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Abstract 

Background:  Few studies have been conducted to investigate the distribution of mosquito vectors and the popu-
lation structure of secondary vectors in the border region of Cambodia-Laos. The aim of this work was to study the 
mosquito diversity and molecular phylogeny of secondary vectors, i.e., Anopheles nivipes in this area.

Methods:  1440 adult mosquitoes were trapped in the Cambodia-Laos border. mtDNA-COII were amplified and 
sequenced from 53 An. nivipes DNA samples. Together with COII sequences deposited in GenBank, a total of 86 COII 
sequences were used for examining population variations, genetic differentiation, spatial population structure, popu-
lation expansion, and gene flow patterns.

Results:  The adult mosquitoes were classified into 5 genera and 27 species in this border region. The predominant 
genera were Culex (60.07%, 865/1440) and Anopheles (31.25%, 450/1440), and the major Anopheles species were An. 
nivipes (73.56%, 331/450) and Anopheles maculatus (14.22%, 64/450). Based on sequences analysis of COII, a high level 
of genetic differentiation was reported in two Northwest India (Cheema and Bathinda, Punjab) and Cambodia-Laos 
(Siem Pang, Stung treng) populations (FST = 0.97824, 0.97343, P < 0.05), as well as lower gene flow (Nm = 0.01112, 
0.01365) in the An. nivipes populations. Phylogenetic analysis and SAMOVA revealed a gene barrier restricting gene 
flow among three An. nivipes populations. Mantel test suggested a significant correlation between geography and 
gene distance in all An. nivipes populations (Z = 44,983.1865, r = 0.5575, P = 0.0070). Neutrality test and Mismatch 
distribution revealed a recent population expansion of An. nivipes in the Cambodia-Laos population.

Conclusions:  Anopheles nivipes was one of the major Anopheles species in the Cambodia-Laos border. Based on 
sequences analysis of COII, a genetic barrier between Cambodia-Laos and two Indian populations was found, and a 
recent population expanding or selecting of An. nivipes occurred in the Cambodia-Laos population, suggesting that 
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Background
Dengue fever and malaria continue to be critical parasitic 
diseases jeopardizing people’s lives in subtropical and 
tropical regions, primarily in the Greater Mekong Sub-
region (GMS, Myanmar, Vietnam, Laos, China, Thailand, 
and Cambodia) [1]. Over the past 15 years, Cambodia has 
effectively controlled malaria through the introduction 
of artemisinin-based combinations, the establishment of 
rapid diagnostic tests (RDTs), the implementation of a 
village malaria health worker system, and the widespread 
use of long-lasting insecticidal bed nets (LLINs) [2–5].

Though its incidence declines significantly, malaria 
continuously poses a major burden on public health in 
this nation, in which there is a co-occurrence of Plas-
modium vivax and Plasmodium falciparum. However, 
P. vivax control is obviously less effective [6]. Cases of P. 
vivax have major distributions crossing six northeastern 
Cambodia provinces (20,954, ~ 80%), and particularly 
prevail in Stung Treng within the Cambodia-Laos border 
(~ 28% of overall vivax case identified) [7].

The transmission of malaria in the GMS is char-
acterized by vector diversity and a high degree of 
spatial heterogeneity in the distribution pattern [8]. Gen-
erally, Anopheles minimus, Anopheles dirus complex, and 
Anopheles sinensis refer to the major vector, whereas the 
significance pertaining to the respective species in the 
malaria-transmitting process changes extensively with 
areas [9]. Some thorough investigations were conducted 
in the GMS, unfortunately, most of these researches 
failed to screen for “secondary” vectors (e.g., Anoph-
eles nivipes) in terms of Plasmodium infection [10–12]. 
Anopheles nivipes was found to be Plasmodium positive 
according to a study in Bangladesh in 2012 [13] and has 
also been reported positive for Plasmodium parasites 
in India and other countries [14, 15]. In Cambodia, An. 
nivipes was a secondary vector, as well as Anopheles phil-
ippinensis [9] in transmitting malaria and had been long 
suspected.

On the other hand, though mosquito population exhib-
iting various gene makeups is likely to be different in vec-
tor competence, rare data has been achieved regarding 
population genetics of An. nivipes in the Cambodia-Laos 
border. Data regarding genetic diversity and population 
structure can help develop available mosquito control 
plans [16, 17]. Owing to its significant sensitivity in the 
field of system and phylogenetic relationships for mater-
nal inheritance and haploidization [18], Mitochondrial 

DNA (mtDNA) has been widely used as an effective 
genetic marker in describing molecular taxonomy, phy-
logenetic relationships, population structure, and genetic 
diversity in malaria vectors [19].

Given the existing drastic variations of malaria condi-
tions in Cambodia, this work aimed to study the mos-
quito diversity and molecular phylogeny of secondary 
vectors i.e., An. nivipes in the Cambodia-Laos border. 
Siem Pang County (Stung treng Province) was taken as 
the investigation site and mosquito surveillance was 
firstly performed. The cytochrome c oxidase subu-
nit 2 gene (COII) of mtDNA from An. nivipes samples 
were subsequently sequenced. Furthermore, the gene 
variability and phylogenetic  relationship of An. nivi-
pes along the Cambodia-Laos border were investigated 
and compared with other samples from India, Thai-
land, and Myanmar for examining their gene relations. 
This work largely aimed at gaining more insights into 
the continuous surveillance of mosquito vectors, as well 
as molecular phylogeny and evolution of An. nivipes in 
the Cambodia-Laos border by using an effective genetic 
marker, mtDNA-COII.

Methods
Study site
Stung treng borders Laos in the north and is located on 
the east bank of the Mekong River. This endemic region 
takes up nearly 11,000 square kilometres and has about 
42,000 residents. The average population density is 3.82 
people per square kilometre. It has dense forests, diversi-
fied landforms, the temperature changes greatly and the 
annual rainfall is 1800 mm.

Mosquito collection and identification
Adult mosquitoes were collected in two villages in Siem 
Pang County by overnight trapping with the battery-
operated CDC light traps (Model: 1012, Origin: John W. 
Hock Inc, USA) in the cattle/pig pens or human rooms 
from 8:00 pm to 08:00 am and continued for 1–5 nights, 
in 2018. Four CDC light traps were operating in two cat-
tle/pig pens and two human rooms each night. All live 
adult mosquitoes were killed by freezing in the refrigera-
tor and subsequently isolated and distinguished accord-
ing to subgroup, species, and sex through dissecting 
microscope based on standards procedures in the field 
office of Siem Pang County [20, 21]. All mosquitoes were 
initially morphologically sorted out in the field using the 

COII might be an effective marker for describing the molecular phylogeny of An. nivipes. Further investigation and 
continuous surveillance of An. nivipes are warranted in this region.
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keys of Das et  al. [22]. Each morphologically identified 
specimen was kept individually in capped plastic beam 
capsules having silica gel and stored at 4 °C for molecu-
lar species confirmation and further processing. To avoid 
any deviations in the further analysis, molecular identi-
fication of An. nivipes based on COII was subsequently 
performed. Final species confirmation is required to 
have ≥ 98% sequence identity to the voucher specimens/
sequences in the NCBI nt databases. To avoid the issue 
that COII alone did not produce significant results for 
the voucher sequence, the amplification and sequencing 
on ITS2 was also performed. As a result, ITS2 and COII 
database comparisons of each morphologically identified 
An. nivipes samples were paired to determine the species 
of An. nivipes (Additional file 1: Table S1).

DNA extraction and sequencing
The extraction of An. nivipes genomic DNA in individ-
ual mosquitoes was carried out following the producer’s 
manual (QIAamp® DNA Mini Kit, Germany). The ampli-
fication for approximately 620 bp of COII gene was car-
ried out using primers, LYS-R (5′-ACT​TGC​TTT​CAG​
TCA​TCT​AATG-3′) and LEU-F (5′-TCT​AAT​ATG​GCA​
GAT​TAG​TGCA-3′). The overall PCR reaction volume 
reached 20 µl and the mixture of PCR reagent comprised 
2  µl of DNA, 0.05 unit of Takara Taq (Dalian, China), 
0.3  µM of the respective primer, 0.2  mM of dNTPs, 
and 2.5  µl of 10× Buffer (15  mM MgCl2, 100  mM 
Tris–HCl PH=8.3 as well as 500  mM KCl). Besides, the 
cycling parameter included 95  °C, 5  min; 95  °C/1  min, 
51 °C/1 min, 72 °C/2 min for 35 cycles; with a final exten-
sion of 72 °C for 10 min. The PCR products were analysed 
by 1.5% agarose gel electrophoresis stained with Gold-
View (Solarbio, China), under UV transillumination. The 
sequencing reaction proceeded in both directions using 
an ABI Big Dye Terminator Kit (Applied Biosystems, 
Thermo Fisher Scientific) and was analysed through 
ABI Prism 3500xL Genetic Analysis Tool (Applied Bio-
systems, Thermo Fisher Scientific) in Shanghai (Sangon 
Biotech).

Sequence alignment and phylogenetic analysis
In order to analyse the sequence variations and genetic 
relationship of An. nivipes from Cambodia-Laos and 
neighbouring nations, multi-sequence alignment of 
COII sequence was firstly carried out after the retrieval 
of sequence deposited in GenBank by using the key-
words “(species name) & COII” (http://​www.​ncbi.​nlm.​
nih.​gov/). The manual adjustment was conducted by 
using BioEdit V7.0.9 if required [23]. Gaps were excluded 
from the analysis and characters were unweighted. Sub-
sequently, a phylogenetic tree was generated using a 
Neighbour-joining algorithm bootstrapped with 1000 

replicates [24] based on MEGA-X [25]. The visualization 
of this phylogram was performed with the use of Figtree 
v1.4.2 [26]. Anopheles lindesayi (GenBank Accession No. 
AJ620898) and Anopheles claviger (GenBank accession 
nos. AY129232 and DQ229313) were used as outgroup 
taxa to the An. nivipes, following previous studies [27].

Statistical analysis
The average of nucleotide differences per site (K), nucleo-
tide diversity (π), haplotype diversity (Hd), and haplo-
types (H) was calculated by using DnaSP v.5.0 [28]. For 
more widely comparing haplotypes in Cambodia-Laos 
and other geographical regions, the existing data in Gen-
Bank from China, India, and Thailand were analysed, and 
a parsimony framework was subsequently carried out by 
using Network 4.0 [29].

The calculation of pairwise FST for estimating popu-
lation differentiation by complying with a difference 
in haplotype frequency, Nei’s Nm estimated gene flow 
conformed to GST [30], as well as analysis of molecular 
variance (AMOVA) for determining the distribution of 
genetic variation in population using 1000 permutations 
were performed using Arlequin v.3.5 [31].

Moreover, a spatial analysis of molecular variance 
(SAMOVA 2.0) was conducted for clustering COII 
sequences to homogeneous populations with genetic 
and geographical homogeneousness [32]. SAMOVA 
generates F-statistics (FCT, FST, FSC), with the use of 
the AMOVA approach, to K group for maximizing 
group variations. SAMOVA estimate was calculated for 
K = 2–8, with 1000 simulated annealing steps from each 
of 100 sets of initial starting conditions. Furthermore, 
isolation by distance (IBD) was examined using a nonpar-
ametric Mantel with the web-based computer program 
IBDWS v.3.16 [33].

Using the statistics D [34] and Fu’s Fs [35], the hypoth-
esis of strict neutrality was tested in An. nivipes popula-
tion based on DnaSP v.5.0. The mismatch distribution 
(simulated in Arlequin v.3.5) was carried out for distin-
guishing smooth unimodal distribution from multimodal 
or ragged distribution [36–38]. For rejecting the demo-
graphic expansion hypothesis, the difference with statis-
tical significance in distribution under the observation 
and simulation was assessed with the sum of square devi-
ations (SSD).

Results
Surveillance of mosquito abundance and composition
A total of 1440 adult mosquitoes were collected in cat-
tle/pig pen or human rooms through overnight trap-
ping with the battery-operated CDC light traps (Fig. 1a). 
Those mosquitoes were classified into 5 genera including 
Anopheles, Culex, Aedes, Armigeres, Tripteroides, and 27 
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species. The predominant genera included Culex (9 spe-
cies) and Anopheles (12 species), respectively taking up 
60.07% (865/1440) and 31.25% (450/1440); Other genera 
including Aedes, Armigeres, and Tripteroides respectively 
accounted for 3.61% (52/1440), 2.71% (39/1440), and 
0.07% (1/1440); In addition, undefined genera/species 
accounted for 2.29% (33/1400) (Fig. 1b, Additional file 2: 
Table S2). Among the Genus Anopheles, An. nivipes, and 
An. maculatus were two major species and accounted 
for 73.56% (331/450) and 14.22% (64/450), respectively, 
while Anopheles peditaeniatus, Anopheles argyropus, 
Anopheles tessellatus, Anopheles barbirostris, Anopheles 
sandaicus, Anopheles vagus, Anopheles interruptus, An. 
dirus, Anopheles kochi, and An. sinensis accounted for 
merely 0.22% (1/450), 0.22% (1/450), 1.33% (6/450), 1.11% 
(5/450), 0.44% (2/450), 2.00% (9/450), 0.22% (1/450), 
1.33% (6/450), 4.00% (18/450), and 1.33% (6/450) (Fig. 1b, 
Additional file 2: Table S2).

Genetic diversity of Anopheles nivipes among populations
DNA samples were extracted from 53 mosquitos which 
were collected in Siem Pang and morphologically/
molecularly identified as An. nivipes (Additional file  1: 
Table  S1). The amplification of the COII sequence was 

achieved in these 53 specimens, representing popula-
tions from the Cambodia-Laos border. To draw a broader 
comparison in haplotype from Cambodia-Laos and 
other geographical regions, the available data in Gen-
Bank from neighbouring nations were downloaded and 
analysed (Additional file 3: Table S3). In general, a total 
of 86 An. nivipes COII sequences were generated for 
10 populations, including Siem Pang (n = 53), Tripura 
(India; n = 4), Cheema (Punjab, India; n = 2), Bathinda 
(Punjab, India; n = 2), Nagaland (India; n = 6), Assam 
(India; n = 7), Myanmar (n = 2), Thailand (n = 2), Mizo-
ram (India; n = 2) and Meghalaya (India; n = 6) (Table 1, 
Additional file  4: Fig. S1). A high level of nucleotide 
diversity (Pi = 0.0156), number of haplotypes (h = 47), 
and haplotype diversity (Hd = 0.9237) were observed in 
COII populations (Table 1).

Population structure and genetic differentiation
The median-joining network based on 86 COII sequences 
denoted the distribution pattern exhibited by 47 haplo-
types in An. nivipes population. The An. nivipes popula-
tions fell into three Groups. Group 1 consisted of all the 
haplotypes except for Bathinda and Cheema; Group 2 
consisted of haplotype from Cheema (Punjab, Northwest 
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Fig. 1  Sampling sites and diversity of adult mosquitoes in Cambodia-Laos border. a The red label indicated the sampling site in Siem Pang County 
(Stung treng Province, 14°17′ N, 106°23′ E). The map was prepared by using Google Earth Pro (7.3.0.3832). b The pie charts showed the genus 
composition of adult mosquitoes and species composition of Anopheles mosquitoes collected from Human rooms and/or Cattle/pig pens. All the 
adult mosquitoes were trapped using overnight trapping with the battery-operated CDC light traps (Model: 1012, Origin: John W. Hock Inc, USA)
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India); Group 3 with haplotype from Bathinda (Pun-
jab, Northwest India). The most common haplotypes 
referred to H1 (n = 19), H2 (n = 13), and H6 (n = 8), as 
only identified in 73.58% (39/53) of Siem Pang and 50% 
(1/2) of Thailand. H21 (n = 1), H22 (n = 1) was only iden-
tified in Cheema; H20 (n = 1) and H23 (n = 1) were only 

identified in Bathinda (Fig.  2, Additional file  5: Fig. S2). 
In addition, a single individual denoted other 38 haplo-
types but derived from haplotype 1 through a very few 
mutation steps. The UPGMA dendrogram based on K2P 
genetic distances between haplotypes indicated that H21, 
H22 constituted one cluster, H20 and H23 constituted 

Table 1  Genetic diversity indices and neutrality tests (Fu’s Fs and Tajima’s D) based on the COII gene of An. nivipes 

n.d., not determined; n.s., P > 0.10; #P < 0.10; *P < 0.05; **P < 0.02; ***P < 0.001. KH_St_Sp, Siem Pang County (Stung treng, Cambodia); IN_Tri, Tripura (India); IN_Pun_Ch, 
Cheema (Punjab, India); IN_Pun_Ba, Bathinda (Punjab, India); IN_Nag, Nagaland (India); IN_Ass, Assam (India); MM, Myanmar; TH, Thailand; IN_Miz, Mizoram (India); 
IN-Meg, Meghalaya (India)

n number of sequences, S number of polymorphic sites, pi nucleotide diversity, h number of haplotypes, Hd haplotype diversity

Species n Haplotype code S Pi h Hd k Fu’s Fs Tajima’s D

Total 86 H1(19), H2(13), H3(1), H4(1), H5(1), H6(8), H7(1), H8(1), H9(1), 
H10(1), H11(1), H12(2), H13(1), H14(1), H15(1), H16(1), H17(1), 
H18(1), H19(1), H20(1), H21(1), H22(1), H23(1), H24(1), H25(1), 
H26(1), H27(1), H28(2), H29(1), H30(1), H31(1), H32(1), H33(1), 
H34(1), H35(1), H36(1), H37(1), H38(1), H39(1), H40(1), H41(1), 
H42(1), H43(1), H44(1), H45(1), H46(1), H47(1)

223 0.01560 47 0.92370 8.12558 − 19.201*** − 2.39879***

KH_St_Sp 53 H1(19), H2(12), H3(1), H4(1), H5(1), H6(8), H7(1), H8(1), H9(1), 
H10(1), H11(1), H12(2), H13(1), H14(1), H15(1), H16(1)

19 0.00243 16 0.80700 1.50363 − 10.944*** − 2.01237**

IN_Tri 4 H24(1), H25(1), H26(1), H27(1) 8 0.00701 4 1.00000 4.33333 − 0.715 − 0.06867

IN_Pun_Ch 2 H21(1), H22(1) 13 0.01268 2 1.00000 7.00000 1.946 n.d

IN_Pun_Ba 2 H20(1), H23(1) 65 0.04415 2 1.00000 23.00000 3.135 n.d

IN_Nag 6 H36(1), H37(1), H38(1), H39(1), H40(1), H41(1) 14 0.01079 6 1.00000 6.66667 − 1.623 0.53608

IN_Ass 7 H33(1), H34(1), H35(1), H44(1), H45(1), H46(1), H47(1) 28 0.02350 7 1.00000 14.52381 − 0.938 0.09554

MM 2 H17(1), H18(1) 2 0.00324 2 1.00000 2.00000 0.693 n.d

TH 2 H2(1), H19(1) 3 0.00485 2 1.00000 3.00000 1.099*** n.d

IN_Miz 2 H42(1), H43(1) 3 0.00485 2 1.00000 3.00000 1.099*** n.d

IN_Meg 6 H28(2), H29(1), H30(1), H31(1), H32(1) 11 0.00744 5 0.93330 4.60000 − 0.496 − 0.27307

Fig. 2  Phylogenetic network of 47 mitochondrial haplotypes of the COII gene in Anopheles nivipes. Localities are indicated by different colours 
(bottom-right). The area of each circle is approximately proportional to the frequency of the haplotype. #Samples available in Genbank. *Samples 
from Cambodia-Laos border. KH_St_Sp, Siem Pang County (Stung treng, Cambodia); IN_Tri, Tripura (India); IN_Pun_Ch, Cheema (Punjab, India); 
IN_Pun_Ba, Bathinda (Punjab, India); IN_Nag, Nagaland (India); IN_Ass, Assam (India); MM, Myanmar; TH, Thailand; IN_Miz, Mizoram (India); IN_Meg, 
Meghalaya (India)
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another, while the other haplotypes constituted the third 
(Additional file 6: Fig. S3).

AMOVA analysis based on COII sequences demon-
strated that most of the variances were found among 
group variation (86.72%) rather than within populations 
(4.56%) and among populations within groups (8.72%), 
suggesting that these populations could fall to several 
groups. The fixation index among groups (FCT), among 
populations within groups (FSC), and within populations 
(FST) showed statistical significance (P < 0.05) (Table  2). 
The neighbour-joining dendrogram indicated that the 
populations of Siem Pang (Stung treng, Cambodia), 
Tripura (Northeast India), Nagaland (Northeast India), 
Assam (Northeast India), Myanmar, Thailand, Mizoram 
(Northeast India), and Meghalaya (Northeast India) were 
clustered in one clade, whereas Cheema (Punjab, North-
west India) and Bathinda (Punjab, Northwest India) 
formed the second and third clades (Fig.  3). Anopheles 
lindesayi and An. claviger were introduced as outgroups 
which clustered into another clade.

The maximal level of genetic differentiation in accord-
ance with the fixation index FST based on sequences 
analysis of COII was between Cheema and Siem Pang 
(FST = 0.97824, P < 0.05). Estimates of gene flow (Nm) 
varied extensively in populations, ranging from 0.01112 
to 8.44874. The minimal was between Cheema and 
Siem Pang (Nm = 0.01112). The maximal was between 
Assam and Myanmar (Nm = 8.44874) (Additional file  7: 
Table S4).

Spatial genetic structure analysis
According to the COII-based SAMOVA analysis, the 
clustering number was between 2 and 9. High genetic 
differentiation between groups was detected, as the FCT 

value ranged from 0.74758 to 0.867 and was statisti-
cally significant. FCT value was maximal at K = 3 (0.867; 
P < 0.05) with Fsc (0.65541, P < 0.001). In this case, two 
Punjab populations (Bathinda and Cheema) became 
separated and assigned to two single population groups, 
leaving other populations, which demonstrated that there 
is a significant genetic barrier to restrict gene flow from 
Punjab to other populations. As K value increased up to 
K = 8, Siem Pang and Thailand remained attributed to 
one group, whereas the other population created 8 dis-
tinct groups (Table 3). In general, the patterns identified 
in SAMOVA analyses complied with the phylogenetic 
trees (Fig.  3). The UPGMA dendrogram based on Nei’s 
unbiased genetic distance between populations revealed 
three distinctive groups, as Bathinda and Cheema con-
stituting two groups, and the remaining populations 
covered in a third group (Additional file  8: Fig. S4). A 
Mantel test revealed a significant correlation between 
geographical and genetic distances in all populations 
(Z = 44,983.1865, r = 0.5575, P = 0.0070), suggesting that 
the genetic structure observed in An. nivipes population 
could be partially explained by distance isolation based 
on COII sequence analysis (Fig. 4).

Demographic history and neutrality test
As indicated from Tajima’s D and Fu’s Fs tests based on 
COII, the Siem Pang population exhibited significant 
negativity (P < 0.05, P < 0.02), suggesting a recent popu-
lation expansion or selection (Table  1). The observed 
smooth and unimodal mismatch distribution suggested 
a sudden population expansion, conforming to the mis-
match distribution derived under the model of sudden 
expansion (Additional file 9: Fig. S5).

Table 2  Analysis of molecular variance (AMOVA) of ten An. nivipes populations based on COII

FCT Fixation index among groups; FSC among populations within groups; FST within populations

Source of variation d. f Sum of squares Variance components % of variation Fixation index (P)

Among groups 2 336.833 40.15792 Va 86.72 FCT: 0.86722 (P < 0.05)

Among populations within 
groups

7 200.265 4.03898 Vb 8.720 FSC: 0.65689 (P < 0.05)

Within populations 76 160.332 2.10964 Vc 4.560 FST: 0.95444 (P < 0.05)

Total 85 697.430 46.30654

(See figure on next page.)
Fig. 3  Neighbour-joining phylogenetic tree of Anopheles nivipes based on COII sequences from GenBank and our original data. Bootstrap values 
(1000 replicates) of neighbour-joining analyses are shown above/below the main lineages. Lineage designation is indicated on the right. Bars 
represent 3.0 substitutions per site based on COII. Different colours indicated different population groups of An. nivipes. An. lindesayi and An. 
claviger were used as the outgroup taxa. KS, Siem Pang County (Stung treng, Cambodia); IN_Tri, Tripura (India); IN_Pun_Ch, Cheema (Punjab, India); 
IN_Pun_Ba, Bathinda (Punjab, India); IN_Nag, Nagaland (India); IN_Ass, Assam (India); MM, Myanmar; TH, Thailand; IN_Miz, Mizoram (India); IN_Meg, 
Meghalaya (India)
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Discussion
The spread of malaria in GMS exhibits the diversity of 
vector species and the high spatial heterogeneity of dis-
tribution patterns [8]. In 2002 about 61% of Cambodia’s 
total land area was estimated to be forested [39] with 
over 80% of that in malaria-endemic areas [40]. These 
forested areas are primarily located in provinces border-
ing Vietnam, Laos, and Thailand. Efficient forest malaria 
vectors are found, including An. dirus and An. minimus, 
so a high risk of malaria is imposed on people living in 
villages on the edge of the forest or engaged in forest 
activities [41–44]. Besides the main forest vector, con-
siderable other Anopheles species appear close to human 
settlements. Under high coverage of insecticide-treated 
nets, transmission by “secondary” vectors with outdoor 
or early biting behaviour may be more important than 
transmission by primary vectors [45], since the secondary 
vectors are less anthropogenic and may be more prone to 
exophagous and early bites. Furthermore, the exogenous 

incubation period of P. vivax is highlighted to be shorter, 
and the secondary vector is likely to be a more effec-
tive vector as compared with P. falciparum [46]. There 
is a need to study the extent to which malaria vectors in 
Cambodia are outdoor bites and early bites, and to assess 
the importance of secondary vectors.

Several studies have been conducted to screen the sec-
ondary or suspected vector in the GMS. In central Laos 
(Khammouane), An. nivipes was one of the predomi-
nant species and accounted for 11.55% [47], while in the 
south-eastern part of Laos (Nongceng), instead of the 
major vector An. minimus and An. dirus, An. nivipes is 
suspected to be the dominant vector, taking up over 65% 
[48]. In Thailand, An. nivipes, as well as An. philippin-
ensis, were suspected vectors and accounted for 30.18% 
and 27.32%, respectively [49]. Anopheles nivipes referred 
to a secondary vector, as well as the An. philippinensis in 
Cambodia [9]. According to St Laurent B’s research [15], 
An. nivipes referred to one of the five most prevalent 

Table 3  Population groups identified by spatial analysis of molecular variance (SAMOVA) algorithm based on COII

Significant values *P < 0.05; **P < 0.01; ***P < 0.001, ns: Not significant

KH_St_Sp, Siem Pang County (Stung treng, Cambodia); IN_Tri, Tripura (India); IN_Pun_Ch, Cheema (Punjab, India); IN_Pun_Ba, Bathinda (Punjab, India); IN_Nag, 
Nagaland (India); IN_Ass, Assam (India); MM, Myanmar; TH, Thailand; IN_Miz, Mizoram (India); IN_Meg, Meghalaya (India)

K Population grouping FCT FSC

k = 2 [IN_Pun_Ba, IN_Pun_Ch][KH_St_Sp, MM, TH, IN_Tri, IN_Meg, IN_Ass, IN_Nag, IN_Miz] 0.84809* 0.68162***

k = 3 [IN_Pun_Ba][IN_Pun_Ch][KH_St_Sp, MM, TH, IN_Tri, IN_Meg, IN_Ass, IN_Nag, IN_Miz] 0.867* 0.65541***

k = 4 [IN_Pun_Ba][IN_Pun_Ch][KH_St_Sp, MM, TH, IN_Tri, IN_Meg, IN_Ass, IN_Nag][IN_Miz] 0.81663** 0.65331***

k = 5 [IN_Pun_Ba][IN_Pun_Ch][KH_St_Sp, TH, IN_Tri, IN_Meg, IN_Ass, IN_Nag][MM][IN_Miz] 0.75603** 0.66771***

k = 6 [IN_Pun_Ba][IN_Pun_Ch][IN_Tri][IN_Meg][IN_Nag][KH_St_Sp, TH, IN_Ass, MM, IN_Miz] 0.74758* 0.48268***

k = 7 [IN_Pun_Ba][IN_Pun_Ch][IN_Tri][IN_Meg][IN_Nag][IN_Ass][KH_St_Sp, TH, MM, IN_Miz] 0.7595* 0.35732***

k = 8 [IN_Pun_Ba][IN_Pun_Ch][IN_Tri][IN_Meg][IN_Nag][IN_Ass][KH_St_Sp, TH, MM][IN_Miz] 0.82893** 0.06355**

k = 9 [IN_Pun_Ba][IN_Pun_Ch][IN_Tri][IN_Meg][IN_Nag][IN_Ass][KS,TH][MM][IN_Miz] 0.85191* − 0.12893ns
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species and accounted for 23.49% in Preah Vihear and 
35.61% in Ratanakiri Provinces, both located in the 
north Cambodia and border with Stung treng Prov-
ince. Likewise, in this work, An. nivipes accounted for 
22.99% (331/1440) in Siem Pang County of Stung treng 
(Fig. 1, Additional file 2: Table S2). It is noteworthy that 
An. nivipes has been reported positive for Plasmodium 
parasites in Bangladesh, India, and other countries [13–
15]. Besides, the vivax malaria case was largely reported 
in three northern provinces, Preah Vihear, Ratanakiri, 
and Stung treng, suggesting that An. nivipes might be a 
potential and important vector of P. vivax in northern 
Cambodia [7].

In mosquito barcoding studies, the most frequently 
used molecular markers or barcoding region is the 
cytochrome c oxidase subunit I (COI) of the mitochon-
drial genome (mtDNA), followed by the internal tran-
scriptional spacer 2 (ITS2) of ribosomal DNA (rDNA). 
Since mtDNA is typically inherited maternally, any 
hybrid or offspring would only have the mtDNA from 
the maternal species [50]. Furthermore, mitochondrial 
genomes evolve 5–10 times faster than nuclear genomes, 
making mtDNA potentially more useful than rDNA in 
correctly  identifying recently differentiated species [51, 
52]. Some researchers used COI or COII as the only 
marker to identify mosquito species and study their 
molecular evolution [16, 53–58]. Additionally, due to the 
typically high copy numbers, availability of conserved 
primer binding sequences, and ease of amplification [19], 
variation in mitochondrial DNA (mtDNA) is being used 
more recently to approach levels of population struc-
ture and genetic diversity within species [59]. Nonethe-
less, more reliable species information can be obtained 
if multiple molecular markers are used simultaneously 
[60–62]. Based on mtDNA-COII sequencing in this 
work, the AMOVA analysis indicated that all populations 
could be divided into different groups (Table 2). Accord-
ing to phylogenetic analysis, the An. nivipes could fall to 
two Northwest India groups (Bathinda, Cheema) and a 
Northeastern India/SEA group (Figs.  2, 3). As revealed 
from strong genetic differentiation and limited gene flow 
between the Cambodia-Laos and Northwest India popu-
lations, these regions might undergo genetic isolation 
(Additional file 7: Tables S4). SAMOVA analysis further 
suggested a genetic barrier restricting gene flow between 
these populations (Table  3), and the patterns were also 
consistent with the phylogenetic trees. The Bay of Ben-
gal, in the northeast part of the Indian Ocean, is situated 
between India to the west and northwest, Bangladesh to 
the north, and Myanmar to the east, acting as a natural 
barrier to interrupt the spread of malaria vector. On the 

contrary, the weak genetic differentiation and frequent 
gene flow between the Cambodia-Laos and other popu-
lations such as Northeast India, Myanmar, and Thailand 
suggest that these regions are not genetically isolated. 
Moreover, the Mantel test revealed a strong correlation 
of genetic and geographical distances, which demon-
strated the significant isolation by the distance of An. 
nivipes (Fig.  4). Unimodal plots of the mismatch distri-
bution were observed in the Cambodia-Laos population 
(Additional file 9: Fig. S5), as well as the Tajima’s D and 
Fu’s Fs test were both negative and significant, thereby 
demonstrating a recent expansion after a bottleneck of 
An. nivipes population in this border region (Table 1).

In the present study, the molecular phylogeny analysis 
of An. nivipes based on ITS2 was also conducted to eval-
uate its effectiveness compared to mtDNA-COII (Addi-
tional file 10). Specific to ITS2, no genetic barriers were 
identified between the Cambodia-Laos and other popu-
lations. SAMOVA analysis and Mantel test revealed no 
correlation between genetic and geographical distances, 
thereby demonstrating no isolation-by-distance was 
found in An. nivipes populations based on ITS2 (Addi-
tional file 10). Since ITS2 regions alone have been used in 
distinguishing closely related mosquito species belong-
ing to various genera such as Anopheles [17], Culex [63], 
and Aedes [64], mtDNA-COII may be a more effective 
marker than rDNA-ITS2 for describing the genetic diver-
sity and population structure of An. nivipes due to its 
advantages of maternal inheritance, no recombination, 
and high variability [62].

Conclusion
This work reported that a high diversity of mosquito 
vectors was found and Anopheles nivipes was one of the 
major Anopheles species in the Cambodia-Laos border. 
A genetic barrier limiting gene flow between Cambodia-
Laos and two Northwest India populations had been 
found based on sequences analysis of mtDNA-COII, and 
a recent population expanding or selecting of An. nivipes 
occurred in this border, suggesting that mtDNA-COII 
can serve as effective markers for describing the genetic 
diversity and population structure of An. nivipes. Further 
investigation and continuous surveillance of An. nivipes 
are warranted in this region.

Abbreviations
GMS: Greater Mekong subregion; RDT: Rapid diagnostic tests; LLITNs: Long-
lasting insecticide-treated bed nets; ITS2: Internal transcribed spacer 2; COII: 
Cytochrome c oxidase subunit 2; AMOVA: Analysis of molecular variance; 
SAMOVA: Spatial analysis of molecular variance; IBD: Isolation by distance; 
mtDNA: Mitochondrial genome.
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Additional file 1: Table S1. Full list of 53 Anopheles nivipes specimens 
which were classified by both molecular and morphological identifica-
tions, with morphology species ID, molecular species ID based on ITS2, 
molecular species ID based on COII, geographical location, latitude, and 
longitude. 

Additional file 2: Table S2. Genus/Species compositions of mosquitoes 
trapped by CDC lamp in SIEM PANG County, Stung treng Province. Adult 
mosquitoes were collected by using overnight trapping with the battery-
operated CDC light traps. ** indicated the genus or species composition 
of mosquitoes which were described in percentage. (%)** indicated the 
genus or species composition of mosquitoes which were described in 
numbers. 

Additional file 3: Table S3. COII sequences of Anopheles nivipes were 
downloaded from the NCBI. * indicated the longitude and latitude coordi-
nates to the geographical center of a certain province, due to the samples 
being initially collected from various sampling sites in a certain province. 
An. niv, Anopheles nivipes. 

Additional file 4: Figure S1. Map of the populations from different 
geographical regions. Populations of mitochondrial COII sequences: 
KH, Siem Pang County (Stung treng, Cambodia); Tri, Tripura (India); Ch, 
Cheema (Punjab, India); Ba, Bathinda (Punjab, India); Nag, Nagaland (India); 
Ass, Assam (India); MM, Myanmar; TH, Thailand; Miz, Mizoram (India); Meg, 
Meghalaya (India). The map was prepared by using LocaSpace Viewer. 

Additional file 5: Figure S2. Distribution heatmap of haplotype based on 
COII. KH-St-Sp, Siem Pang County (Stung treng, Cambodia); MM, Myanmar; 
TH, Thailand; IN-Pun-Ba, Bathinda (Punjab, India); IN-Pun-Ch, Cheema (Pun-
jab, India); IN-Tri, Tripura (India); IN-Meg, Meghalaya (India); IN-Ass, Assam 
(India); IN-Nag, Nagaland (India); IN-Miz, Mizoram (India). The numbers 
of haplotypes are shown on the right side of the figure. The color scale 
ranges from blue to red, showing a range from minimum number (0) to 
maximum numbers (19) for each haplotype. 

Additional file 6: Figure S3. Neighbor-joining phylogenetic tree of An. 
nivipes haplotypes based on COII sequences from GenBank and original 
data in this study. Bootstrap values (1000 replicates) of Neighbor-Joining 
analyses are shown above/below the main lineages. Lineage designation 
is indicated on the right. Bars represent 2.0 substitutions per site based on 
COII. Different colors indicated different population groups of An. nivipes. 

Additional file 7: Table S4. Genetic differentiation and Gene flow among 
the Geographic Groups based on COII. The pairwise FST values and Nm 
values based on the COII are shown below and above the diagonal, 
respectively. Characters in bold indicate the significance (P < 0.05). inf, infi-
nite. KH_St_Sp, Siem Pang County (Stung treng, Cambodia); IN_Tri, Tripura 
(India); IN_Pun_Ch, Cheema (Punjab, India); IN_Pun_Ba, Bathinda (Punjab, 
India); IN_Nag, Nagaland (India); IN_Ass, Assam (India); MM, Myanmar; TH, 
Thailand; IN_Miz, Mizoram (India); IN-Meg, Meghalaya (India). 

Additional file 8: Figure S4. Cluster analysis based on COII sequences in 
Anopheles nivipes populations. UPGMA dendrogram based on Nei ‘s unbi-
ased genetic distance between different populations of An. nivipes. Bars 
represent 0.7 substitutions per site based on COII. KS, Siem Pang County 
(Stung treng, Cambodia); IN_Tri, Tripura (India); IN_Pun_Ch, Cheema (Pun-
jab, India); IN_Pun_Ba, Bathinda (Punjab, India); IN_Nag, Nagaland (India); 
IN_Ass, Assam (India); MM, Myanmar; TH, Thailand; IN_Miz, Mizoram 
(India); IN_Meg, Meghalaya (India). 

Additional file 9: Figure S5. Mismatch distribution graphs for Siem Pang 
population. The X and Y-axis show the number of pairwise differences and 
the frequency of the pairwise comparisons, respectively. The observed 
frequencies are represented by a dotted line. The frequency expected 
under the hypothesis of the constant population model is depicted by a 
solid line. (a) all populations-COII; (b) Siem Pang population-COII. 

Additional file 10. Supplementary data of molecular phylogeny data 
based on ITS2. This file contains Tables 1–5 and Figs. 1–9.
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