain 

length of phosphono-based surfactants TTCnP and significantly rises for an alkyl chain 

length of n = 11. Surprisingly, the SAM with TTCnSi (SiMe2Cl anchoring group) does not 

follow this tendency, and the effective mobility is suppressed. The anchoring groups are 

greatly affecting the packing density and molecular orientation. As a result, the bithienyl 

terminal group and pentacene have different interactions due to change mutual order. It 

should be noted here that since the organic semiconductors exhibit a certain distribution 

of material parameters, the effective mobility has been evaluated from a group of devices 

and the standard deviation was estimated (plotted as an error bar in Figure 5). The other 

way to verify the credibility of claimed effective mobilities is the evaluation of the relia-

bility factor r [4]. The pentacene-based devices exhibit the reliability factor r of 92% ± 12%, 

whereas the α-sexithiophene-based devices had reliability factor on the level of 86% ± 

12%. The trend of effective mobility is not accompanied by the threshold voltage that is 

almost conserved. The conservation of the threshold voltage indicates that the SAM mod-

ification does not cause additional trapping states on the organic semiconductor/gate in-

sulator interface. On the other hand, the α-sexithiophene OFET devices exhibit a signifi-

cant increase in effective mobility for all investigated SAM modifications of gate insulator 

surface. The threshold voltage is greatly shifted from a positive voltage to a zero value or 

a negative one. Observed shift points out the modification of the internal electric field due 

to charge trapping and/or interfacial dipole. Here, the SAM with silyl surfactants TTCnSi 

reaches almost identical results as the SAM with phosphono-based TTCnP. 

0 -20 -40
0

200

400

600

Gate-source

voltage

 -40 V

 -30 V

 -20 V

 -10 V

    0 V

(f)(e)

D
ra

in
-s

o
u

rc
e 

cu
rr

en
t 

(n
A

)

Drain-source voltage (V)

0 -20 -40

 

(d)

0 -20 -40

 

Figure 4. Output characteristics of pentacene OFET devices (channel length L of 50 µm) with
(a–c) pentacene or (d–f) α-sexithiophene layer deposited on (a,d) bare SiO2 surface or SAM-modified
surface with (b,e) TTC11Si and (c,f) TTC11P.
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3.3. Surface Morphology

The thin-film morphology of the α-sexithiophene or pentacene film deposited on
bare SiO2 and modified by TTC11P were analyzed by the Atomic Force Microscopy
(AFM). The AFM images were taken from the middle of the transistor channel for both
vacuum-deposited thin films onto bare and SAM treated surfaces. Figure 6 illustrates the α-
sexithiophene films. The organic semiconductor forms elongated crystals with an average
crystal length of 125± 29 nm on bare SiO2, whereas the length reaches 92 ± 26 nm on SAM
treated surface. It should be noted here that according to the quartz crystal microbalance
(QCM) measurement, the average film thickness of the deposited film was 100 nm and
the AFM morphology revealed a similar height distribution range. In other words, the
α-sexithiophene film is most probably not fully covering the substrate surface, and the
charge transfer is due to the percolation mechanism.
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Figure 6. Surface morphology of α-sexithiophene layer deposited on (a) bare SiO2 or (b) TTC11P
modified surface.

Figure 7 depicts the surface morphology of pentacene films. Pentacene displays
polymorphism in its crystalline structure with two different phases [33–35]. Pentacene
molecules onto the SiO2 surface form the “thin-film phase”, where the orthorhombic
structure occurs. On the other hand, the “bulk phase” observed for thick film refers to the
triclinic structure. The thin-film phase represents the layer-by-layer growth of pentacene
films on a substrate surface. Hence, the incomplete layers, the terraces, have single-
molecule thickness and are characterized by the inter-planar spacing d001 = 1.54 nm [33].
The pentacene films deposited on bare SiO2, shown in Figure 7a, exhibit terraces separated
by steps of 1.5 ± 0.5 nm, and the presence of double layers is almost negligible, as shown
in Figure 8a. Interestingly, the pentacene films deposited on TTC11P treated surface have
obviously smaller grains with not well-defined terraces. Note that even though pentacene
grains on SAM treated surfaces are usually smaller than those on SiO2, pentacene deposited
on SAM has a lower defect density than pentacene on bare SiO2 [36,37]. The absence of
observable flat terraces points out the presence of other molecular orientations. Once the
bulk phase nucleates onto the thin-film phase, the coexistence of different structural phases
causes smoothing of incrementation steps [35,38]. As a result, the SAM treatment causes an
earlier transition from the thin-film phase to the bulk phase of pentacene films. It improves
the effective mobility by a greatly larger contribution than it is mobility suppression due to
the higher density of grain boundaries
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Figure 7. Surface morphology of pentacene layer deposited on (a) bare SiO2 or (b) TTC11P
modified surface.
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Figure 8. Probability density distribution of pentacene layer step heights for films deposited on
(a) bare SiO2 or (b) TTC11P modified surface.

4. Conclusions

In summary, we synthesized new surfactants with phosphono or chlorodimethylsilyl
anchoring groups and various alkyl chain lengths by up to three-step synthesis. In the case
of pentacene-based OFET, TTC11P surfactant showed a significant increase in effective
mobility. The effective mobility of α-sexithiophene-based transistor increased in all cases
of surface treatment with our surfactants. Investigation of the surface morphology showed
that surface treatment with TTC11P causes the formation of smaller grains of pentacene
with lower defect density and therefore results in higher mobility compared to OFET device
with bare SiO2. Application of our organic semiconductors with bithienyl surfactants in
OFET is under research.
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