
Computational and Structural Biotechnology Journal 14 (2016) 211–222

Contents lists available at ScienceDirect

journa l homepage: www.e lsev ie r .com/ locate /csb j
Mini Review
Circulating biomarkers to monitor cancer progression and treatment
Suthee Rapisuwon, Eveline E. Vietsch, Anton Wellstein ⁎
Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, 3970 Reservoir Rd, NW, Washington, DC 20007, USA
⁎ Corresponding author.
E-mail address: anton.wellstein@georgetown.edu (A.

http://dx.doi.org/10.1016/j.csbj.2016.05.004
2001-0370/© 2016 Rapisuwon et al. Published by Elsevier
CC BY license (http://creativecommons.org/licenses/by/4.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 24 February 2016
Received in revised form 17 May 2016
Accepted 18 May 2016
Available online 1 June 2016
Tumor heterogeneity is a major challenge and the root cause of resistance to treatment. Still, the standard
diagnostic approach relies on the analysis of a single tumor sample from a local ormetastatic site that is obtained
at a given time point. Due to intratumoral heterogeneity and selection of subpopulations in diverse lesions this
will provide only a limited characterization of themakeupof thedisease. On the other hand, recent developments
of nucleic acid sequence analysis allows to use minimally invasive serial blood samples to assess the mutational
status and altered gene expression patterns for real timemonitoring in individual patients. Here,we focus on cell-
free circulating tumor-specific mutant DNA and RNA (including mRNA and non-coding RNA), as well as current
limitations and challenges associated with circulating nucleic acids biomarkers.
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1. Introduction

Tumor heterogeneity that enables malignant progression by evolu-
tionary selection is also the major cause of emergent resistance during
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cancer treatment. Yet, we rely on few standard diagnostic tumor
biopsies for the characterization of a given cancer. These specimens
will provide only a partial characterization of the overall makeup of
the dynamic systemic disease cancer represents with intratumoral and
interlesional heterogeneity as well as emerging host responses [1].
Tumor heterogeneity is generally accepted as following Darwinian
evolutionary principles (Fig. 1), where genetic heterogeneity within a
cancer cell population translates into a range of phenotypes that
includes distinct surface marker expression, metabolism, proliferation,
apoptosis, invasion, angiogenesis, drug sensitivity, antigen presentation
or organotropism of cell subpopulations present in a given tumor [2,3].
Selective pressure and selection of cancer cell subpopulations are
generally thought to drive increasing heterogeneity during tumor
growth and metastatic spread (Fig. 2). Additionally, phenotypic
plasticity of cancer stem cells in response to changes in the tumor
microenvironment contribute to heterogeneity [4].

A striking example that illustrates intratumoral heterogeneity
was recently described for kidney cancer specimen that revealed
distinct expression of an autoinhibitory domain of the mTOR kinase
and multiple tumor-suppressor genes (i.e. SETD2, PTEN and
KDMSC). Additionally, this study demonstrated extensive heteroge-
neous mutational profiles in 26 out of 30 tumor samples from four
renal cell carcinoma patients [5]. Another illustrative example of
intratumoral/intermetastatic tumor heterogeneity is the extensive
whole genome sequencing analysis of a patient with breast cancer
and brain metastasis. Four different tissue samples (the primary
tumor, blood, brain metastasis and xenografts) showed tumor
heterogeneity at a low frequency even at the primary tumor [6].
Therefore, a single tumor biopsy will underestimate the mutational
landscape due to intratumoral/interlesional mutational and
phenotypic | heterogeneity. These concepts and additional examples
were reviewed recently [7].
Fig. 1. Branching of a cancer evolutionary tree. This model is similar to animals' phylogeny. A
mutations. B (green) is the first, C (orange) and D (yellow) are subsequent branch evolutionar
2. What are circulating biomarkers

Capturing and analysis of circulating biomarkers is an alternative
method to gain insight into the molecular makeup of a cancer in a
given patient. Historically, circulating biomarkers have been observed
and studied since the late 1800s in a form of circulating tumor cells
(CTCs) [8]. However, extensive study on CTC did not occur until the
mid-20th century when the studies of circulating tumor cells showed
that the presence of CTCs in cancer patients was correlated with poorer
prognosis or progression-free and overall survival [9–11].

Herewewill discuss cell-free circulating tumor-specificmutant DNA
and RNA (including mRNA and non-coding RNA; Fig. 3) due to recent
improvements in the sensitivity and analysis scope that impacted the
potential of these approaches significantly. A review of circulating
tumor cells, circulating proteins, and metabolites will not be included
here.
3. Circulating tumor DNA (ctDNA)

Circulating, cell-free DNA (cfDNA), i.e. fragments of DNA found in
the cell-free blood compartment was first described in 1948 [12], but
cell-free DNA fragments that originated from tumor cells (ctDNA)
have not been well characterized until the late 1980s [13]. The origin
of ctDNA has not been well defined yet, but is thought to result from
cell death. The presence of ctDNA has been correlated with overall
tumor burden, and disease activities [14,15]. Somatic oncogenic Ras,
p53 and other cancer-related gene mutation, promoter hypermethyla-
tion of tumor suppressor genes have been detected and measured in
several different cancers including, but not limited to, colon, small cell
and non-small cell lung cancer, melanoma, kidney and hepatocellular
carcinoma [16].
(red) represents a common tumorigenesis event, often characterizes by a common driver
y events.



Fig. 2. Selection of cancer subpopulation during tumor progression and treatment. Both genetics and environment factors influence tumorigenesis and cancer evolution. Selection will
enhance cell growth, proliferation, invasion, metastasis, immune evasion and reduce apoptosis. Clones with unfavorable compositions of genetic or epigenetic alterations (blue) will be
eliminated after primary therapy. Resistant clones (pink) with survival advantages are indicated. Orange: normal cells; colored-outline: pre-malignant lesion, blue, pink, green, dark
brown: different malignant clones.
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It is believed that ctDNAs are results of apoptosis. Nucleosomes
play essential roles in the fragmentation of DNA during programmed
cell death and a recent study developed a genome-wide nucleosome
map that showed ctDNA fragments bearing footprint of transcription
factors in specific tissues [17]. Additionally, ctDNA from cancer
Fig. 3. Circulating biomarkers. Circulating cell-free (plasma/serum) biomarkers include nucleic
normal organ physiologic turn over or impact of systemic drug treatment. Each organ contribu
Circulating microRNAs, exosomal RNAs and long non-coding RNAs thus reflect the overall host
patients also demonstrated distinct pattern of nucleosome spacing
which suggested contribution of ctDNAs from non-hematopoietic
tissues, unlike ctDNAs from healthy counterparts whose contribu-
tion of nucleosome spacing are mostly from lymphoid and myeloid
tissues.
acids, extracellular vesicles, proteins and metabolites from all metastatic sites as well as
tes wild-type DNAs to the circulation and organ metastatic seeds will shed mutant DNA.
-tumor crosstalk.
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4. Detection methods and sensitivity

ctDNA detection methods have improved substantially during the
past few decades. In the early 1990s, recovery of ctDNA was performed
by conventional polymerase chain reaction, followed by Sanger se-
quencing. However, recovery of ctDNA was often inconsistent, and
was considered inferior to other biomarkers, including circulating
tumor cells (CTCs) and cancer-related protein markers (i.e. alfa-
fetoprotein, lactate dehydrogenase). The main obstacle in the detection
of ctDNA is the relatively low abundance per milliliter of blood exam-
ined. Conventional methods of PCR detection and Pyrosequencing
have their lower limit of detection at 10% of ctDNA copies in the bulk
of background normal DNA (Table 1). Similarly, the early 2000smethod
of Next-generation sequencing and quantitative PCR (qPCR) lowered
the lower limit of detection to approximately 1–2% and enhanced
detection performance in hematologic malignancies i.e. Bcr-Abl fusion
transcripts in chronic myelogenous leukemia from circulating leukemic
cells. Nevertheless, the detection of ctDNA in patients with solid tumors
using these techniques remained problematic. The first and successful
molecular technique in the identification of ctDNAwas the introduction
of Beads, Emulsion, Amplification and Magnetics (BEAMing) [18,19]
that consisted of emulsion PCR and included Streptavidin-coated
beads in every PCR compartment, followed by recovery of tagged
amplicons and fluorescent oligohybridization of the mutation of
interest. (See Table 2.)

More recent methods using droplet digital PCR [20] and targeted
panels of amplicon sequencing [21] platforms improve ctDNA recovery
and further decrease the lower limit of detection to approximately 1 in
10,000 copies (0.01%). Droplet Digital PCR (ddPCR) takes advantage of
partitioning the PCR amplification reactions into approximately 10,000
to 20,000 independent polymerase reactions per tube. This bypasses
both reverse transcription, amplification efficiency, and avoids the
need for data normalization between each sample [22] according to
the Minimum Information for Publication of Quantitative Real-Time
PCR Experiments (MIQE) guidelines, both of which are prone to analyt-
ical error. Directmeasurement of mutant DNA copies furtherminimizes
errors in relative quantification of qPCR and streamlines the analysis
with less additional steps.

PCR-based assays do carry limitations related to their detection
methods. The numbers of ctDNA that can be detected in one assay are
limited. The number of fluorescence acquisition channels available
often dictates the number of multiplex-droplet PCR amplification and
probe-hybridization reactions. BEAMing is labor-intensive and requires
both Streptavidin bead emulsion PCR and flow cytometry, thus, de-
creasing productivity and the possibility for high-throughput analyses.
Also, only known targeted mutations are measured in BEAMing or
ddPCR analysis. This also generates a challenge in situations where the
amount of template DNA is limited and multiple mutations may be
emerging.

Genome wide approaches to assess global ctDNA in the circula-
tion have gained significant attention. This is because only a fraction
of patients has known cancer-related driver mutations, i.e. EGFR,
BRAF or KRAS. However, initial efforts to utilize shot-gun approaches
with whole-exome sequencing to identify and measure ctDNA were
difficult due to ctDNAs being fragmented and degraded in the
circulations. This further complicates the validation of variant calling
in extensively fragmented DNA samples [23]. A new method that
utilized multiple-tiered mutation analysis based on somatic muta-
tion found in non-small cell lung cancer in The Cancer Genome
Atlas (TCGA), i.e. cancer personalized profiling by deep sequencing
(CAPP-Seq) [24], have improved ctDNA detection. In a set of 96 pa-
tients with stage II–IV NSCLC the authors reported 96% specificity
for mutant allele frequency with lower limit of detection at 0.02%.
This method remains dependent on tumor volume and the type of
cancer assessed due to differences in quantifiable ctDNA that is
distinct between cancer types.
5. Clinical application

ctDNA are found at a relatively high concentration in the peripheral
circulation in patients with metastatic cancer, compared with localized
disease [16]. Also, the presence and amount of ctDNAs in the circulation
is independent of the presence or concentration of CTCs [16], suggesting
independent mechanisms of shedding ctDNA and CTCs. Moreover, the
ctDNA concentration reflects the response to chemotherapy, ormolecu-
lar targeted therapy [25,26]. These findings will still need to be tested
for their clinical implications.
6. Cancer screening

Conventionally, cancer-related protein markers have been used to
monitor patients with limited sets of cancers for recurrent disease, i.e.
CA-125 in ovarian cancer, AFP for hepatocellular carcinoma,
carcinoembryonic antigen (CEA) for colorectal adenocarcinoma, or
lactate dehydrogenase (LDH) for malignant melanoma. Unlike germ-
cell tumors where cancer-related protein markers are highly sensitive
and specific to cancer activities, the majority of cancer-related proteins,
i.e. LDH, remain only screening tools for cancer recurrence without
adequate specificity.

ctDNA are more abundant in the circulation among metastatic
cancers thanearly-staged disease, and the prevalence of ctDNAdetected
in patients with no radiographic evidence of metastasis varies between
49–78%, compared with 86–100% in metastatic disease [27].

Alternative method tomonitor disease activity is through the detec-
tion of unique sets of single nucleotide point mutations specific to the
patient as indicators of disease activity. Also, identification of a patient's
specific somatic chromosomal translocation through high-throughput
sequencing, (“personalized analysis of rearranged ends” PARE) or
through next-gen, matched-pair sequencing analysis have recently
been established. [28–31] This approach uses tumor-specific somatic
rearrangement as personalized biomarkers to monitor disease activities
with the notion that all tumor cells carry structural chromosomal
rearrangements that are not presented in normal tissue or in the
circulations. Major potential limitations in this personalized biomarker
monitoring includes the stability of each biomarker during the
treatment course as the detected biomarker could possibly represent
passenger mutations/rearrangements that can undergo negative
selection and disappear as the tumor progresses.
7. Prognostic markers

Earlier studies used restriction fragment-length polymorphism
and polymerase chain reaction (RFLP-PCR) assays on circulating
DNA to selectively detect circulating mutant KRAS in patients with
non-small cell lung cancers. This correlated with the presence of
KRAS mutations in tumors and with poorer prognosis for overall sur-
vival [32]. Several subsequent studies have confirmed the positive
correlation between survival and ctDNA burden using newer and
more sensitive detection methods. For example, in a cohort of 69 pa-
tients with metastatic colorectal cancers with detectable KRAS
ctDNA, the higher concentration of ctDNA correlated with a poorer
survival rate, independent of ECOG performance status, and CEA
level [27]. Another series also demonstrated the prognostic signifi-
cance of increased levels of ctDNA that is related to poor overall sur-
vival in patients with metastatic breast cancer, a relationship that
cannot be found between level of CA15-3 and metastatic breast can-
cer survival [28,33]. Relationship of the ctDNA concentration has
been linked to disease burden, prognosis, and response to therapy.
The utility of ctDNA as a prognostic biomarker has been extended
to different type of cancers, for example cervical cancer [34], colorec-
tal cancer [35,36], pancreatic cancer [37–39], and melanoma [40,41].



Table 1
Limits of detection of nucleic acids by different methods. ARMS: amplification refractory mutation system; ASP-APEX: allele-specific arrayed primer extension; amplicon sequencing (re-
view in [134]); BEAMing: bead, emulsion, amplification,magnetic polymerase chain reaction; cf: cell free; COLD-PCR: coamplification at lower denaturation temperature-PCR; ditigal PCR
or ddPCR: droplet digital polymerase chain reaction; MEL: mutant enriched liquid chip; NGS: next-generation sequencing; Pyroseq: Sanger sequencing uses chain termination with
dideoxynucleotide. Pyrosequencing relies on detection of pyrophosphate release during strand synthesis; qPCR: quantitative polymerase chain reaction; SNV: single nucleotide variant.
Adapted from [135].

Detection method Lower limit of detection Appropriate samples

Sanger sequencing

Pyrosequencing

AS–APEX, NGS,
pPCR

MEL, ARMS

COLD–PCR

BEAMing, digital PCR

10% Tumor

Tumor

Tumor

Tumor

Rare SNV in tumor, cf–nucleic acids

Rare SNV in tumor, cf–nucleic acids

5%

1–2%

0.1%

0.05%

0.01–0.02%
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8. Predictive markers

Predictive biomarkers that can guide treatment decision have been
sought after to identify subsets of patients who would be “exceptional
responders” to specific cancer therapies, or individuals who would
benefit from alternative treatment modalities. An example of ctDNA as
a potential predictive biomarker is themeasurement of O6-methyl-gua-
nine-methyl-transferase (MGMT) promoter methylation from ctDNA in
glioblastoma multiforme (GBM) patients. This would determine
potential benefits from adjuvant alkylating chemotherapy such as
temozolomide or dacarbazine, in addition to standard post-operative
adjuvant radiation [42,43]. Identification of plasma ctDNA with MGMT
methylation using methyl-BEAMing and bisulfite-pyrosequencing
techniques in metastatic colorectal cancers demonstrated 86% agree-
ment of MGMT methylation status the tumor and ctDNA analyses with
the most methylated allele in the tissues presented in the circulation.
Additionally, MGMT methylation status in ctDNA was associated with
improved median PFS (2.1 v.s. 1.8 months; p value: 0.08) [44]. Analysis
of tumor specific ctDNA could thus facilitate the detection of emerging
resistant mutations tomolecular targeted therapy, and could help tailor
the appropriate treatment based onmutations detected in the tumor or
in the circulation. Sundaresan et al. [45] demonstrated that the use of
ctDNA, complemented bymutation analyses of CTCs and tumor biopsies
can improve the detection rate of T790M EGFR resistant mutation to
molecular targeted therapy of non-small cell lung cancers, first- and
second-generation EGFR tyrosine kinase inhibitors.
Table 2
Selected circulating cell-free DNA and RNA biomarkers in cancer.

DNA Related cancer types Treatmen

BRAF CM [47,136]
PIK3CA MBC [137]
MGMT CM, GBM
KRAS CRC, PDAC [27,141,1
TP53 TNBC, GCa [144]
ESR1 ER + BC, MBC [146]
EML4-ALK fusion NSCLC
Personalized ctDNA CRC, NSCLC [31,150]

RNA markers Related cancer types

miR-125b-5p MBC, DLBCL, NSCLC
miR-155 CLL
miR-200 MBC, CRC, EOC
miR-21-5p CRC, GCa, PDAC, MBC
miR-210 CM, Pca, MBC
miR-221 CRC, PDAC, RCC
miR-222 GCa, GEC

TNBC: triple-negative breast cancer, CM: cutaneous melanoma, GBM:glioblastomamultiforme,
atic ductal adenocarcinoma,MBC:metastatic breast cancer, NSCLC: non-small cell lung carcinom
renal cell carcinoma, EOC: epithelial ovarian carcinoma, DLBCL: diffuse large B-cell lymphoma,
ctDNA can also be incorporated into prospective clinical studies to
identify predictive markers of response to cancer therapy with stratifi-
cations based on the underlying somatic mutation that will render sub-
jects susceptible to specific targeted therapies. (e.g. BRAF L597mutation
in cutaneous melanoma with MEK inhibitor, or PIK3CA mutation in
solid tumors with PIK3CA inhibitors) or indicate emerging resistant
subclones.

9. Treatment monitoring

Several studies have utilized ctDNAs as markers of metastatic dis-
ease activities to monitor disease response and overall disease burden.
In one study, a total of 30 out of 52 patients with metastatic breast can-
cers were found to have somatic variants in their tumors, either by
targeted gene sequencing, or whole-genome paired-end sequencing.
Compared with CTCs and CA 15–3, 97% of patients had measurable
ctDNA, compared with 78% for CA 15–3, and 87% for CTCs. The trend
of serial ctDNA levels appeared to correlate with radiographic response
to therapy. A comparison showedfluctuations of CTCs that are not infor-
mative when the number of CTCs was below 5 cells/ml, and CA 15–3
changes in response to cancer treatment were only small.

Application of ctDNA for treatment monitoring and surveillance
could be useful in certainmalignancieswhere there is no optimalmeth-
od of screening and surveillance, such as pancreatic cancer, or ovarian
cancers. Pereira et.al [46] suggested the potential utility of ctDNA as
an early screening and surveillance tool for gynecologic malignancies
t monitoring Prognostic value Predictive value

[47,136]
[138]

[139] [44,140]
42] [142,143] [142,143]

[145]
[147]

[148]

Prognostic value Predictive value

[151–154] n/a
[155] n/a
[156–160] n/a
[151,161–167] n/a
[168–170] n/a
[171–173] n/a
[115,174] n/a

ER + BC: estrogen receptor positive breast cancer, CRC: colorectal cancers, PDAC: pancre-
a, GCa: gastric cancer, GEC: gastro-esophageal cancer, PCa: prostate adenocarcinoma, RCC:
CLL: chronic lymphocytic leukemia.
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(22 ovarian cancers, 17 endometrial cancers, three fallopian tube
cancers, one peritoneal cancer, and one synchronous fallopian tube
and uterine cancer), where CA-125, an existing protein biomarker, is
neither sensitive nor specific to inform treatment decision. In this
study, patient-specific mutations discovered from exome and targeted
amplicon sequencing of each tumor were then recovered in the
peripheral circulation as ctDNA at a 93.8% detection rate. Furthermore,
the presence of ctDNA provided an average lead-time of seven months
over computed tomography (CT) scans.

10. Limitations

While ctDNA monitoring could offer potential improvements in
non-invasive cancer treatment monitoring, there are inherent
limitations related to ctDNA tumor markers. ctDNAs demonstrates a
strong correlation with tumor burden but are not always detectable in
peripheral blood. Most studies have shown an approximately 70–80%
concordance between tumor somatic mutation and the presence of
ctDNA in the circulation [25,47].

ctDNA quantification is highly dependent on pre-analytical
specimen handling. While it is possible to recover ctDNA at a compara-
ble concentration between 2–4 h and 24 h processing time [25,48], sev-
eral studies have demonstrated significant changes in the mutant-to-
wild type DNA ratios between specimens processing within 2–4 h of
blood collection relative to processing at 24h. There is also no consensus
on the method of ctDNA quantification and how ctDNA should be se-
lected from multiple mutations detected in the cancer genome.

The source of ctDNA should also be standardized, either from serum
or plasma. Prior studies [49,50] demonstrated a discrepancy of ctDNA
concentrations between serum and plasma samples. ctDNA concentra-
tions were consistently low in the plasma compared to the serum due
to possible loss of circulating DNA during purification, as coagulation
and other proteins are being eliminated during specimen preparation.

While ctDNA could be useful in the early detection of cancer recur-
rence, a potential major limitation is the lack of a consensus on the
next step of management following detection of ctDNA in individuals
without radiographic evidence of cancer recurrence or relapse. A great
example has been CA-125, a protein biomarker for ovarian cancer, in
the MRCOV05/EORTC 55955 trial [51] for which 529 of 1442 ovarian
cancer patients completed their chemotherapy and had their CA-125
returned to normal range were randomized to either early or delayed
treatment upon their recurrence of CA-125 above twice normal limits.
Despite earlier treatment based on elevated CA-125 level, there was
no difference in overall survival (median overall survival 25.7 months
(95% confidence interval (CI), 23.0–27.9) in the early treatment arm
vs. 27.1 months (95% CI, 22.8–30.9) in the delayed treatment arm,
with a hazard ratio (HR) of 0.98 (95% CI, 0.80–1.20; p = 0.85). This
finding led to a recommendation against treatment decision based on
CA-125 alone without radiographic or physical evidence of disease
recurrence.

Similarly, lead-time bias is another major challenge in early cancer
screening tools, as previously mentioned in yearly low-dose CT scan
for lung cancer screening, and routine PSA monitoring in prostate
cancer [52–54]. Further research should be performed to validate the
utility of ctDNA as potential biological markers in prospective trials.

11. Circulating RNA

11.1. Types of circulating cell-free RNA: messenger RNA

Circulatingmessenger RNAs (mRNA) in human cancer patientswere
first described in the 1990s in patients with different type of cancers, i.e.
gastric cancer, pancreatic cancer [55], nasopharyngeal carcinoma [56]
andmelanoma [57]. BecausemRNAs possess a critical role in intracellu-
lar protein translation and, it is likely that extracellular mRNAs reflect
the status of the intracellular process, and are conceivably potential
biomarkers for cancer diagnosis or therapeuticmonitoring. Later studies
reported various coding RNAs in plasma or serum from patients with
cancer, and levels of circulating cell free mRNAs (cf-mRNA) were
found to be predictive of clinical outcome [58,59] and disease prognosis
[60,61]. However, extracellular circulating mRNAs are subjected to
degradation, instability, low abundance, and intracellular mRNA
contamination from specimen processing [62,63]. Thus, the reproduc-
ibility and utility of cf-mRNA as biomarkers is severely limited.

11.2. Types of circulating cell-free RNA: non-coding RNA

Non-codingDNA sequences are actively transcribed into non-coding
RNAs consisting of long non-coding RNAs (lncRNA), microRNAs
(miRNA), short interfering RNAs (siRNAs), and piwi-interacting RNAs
(piRNA), among other lncRNA species. Unlike mRNA, the function of
non-coding RNA is the regulation of gene expression. The vast majority
of observations in the field of circulating RNAs involve miRNAs and
lncRNAs, however as increasing RNA sequencing data is being generat-
ed, it is becoming clear that piRNAs and snoRNAs in human plasma are
gaining importance.

11.3. Piwi-interacting RNAs (piRNA)

PiRNAs are single stranded 26–31 nucleotide long RNAs which can
repress transposons and target mRNAs, mediated by binding to PIWI
proteins. PIWI proteins belong to a subfamiliy of Argaunate proteins.
piRNA biogenesis is Dicer and Drosha independent [64] Although the
piRNAs are studied only recently, it is known that piRNAs are a large
class of small non-coding RNAs in animal cells and it is thought there
are many thousands of distinct piRNAs. According to the piRNABank
(http://pirnabank.ibab.ac.in/stats.html) there are more than 32,000
unique piRNAs. In addition to their role in maintaining the integrity of
germ line DNA, piRNAs are found to be deregulated in cancer. [65]
PiRNAs are highly abundant in human plasma [63] Plasma levels of
PiR-019825 were found to be deregulated in patients with colorectal
cancer, whereas piR-016658 and piR-020496 were associated with
prostate cancer patients, and plasma levels of piR-001311 and piR-
016658 were found to be dysregulated in patients with pancreatic
cancer. [63] Despite their large quantities, the role of piRNAs in the
circulation has not been studied and still needs to be elucidated.

11.4. Small nuclear and small nucleolar RNA(snRNA and snoRNA)

snRNA and snoRNA consist of large number of non-coding RNA
species of 60–300nucleotide long that were transcribed from interven-
ing sequences of protein-coding genes (a.k.a.host genes). snRNAs are
important in RNA-RNA remodeling and spliceosomes assembly.
snoRNAs involve in post-transcriptional modification of ribosomal
RNA and play integral roles in formation of small nucleolar ribonucleo-
protein particles (snoRNP), which are important cellular regulation and
homeostasis. There are twomajor classes of snoRNA, the first one is box
C/D snoRNA, a.k.a. SNORDs (contains box C (RUGAUGA) and D (CUGA)
motif), and box H/ACA snoRNA, a.k.a. SNORAs, (contains box H
(ANANNA) motif and ACA elements) (review in [66]). Perturbation of
snRNA and snoRNA expression has been documented in different type
of cancers. Increased ratio of U6 snRNA to SNORD44 snoRNA were
noted to be higher in breast cancer patients regardless of disease status
or staging. SNORD112–114 are overexpressed in acute promyelocytic
leukemia and suppression of the same snoRNAs under the effect of all-
trans retinoic acid-mediated differentiation [67]. There are also
enrichment of U22, U3, U8, U94 box C/D snoRNAs in human breast
cancer cell lines [68] and over-expression of both SNORD and SNORA
species in lung adenocarcinoma and squamous cell carcinoma [69,70].
Additionally the same study demonstrates increased expression of cer-
tain snoRNAs species. Namely, in a study of snoRNA on non-small cell
lung carcinoma that showed increased expression of SNORD33,

http://pirnabank.ibab.ac.in/stats.html
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SNORD66, SNORD73B, SNORD76, SNORD78, and SNORA41, subsets of
overexpressed snoRNA, SNORD33, SNORD66, SNORD76 were reliably
detectable in the NSCLC patients' plasma at a significantly higher level
compared to healthy controls or COPDpatients. However, there remains
paucity of data on snRNAs and snoRNAs as potential diagnostic,
prognostic or predictive markers.

11.5. Long non-coding RNAs (lncRNA)

The lncRNAs are defined as N200 nucleotides in length and classified
into five subclasses, which include intergenic, intronic, sense overlap-
ping, anti-sense, and bidirectional lncRNAs [71]. LncRNA regulates ex-
pression of protein-coding genes, functions at the level of splicing,
chromatin remodeling, transcriptional control and post-transcriptional
processing after binding to DNA, RNA or proteins [72]. Dysfunction of
lncRNAs is associated with a wide range of diseases. Experimentally
supported lncRNA-disease associations are collected and curated in
publicly available domain, i.e. the LncRNADisease database which
contains sequence annotations, description of lncRNA functions and
organ specific expression levels [73]. LncRNADisease also curated
lncRNA-interacting partners at various molecular levels, including
protein, RNA, microRNA and DNA. Several thousand RNA transcripts
have been identified as lncRNAs [74] and their expression are tissue-
specific [75], involving growth, metabolism and cancer metastasis
[76]. Despite the paucity of data on circulating lncRNAs, the interest in
circulating lncRNAs in human cancer has grown recently [77–81]. In
renal cell cancer, levels of plasma lncARSR is higher than those of
healthy blood donors, lncARSR levels decreased after tumor resection
and were elevated upon tumor relapse. [82]. Moreover they showed
that high pre-therapy plasma lncARSR levels could predict which
patientswould suffer fromprogressive disease during sunitinib therapy.
This could indicate that circulating lncRNAs have potential to serve as
predictive biomarkers for clinical benefits of cancer therapy.

Interestingly, the ratio of different RNA transcripts within exosomes
differs from their cells of origin, suggesting that lncRNA are transported
into exosomal vesicles in a tightly regulated manner [83]. For example,
circulating levels of lncRNA H19 are elevated in patients with gastric
cancer compared with healthy controls and plasma H19 lncRNA
expressionwas reduced postoperatively in patientswith elevated levels
of H19 lncRNA pre-operatively [84]. However, there was no correlation
between the expression of H19 in plasma and primary tumor tissues.
This discrepancy may be due to decreased RNA integrity in plasma
and reduced RNA quality and degradation in formalin-fixed paraffin-
embedded (FFPE) tissues. Interestingly, there was no difference in
H19 expression between tumor and paired non-cancerous tissues in
FFPE samples. These findings provide evidence of different tissues of
origin from each circulating lncRNAs, e.g. the lymphatics, the
cardiovascular or nervous system, circulating peripheral blood cells or
hematologic stem cells. This implies that circulating lncRNAs can
provide information about the tumor-host microenvironment and
crosstalk, and thus reflect the systemic nature of cancer. A study using
sera from gastric cancer patients suggested that circulating CUDR,
PTENP1 and LSINCT-5 lncRNAs expression could distinguish patients
with gastric cancer as early as stage 1 from healthy subjects and from
patients with gastric ulcers, although there was no association between
the lncRNAs and tumor characteristics (location, size, and TNM staging)
[85].

11.6. microRNA

Mature microRNAs (miRNA) are highly conserved short strands of
non-coding RNA, derived from hairpin precursor transcripts [86]. After
cleavage of primary microRNA (pri-miRNA) transcripts by the Drosha/
DCGR8 complex, nuclear-to-cytoplasmic transport, and maturation
with DICER1 [87,88], 21–24 nucleotide long, double stranded mature
miRNAs are formed. One of the mature miRNA strands binds
predominantly to the 3′untranslated region (UTR) region of mRNA to
regulate protein translation. Additionally, miRNAs can also bind to the
open reading frame (ORF) or 5′UTR of target mRNAs to repress or acti-
vate translational efficiency [89–92]. The discovery of small RNAs that
are involved in translation regulation via an antisense RNA-RNA interac-
tion was first described in Caenorhabditis elegans [93]. To date, more
than 2500 human mature miRNAs have been identified and annotated
[94], with more than half of human protein-coding genes likely regulat-
ed by a miRNA [95].

miRNAs are dysregulated in cancer and play crucial roles in cell
proliferation, apoptosis, metastasis, angiogenesis and tumor-stroma
interactions [96]. Dysregulated miRNA(s) can function both as onco-
genes (e.g. miR-155; miR-21, miR-221; miR-222, miR-106b-93-25
cluster; the miR-17-92 cluster) and tumor suppressors (e.g. miR-15;
miR-16; let-7; miR-34; miR-29; miR-122, miR-125a-5p and miR-
1343-3p), depending on their downstream targets [63,97]. Many
humanmiRNA genes are located on chromosomal sites that are suscep-
tible to chromosome breakage, amplification and fusion with other
chromosomes [98]. Additionally, alterations in RNA binding proteins
and cell signaling pathways contribute to cancer through miRNA
expression changes as well as mutations in core components of the
miRNA biogenesis machinery that can promote oncogenesis [87]. It
has recently been shown that mutant KRAS in colon cancer cell lines
leads to decreased Ago2 secretion in exosomes and Ago2 knockdown
resulted in decreased secretion of let-7a and miR-100 in exosomes
whilst cellular levels of the respective miRs remained unchanged
compared to control cells. [99].

A systematic expression analysis of 217 mammalian miRNAs from
334 samples, including multiple human cancers revealed extensive
diversity in miRNA expression across cancers, and a large amount of
diagnostic information encoded in a relatively small number of
miRNA. More than half of the miRNA (129 out of 217) had lower
expression levels in tumors compared to normal tissues, irrespective
of cell types [100]. miRNA expression profiles allows classification of
poorly differentiated cancers and identify tumors of unknown tissue
origin [100]. In subsequent studies, profiling miRNA expression
improved cancer diagnosis and helped identify the tissue of origin in
carcinoma with unknown primary site by standard histology or
immunohistological analyses [101,102].

miRNAs are present and stable in the peripheral circulation. The first
report on miRNA expression in the circulation in 2008 described detec-
tion of four placenta-associated miRNAs (miR-141, miR-149, miR-299-
5p, and miR-135b) in maternal plasma during pregnancy, after which
the level decreased following delivery [103]. In 2008, a study
demonstrated increased levels of circulating miR-21, miR-155 and
miR-210 expression in patients with diffuse large B-cell lymphoma
(DLBCL) compared to healthy controls [104]. Mitchell et al. also showed
that circulating serum miR-141 could distinguish patients with
advanced prostate cancer from healthy controls [105].

The vast majority of research on circulating miRNA signatures in
oncology is focused on diagnostics [106], in which patients with cancer
are compared to healthy individuals. Given the profuse inter-individual
differences in genetic background of individual patients in addition to
the heterogeneous nature of cancer, using cf-miRNA as cancer diagnos-
tic biomarkers will remain challenging.

The origin of cf-miRNA is heterogeneous. miR-21 is a good example
to illustrate this point. Although the release of miR-21 into the circula-
tion is correlated with a multitude of cancer types, it is also highly
expressed in activated T-cells and associated with inflammation and
wound healing [107–109]. Elevated circulating miR-21 levels do not
merely reflect tumor presence. They can also reflect the host response
to the tumor, which is important in predicting disease progression.
Moreover, there are often discordances between cf-miRNA signatures
and the paired tumor tissue [106]. Assuming that the quality of
miRNAmeasurements is not determined by the efficacy of RNA extrac-
tion, this suggests that cancer-associated cf-miRNA deregulations is
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more likely to reflect the systemic response to the presence of cancer.
Indeed, several studies have shown that cf-miRNAs are predominantly
derived from blood cells [110] and the endothelium [111] in addition
to the tumor.

Cancer progression and systemic drug therapy involve many organ
systems and are not limited to the primary tumor. This makes cf-
miRNA attractive biomarkers for cancer progression and drug efficacy
monitoring. For instance, in serum obtained pre-surgically from
patients with early stage colorectal cancers, a panel of 6 circulating
miRNAs can predict cancer recurrence [112]. Changes in cf-miRNA
patterns within the same patients can be monitored over time during
therapy. The growing evidence of the utility of cf-miRNA as cancer
therapy response indicators has been accumulating during the last
few years [113–115]. Cf-miRNAs are likely to surpass the clinical utility
of conventional protein markers such as CA-125, CA19-9, PSA and
radiographical techniques, which have low sensitivity and specificity
and are not designed to characterize cancer at a genetic level.

12. Modes of RNA transport into the circulation

Human serum contains ribonucleases (RNase) that originate from
leukocytes and the pancreas and catalyze the cleavage of bonds
between ribonucleotides. Levels of serum RNases are elevated in pa-
tientswith cancer [116]. Despite the rich abundance of RNAses, circulat-
ing RNAs have been found to be unexpectedly stable against RNase
degradation, as long as the uncentrifuged blood is stored at 4 °C, and
plasma is processed within 6 h. Also, single freeze/thaw cycle produces
no significant effect on the RNA concentration of plasma or serum [117].

One explanation for the circulating RNAs' stability is encapsulation
by protective membrane bound vesicles. These vesicles consist of a
lipid bilayer membrane surrounding a small cytosol and are separated
into three types: exosomes, microvesicles (MVs, ectosomes or micro-
particles), and apoptotic bodies (ABs). Each vesicle type can originate
from normal or cancerous cells, transfer molecular cargo to both
neighboring and distant cells, andmodulate cellular behaviors involved
in physiology and pathology [118–120].

Exosomes were first identified as vesicles with 5′nucleotidase
activity in 1981 by Trams et al. [121] and later described as 30 to
100 nm vesicles of endosomal origin [122]. An attempt to profile the
ribonucleic material enclosed within exosomes isolated from plasma
of 3 healthy human blood donorswas performedby using small RNA se-
quencing libraries designed to capture small non-coding RNAs of
~20–40 nucleotides length [123]. This analysis was recently repeated
in a larger cohort of human subjects and generated similar results:
The plasma exosomal RNA species are made up of 40.4% mature
miRNAs, 40% piRNAs, 2.1% mRNAs and 2.4% lncRNAs [63]. In a recent
RNA sequencing analysis in human plasma from 40 individuals, 669
miRNAs, 144 piRNAs and 72 snoRNAs were found to be expressed
above one read per million [124].

Interestingly, bovine miRNAs were detected in the human plasma
exosomes. However their origin remains to be elucidated since it is un-
known whether dietary miRNAs can enter the human circulation
through the gastrointestinal system. Microvesicles are larger vesicles
(50 to 1000 nm) created through direct budding from the plasmamem-
brane and contain metalloproteases in addition to lipids, cytokines,
growth factors, membrane receptors and nucleic acids which exosomes
also carry [119]. Exosomes can be separated from vesicles of different
sizes using ultracentrifugation at different speeds, with the larger vesi-
cles pelleting at lower speed than the smaller ones [118]. ABs are 500
to 2000 nm in diameter that are released by cells undergoing apoptosis
and may contain genomic DNA fragments and histones in addition to
RNAs. Tumor-derived mRNA associated with apoptotic bodies remains
stable in serum, in contrast to mRNA in serum samples mixed with
free tumor cell-derived mRNA even when the mRNA was rapidly
extracted, i.e. within 1 min after incubation [125,126]. Extracellular
vesicles play a critical role in cancer, since they can contain oncogenes,
mutated tumor suppressor genes, hypoxia-related molecules, angio-
genic factors, immune regulatory proteins, RNAs, and various metabo-
lites and the field of extracellular vesicle research in cancer biology is
expanding fast.

Despite the protection provided by extracellular vesicles against
RNA degradation, miRNA in plasma can pass through 0.22 μm filters
and remain in the supernatant after ultracentrifugation, indicating the
non-vesicular origin of a portion of extracellularmiRNA [127]. This phe-
nomenon is explained by the fact that miRNA can be transported when
bound to proteins, in addition to being carried by vesicles. One example
of miRNA delivering proteins is high-density lipoprotein (HDL). HDL
can carry both exogenous and endogenous miRNAs to recipient cells
resulting in direct targeting of mRNA reporters [128], and HDL-
mediated delivery of miRs to recipient cells is dependent on scavenger
receptor class B type 1. Furthermore, Nucleophosmin (NPM1, nucleolar
phosphoprotein b23, numatrin) is thought to be involved both in the
miRNA exporting process and in protecting external miRNAs outside
the cell from RNAse digestion [129]. Another study describes that a
large portion of plasma miRNAs cofractionated with protein complexes
rather than with vesicles and that miRNAs were sensitive to protease
treatment of plasma, indicating that protein complexes protect circulat-
ingmiRNAs from plasma RNases [130]. Argonaute2 (Ago2) is present in
plasma and is the key effector protein of miRNA-mediated RNA
silencing. Importantly, the identification of extracellular Ago2-miRNA
complexes in plasma raises the possibility that cells release a functional
miRNA-induced silencing complex into the circulation. Irrespective of
the packaging of circulating RNAs, extracellular RNA secretion is an
active and tissue-specific phenomenon, which makes them biologically
significant. It is likely that isolation of RNA from plasma or serum
without prior separation into subsets can capture all compartments in-
cludingmembrane-derived vesicles and protein boundmolecules. Since
they are biologically functional regardless of the type of carrier, analysis
of the complete assemblage should be performed for their utilization as
informative biomarkers.

13. Method of detection for circulating RNA

There are multitudes of commercial RNA isolation kits available that
serve their purpose adequately [131]). Cf-RNA yields are low compared
to levels of RNAs of cellular or tissue origin, and depending on the
desired type of RNA, diverse methods can be used for either total RNA
or exclusively small RNA isolation.

The gold standard for RNA quantitation is qRT-PCR and this applies
to circulating RNAs as well. The required input for this assay is as low
as a few nanograms of RNA which makes qRT-PCR attractive for low
abundant cf-RNA detection. Whether based on Taqman, Locked-
Nucleic-Acid or Sybr-Green technology, overall RNA-specific qPCR is
sensitive, the specificity of the assay is high and results are obtained
within a day. A relatively novel technology called Droplet Digital PCR
(ddPCR, Bio-Rad™) is described above and can also be applied to RNA.
This analysis enables highly reproducible quantitation of low abundant
RNAs. The limitations of RNA-specific qPCR are the low throughput, lack
of suitable housekeeping gene normalizers and the inability of miRNA
discovery.

Broad gene expression arrays allow for higher throughput, as they
can include several hundreds of target RNAs in a single assay. Arrays
are either based on qPCR or hybridization technologies and are
commercially offered by ABI, Agilent, Affymetrix, Exicon, Nanostring,
Toray, MiRXES and Illumina among many other companies. These
assays require 30–100 ng RNA input. It has been reported that qRT-
PCR-based arrays performed better than hybridization platforms with
respect to limits ofmiRNAdetection [132]. Adequate data normalization
and analysis requires experience and can take several days.

For RNA discovery beyond detection of known target genes, RNA
sequencing is necessary. However, cDNA library preparation may
introduce sample bias. Deep sequencing with the use of small RNA-
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cDNA libraries is suitable for shorter RNAs, however for adequatemRNA
and lncRNA transcript discovery, longer read sequencing may be more
suitable.

Recently, next-generation sequencing (NGS) has emerged as an
unbiased alternative optionwith greater dynamic range of detection, in-
creased sensitivity and reproducibility. NGS platform could overcome
fundamental problems with array-based platform that rely on
hybridization of RNAs to the pre-specified probes and rendered small
dynamic range of detection as well as limitation in discovery of new
ncRNA species. It is also important to realize that cross-comparison of
ncRNA, especially miRNA, between different platforms remains
problematic due to (i) enrichment of ncRNA species that is below or
exceed the detection limit (ii) amplification bias and (iii) false positive
detection from non-full length RNA sequencing. For example,
NanoString miRNA detection platform that utilize solution-based
hybridization and fluorescent-based barcode digital counting system
showed only moderate correlation [133], Spearman's p = 0.49, with
NGS platformwith Illumina TruSeq Small RNA protocol that underwent
pre-amplification, followed by size-selection and multiplexed sequenc-
ing in each flow cells prior to sequencing.

Validation of results obtained by any of the aforementionedmethods
is necessary and this is usually done with qPCR. Although collection of
larger sample numbers are achieved in multi-institutional studies,
acquiring robust data is usually problematic in this setting due to
technical differences in blood processing, RNA isolation and quantita-
tion methods. Strict methodological standardization must be applied
to generate informative circulating RNA data.

14. Clinical application of circulating RNA

Circulating cell-free RNA has a major potential as a cancer biomark-
er. A number of RNA species are deregulated as a result of the
uncontrolled cell proliferation, stromal remodeling and immune
regulation that define cancer. Distinct alteration in circulating RNA
reflects dysregulation of cancer immunity, cell growth, proliferation
and stromal interaction. Given the systemic nature of cancer, its biology
should be studied in the context of the host response, which makes cf-
RNAs suitable complementary tools. Besides the non-invasive nature
of blood sampling, liquid biopsies allow for serial sample collection at
different time points relative to treatments. This is particularly valuable
with respect to the promising cancer immune therapy research that
relies on the host response.

15. Summary and future direction of circulating biomarkers

Circulating biomarkers development is a fledgling but rapidly
growing field in cancer research. Circulating biomarkers will continue
to evolve with ongoing improvements in detection limits, decreasing
the amount of nucleic acids template, expanding the number genes
available for analysis and reduction of the operating cost and time. An
overall estimation of tumor characteristic with a snapshot of circulating
nucleic acids is no doubt going to support treatment decisions and
monitoring of cancer due to the dynamic nature of the disease and its
heterogeneity. However, the major challenge in biomarker discovery
is its validation in prospective clinical studies to assess their impact.
Finally, until each of them is thoroughly validated and compared with
standardized assessment for treatment response (i.e. RECIST criteria)
and overcome problems of standardization, tumor-liquid biopsy
discrepancies and lead-time bias, circulating biomarkers are still
experimental and represent an interesting set of research tools.
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