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Abstract: (1) Background: Endometrial cancer is the most prevalent cause of gynecological malignant
tumor worldwide. The prognosis of endometrial carcinoma patients with distant metastasis is poor.
(2) Method: The RNA-Seq expression profile and corresponding clinical data were downloaded from
the Cancer Genome Atlas database and the Gene Expression Omnibus databases. To predict patients’
overall survival, a 9 EMT-related genes prognosis risk model was built by machine learning algorithm
and multivariate Cox regression. Expressions of nine genes were verified by RT-qPCR. Responses to
immune checkpoint blockades therapy and drug sensitivity were separately evaluated in different
group of patients with the risk model. (3) Endometrial carcinoma patients were assigned to the high-
and low-risk groups according to the signature, and poorer overall survival and disease-free survival
were showed in the high-risk group. This EMT-related gene signature was also significantly correlated
with tumor purity and immune cell infiltration. In addition, eight chemical compounds, which may
benefit the high-risk group, were screened out. (4) Conclusions: We identified a novel EMT-related
gene signature for predicting the prognosis of EC patients. Our findings provide potential therapeutic
targets and compounds for personalized treatment. This may facilitate decision making during
endometrial carcinoma treatment.

Keywords: endometrial cancer; epithelial–mesenchymal transition; immune microenvironment;
immune checkpoint blockades; prognostic signature

1. Introduction

Endometrial carcinoma (EC) is one of the most prevalent causes of gynecological
malignant tumors. The incidence of EC kept increasing 1.3% per year from 2007 to 2016
worldwide. According to the latest cancer statistics, it was estimated that there would
be approximately 65,620 new cases diagnosed and 12,590 deaths in the United States in
2020 [1]. Those patients who are diagnosed in the early stage could receive appropriate
treatment and achieve a good prognosis. However, EC patients with distant metastasis had
poor prognosis, with a 5-year survival rate lower than 20% [2]. It is essential to implore
efficient biomarkers and therapeutic targets to acquire better prognoses for EC patients.

Epithelial–mesenchymal transition (EMT) is a multistep process in which epithelial
cells develop a mesenchymal phenotype characterized by the loss of polarity and barrier
integrity, and therefore gain motility and invasive properties [3]. EMT plays a crucial role
in tumor invasiveness and metastasis [4]. Accumulated evidence shows that EMT plays
important role in cancer metastasis and drug resistance in multiple cancers, including
endometrial cancer. A decreased level of E-cadherin was reported in endometrial cancer
with an elevation of Snail and Slug nuclear expression, which significantly represented
the EMT process and related to poor prognosis in endometrial cancer [5]. However, the
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expression profile of EMT-related genes as a prognostic factor and potential as a therapeutic
target has not been systematically explored.

The EMT signaling pathways could be activated by several cytokines or growth factors
from the focal microenvironment. The tumor cells that undergo EMT are also associated
with immune exclusion and immune deviation in the tumor microenvironment (TME) [6].
Recently, pan-cancer analysis has revealed a strong correlation between EMT and immune
activation [7]. The crosstalk between EMT and the immune cells may bring potential
therapeutic opportunities.

In our study, we investigate the correlation between EMT-related genes (ERGs) ex-
pression and clinical data in 543 endometrial cancer patients downloaded from the Cancer
Genome Atlas (TCGA). The least absolute shrinkage and selection operator (LASSO) Cox re-
gression was carried out to constructed the EMT-related genes signature. We also conducted
an integrated analysis of tumor immune microenvironment, immunotherapy response, and
drug sensitivity according to the gene signature.

2. Method
2.1. Data Preparation

We acquired the EMT-related genes (ERGs) list from the epithelial–mesenchymal
transition gene database (http://dbemt.bioinfo-minzhao.org/dbemt2.txt (accessed on
29 October 2020)), which contained 1184 epithelial–mesenchymal transition genes with
experimentally verified information and pre-calculated regulation information for can-
cer metastasis [8]. Level 3 high-throughput sequencing mRNA expression data of ERGs
and corresponding clinical data of the endometrial carcinoma (UCEC) cohort were ob-
tained from the TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/ (accessed on
3 November 2020)). Somatic mutation data and copy number variation were also down-
loaded from TCGA. The fragments per kilobase of transcript per million method was
applied to normalize the expression data. The gene expression dataset, GSE21882 based
on GPL10422 SWEGENE H_v3.0.1 and GPL10423 SWEGENE H_v2.1.1 was downloaded
from GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21882 (accessed
on 5 December 2020)). There were 45 type 1 endometrial carcinoma samples included in
the dataset. The raw data were downloaded from the GEO database as a dataset soft file.

2.2. Differentially Expressed ERGs

The “limma” package [9] was applied to identify the differentially expressed EMT-
related genes (EGRs). ERGs in the TCGA-UCEC mRNA expression cohort were identified
with FDR < 0.05 and |logFC| > 1. Additionally, “ggplot”, “ggrepel”, and “heatmaps” [10–12]
were executed in the R package to perform visualization.

2.3. Enrichment Analysis of Intersection Genes

GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrich-
ment analyses and visualization of intersection genes were performed by “clusterProfiler”,
“topGo”, “Rgraphviz” and “pathview” R package [13–16] with p < 0.05 as the cut-off value.

2.4. Individualized Gene Signature

As we acquired the ERGs and the clinical data of 539 patients in TCGA-UCEC, univari-
ate COX regression was performed with “survival” R packages, and 101 prognostic-related
ERGs in TCGA-UCEC were identified with p < 0.05. Next, we performed a machine
learning algorithm, the LASSO algorithm [17] with a 10,000-time cross-validation. At last,
9 genes were identified as prognostic-related ERGs. With these 9 prognostic-related ERGs,
multivariate Cox regression analysis was performed to generate an individual predictive
formula. The risk score, (RS) = ∑n

i=1 βi ∗ xi (β stands for the regression coefficient and
x stands for the expression of a selected gene), based on the formula mentioned above
were calculated in the TCGA-UCEC cohort and verified in the GSE21882 dataset. Based on
the median value of RS, the patients in the two datasets were divided into low-risk and

http://dbemt.bioinfo-minzhao.org/dbemt2.txt
https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21882
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high-risk groups; then, overall survival, disease-free survival, and clinical–pathological
characteristics were compared between the two groups.

2.5. Nomogram Construction

Univariate analysis has identified that age at diagnosis, FIGO stage, differentiation
grade, and risk score were significantly associated with overall survival. The cut-off p
was set as 0.05. All the significant prognostic variates mentioned above were enrolled in
the multivariate Cox analysis. The p was set as 0.1 in the multivariate Cox analysis, then
age at diagnosis, differentiation grade, FIGO stage, and the risk score were included in
the nomogram construction. C-index was applied to evaluate the predictive power of the
constructed nomogram for the overall survival [18]. A larger C-index dictated a better
predictive power of the nomogram. The calibration curve was applied to determine the
compliance between the predictive survival probability and the actual survival proportion
after bias correction for the 3-year and 5-year overall survival.

2.6. Tumor Immune Microenvironment Analysis

ESTIMATE (estimation of stromal and immune cells in malignant tumor tissues using
expression data) is one of the algorithms developed to evaluate the cell tumor composition
by calculating the immune and stromal scores using Pearson’s correlation coefficient. By
using the “estimate” R package [19], the immune and stromal scores were calculated
based on the gene expression data of EC patients in TCGA-UCEC. The infiltration levels
of 22 immune cells in each TCGA-UCEC patient were calculated through the R package
“CIBERSORT” algorithm based on the gene expression levels [20].

2.7. Immunotherapy and Chemotherapy Response Prediction

CTLA-4 and PD-1/PD-L1 pathways have been proven to be crucial in immune eva-
sion, and thereby immune checkpoint blockades therapy targeting PD-1 or CTLA-4 were
developed to improve certain patients’ prognosis [21]. The tumor immune dysfunction
and exclusion (TIDE) algorithm was utilized to predict the clinical response to immune
checkpoint blockades therapy [22]. As chemotherapy is necessary for advanced EC patients
and substantial chemotherapy was still debatable after the failure of initial chemother-
apy, we acquired information from the Genomics of Drug Sensitivity in Cancer (GDSC)
database [23]. Clinical response to the different compounds was predicted through the R
package “pRRophetic” [17] and the half-maximal inhibitory concentration (IC50) of the
samples were predicted by ridge regression [17].

2.8. PCR Validation

Quantitative real-time PCR was performed to validate the mRNA expression levels
of the 9 ERGs. In total, 10 pairs of samples of EC patient’s tumor tissue and adjacent
normal tissue were acquired from the third affiliated hospital of Sun Yat-sen University.
TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) was applied to extract the total RNA.
PrimeScriptTM RT Reagent kit (Takara Biotech, Dalian, China) was applied to make cDNA
according to the manufacturer instruction. Talent qPCR PreMix (SYBR-Green) (Tiangen
Biotech, Beijing, China) was used to perform real-time quantification. A melting curve
analysis was then performed. The expression levels were normalized by GAPDH. Relative
expression (defined as the fold change) of the target genes were determined by the following
equation: 2−∆∆Ct (∆Ct = ∆Cttarget − ∆CtGAPDH; ∆∆Ct = ∆Cttumor − ∆Ctnontumor). This
value was normalized to the average fold change in the normal endometrial tissues, which
was defined as 1.0. The sequence of the primers was listed in Table 1.
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Table 1. Sequences of the primers.

Primer Name Primer Sequence

EPHB2 Foward AGAAACGCTAATGGACTCCACT
EPHB2 Reverse GTGCGGATCGTGTTCATGTT
TUFT1 Foward TCAGACTGTGTGGCTTTTGAG
TUFT1 Reverse GTCAGCATTGTTGCTCCGAAG

CDKN2A Foward GATCCAGGTGGGTAGAAGGTC
CDKN2A Reverse CCCCTGCAAACTTCGTCCT

ONECUT2 Foward GGAATCCAAAACCGTGGAGTAA
ONECUT2 Reverse CTCTTTGCGTTTGCACGCTG

RBP2 Foward TTTTGCCACCCGCAAGATTG
RBP2 Reverse CGGAATGTGCTAGTGGTTTTTGT
KLF8 Foward CCCAAGTGGAACCAGTTGACC
KLF8 Reverse GACGTGGACACCACAAGGG
E2F1 Forward ACGCTATGAGACCTCACTGAA
E2F1 Reverse TCCTGGGTCAACCCCTCAAG
SIX1 Forward CTGCCGTCGTTTGGCTTTAC
SIX1 Reverse GCTCTCGTTCTTGTGCAGGT

ERBB2 Foward TGCAGGGAAACCTGGAACTC
ERBB2 Reverse ACAGGGGTGGTATTGTTCAGC

GAPDH Foward AGATCCCTCCAAAATCAAGTGG
GAPDH Reverse GGCAGAGATGATGACCCTTTT

3. Result
3.1. Identification of Differentially Expressed ERGs

The overall process for constructing and verifying EMT-related gene signature is
shown in Figure 1. RNA-seq and clinical follow-up data from TCGA-UCEC datasets
were downloaded, which contains 543 cancer samples and 35 normal samples. A total
1184 EMT-related genes (ERGs) were acquired from the Human EMT Database. Then,
the transcriptional expression of these 1184 ERGs in TCGA-UCEC RNA-seq data were
compared between normal samples and UCEC samples through the “limma” package in
R software (|logFC| > 1, FDR < 0.05). The results indicated that there were 236 genes
significantly upregulated and 169 genes significantly downregulated in UCEC (Figure 2a).
The screened differently expressed EMT-related genes were enrolled for heatmap generation
(Figure 2b).
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Figure 2. Identification of differently expressed EMT-related genes. (a) The volcano plot was
generated for depicting the 1184 differently expressed EMT-related genes (ERGs) levels between
uterine corpus endometrial carcinoma (UCEC) and normal endometrium tissues, with an FDR < 0.05,
and |logFC| > 1. (b) Heatmap for all the screened ERGs expression in TCGA-UCEC dataset.

3.2. Biological Functions Pathways Analysis

Biological functions pathways analysis was executed of these 405 differentially ex-
pressed ERGs. Gene ontology (GO) enrichment terms are shown in Figure 3a. The result
of GO enrichment shows that the screened ERGs positively regulate the DNA-binding
transcription activation in UCEC. KEGG pathway enrichment of these genes is shown
in Figure 3b. These results indicate that the differentially expressed ERGs were mainly
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related to focal adhesion, EGFR tyrosine kinase inhibitor pathways, and transcriptional
deregulation in cancer (Figure 3).

Genes 2022, 13, x FOR PEER REVIEW 6 of 20 
 

 

Figure 3b. These results indicate that the differentially expressed ERGs were mainly re-
lated to focal adhesion, EGFR tyrosine kinase inhibitor pathways, and transcriptional de-
regulation in cancer (Figure 3). 

 

Figure 3. Enrichment analysis of differently expressed ERGs. (a) Gene Ontology pathway enrichment
analysis of biological process among ERGs with a cut-off value p < 0.05, p was adjusted by the method
of false discovery rate. (b) KEGG analysis among ERGs with a cut-off value p < 0.05, p was adjusted
by the method of false discovery rate.



Genes 2022, 13, 216 7 of 19

3.3. Screened for the ERGs with Significant Prognosis

The differentially expressed EMT-related genes (ERGs) in mRNA expression data
of the UCEC cohort were identified by the “limma” package in R software (FDR < 0.05,
|logFC| > 1). After combining clinical data and mRNA expression data of ERGs, univariate
Cox regression analyses were used to screen the differentially expressed ERGs with remark-
able prognostic value (p < 0.05). Additionally, 101 genes were screened with significant
prognostic value in UCEC (Supplementary S1).

3.4. Establishment and Validation of the Prognostic EMT-Related Gene Signature

To identify the EMT-associated genes, a machine learning algorithm, LASSO algorithm,
was performed. We utilized 10,000-fold cross-validation to select penalty value, lambda
(λ). In our study, the optimal computed lambda ranged from 0.0413–0.0809 (Figure 4a). We
set the lambda at 0.0809 as it can generate a stricter penalty model which contains much
fewer variates. At last, a 9-gene LASSO regression model was constructed (Figure 4b). The
AUC of the constructed LASSO regression model was 0.83 when overall 5-year survival
was applied and 0.78 when 2-year survival was applied. These 9 genes were selected for
the next step analysis. Multivariate Cox regression analysis performed by the “survival”
R package was subsequently used to construct a predictive signature. The final risk score
was calculated as risk score = EPHB2 ∗ 1.652937 + TUFT1 ∗ 0.836239+ CDKN2A ∗ 0.062206
+ ONECUT2 ∗ 0.282455 + RBP2 ∗ 0.129494 + KLF8 ∗ 0.533818 + E2F1 ∗ 0.158181 + SIX1 ∗
0.199476 + ERBB2 ∗ 0.072221. The risk score of the prognostic signature was calculated
and EC patients were divided into a high-risk group and a low-risk group according to
median value. We verified this formula with overall survival data in both the TCGA-UCEC
cohort and GEO dataset (GSE21882). Additionally, we found that this 9-gene signature
was significantly associated with OS (Figure 5a). In GSE21882, as only survival status after
5 years could be acquired, we divided the patients into non-survivors and survivors, then
the RS was compared between these two groups. Results showed that RS was significantly
higher in the non-survivors group (Figure 5b). Additionally, risk score in TCGA-UCEC
dataset were compared by Wilcoxon rank sum test in the 5-year survivors group and
non-survivors group, result showed that the 5-year non-survivors group exhibited higher
risk score, with p < 0.001 (Supplementary S2). In the TCGA-UCEC dataset, our analysis
results showed that there was a significant statistical difference in the DFS between the
low-risk and high-risk groups (Figure 5c).

Recently, the endometrial cancer molecular classification was introduced by TCGA
and promoted by NCCN which initiated a transition toward molecular-based classification
with significant prognostic value and a potential impact on the treatment of EC. There
are four molecular subgroups: p53-abnormal (p53abn), POLE-ultra-mutated (POLEmut),
mismatch repair-deficient (MMRd), and no specific molecular profile (NSMP). In our study,
we explored the above molecular profiling of the high- and low-risk groups. In our study,
there were higher copy number variations of BRAF, KRAS, PIK3CA, PTEN, and TP53 in the
high-risk group EC patients by the means of the chi-square test. Additionally, mutations
rate of P53, PTEN, and KRAS were higher in the high-risk group of EC patients (Figure 5d).
In the meantime, we analyzed the mutation rate and the CNVs of the 9 genes in our risk
model, result showed that higher CNVs were found in the high-risk group of EC patients
identified by our gene signature (Supplementary S3). Coordinated to the TCGA pathology
and molecular analysis, high-risk group EC patients had a higher P53 mutation rate and
poorer prognosis.
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regression coefficients over different values for penalty parameters. (c) AUC of the LASSO model
constructed with the prognostic-related ERGs in the UCEC-TCAG cohort; AUC of the 2-year survival
was 0.78, AUC of the 5-year survival was 0.83.
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Figure 5. Survival analysis and heatmap. (a) In the TCGA-UCEC cohort, the 539 patients were
divided into a high-risk group and a low-risk group according to the ERGs signature risk score
median value, and the overall survival was compared between the two groups through Kaplan–Meier
method, as cut-off p set as 0.05. (b) Patients in GSE21882 were divided into non-survivors and
survivors after a 5-year follow-up. RS was statistically higher in the non-survivors group by the
method of Wilcoxon rank sum test. (c) In the TCGA-UCEC cohort, the disease-free survival was
compared in the high-risk group and low-risk group according to the gene signature risk score by the
Kaplan–Meier method, as cut-off p set as 0.05. (d) Heat map of TCGA-UCEC patients, an overview of
the copy number variation and mutation status of BRAF, KRAS, PIK3CA, PTEN TP53. MSI status
was also displayed in the figure. * equals p < 0.05, *** equals p < 0.001.

The clinical–pathological characteristics were compared between the two groups,
including patients’ age, BMI, pre-menopause/menopause status, number of pregnancies,
different pathological grades, clinical–pathological staging, clinical outcome after the initial
treatment, and metastasis/recurrence status. The cut-off p was set as 0.05. Additionally, the
result showed that patients in the high-risk group had a higher percentage in menopause
status, pregnancy no less than two times, G3 pathological differentiation, pathological
type, advanced clinical–pathological staging, and recurrence or metastasis status (Figure 6).
Besides, the expression of the ERGs in the risk model was validated by quantitative real-
time PCR in clinical tissue specimens. All of the genes in the model were upregulated
in endometrial carcinoma tumor tissue versus normal tissue except KLF8, which was
consistent with the result derived from the TCGA database. Only the relative expression
of ERBB2 showed no statistically difference (p = 0.05), other genes expression all showed
statistically difference between the tumor tissue and the normal tissue (p < 0.05) (Figure 7).
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Figure 6. Risk score and clinical parameters. According to the calculated risk scores, the patients
in the TCGA-UCEC cohort were divided into low-risk groups and high-risk groups. Additionally,
different clinical characteristics were compared between the two groups with the chi-square test,
including: (a) patients age at the time of diagnosis (p < 0.001); (b) patients BMI (p = 0.037); (c) different
menopause status, pre-menopause status, and menopause status (p < 0.001); (d) number of pregnan-
cies, 0–4 (p = 0.002); (e) different pathological differentiation (p < 0.001); (f) different pathological type
(p < 0.001); (g) different clinical–pathological staging (p < 0.001); (h) different outcome after the initial
treatment, complete remission or not (p = 0.105); (i) having recurrence/metastasis or not (p < 0.001):
* equals p < 0.05; ** equals p < 0.01.
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Figure 7. Quantitative real-time PCR. Relative expression of TUFT1, EPHB2, ONECUT2, RBP2,
CDKN2A, KLF8, E2F1, SIX1, and ERBB2 in 10 pair-matched samples from endometrial carcinoma
tissues versus normal endometrium tissues was compared by GAPDH RT-qPCR mean, SEM error
bars. t-test was used to compared the relative expressions in normal and endometrial carcinoma
tissue. * Equals p < 0.05.
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3.5. Nomogram Construction and Validation

After univariate and multivariate survival Cox analysis, 4 significant prognostic
parameters were enrolled in the construction of nomogram (p < 0.1 in multivariate cox
regression), the detailed result was shown in Table 2. Respective points of age at diagnosis,
differentiation grade, FIGO stage, and risk score can be acquired through the point scale
axis (Figure 8a). The calculated C-index was 0.796 (95% CI: 0.700–0.893). Calibration curves
were presented in Figure 8b, which showed that the predictive probability was in good
accordance with the actual survival proportion.
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Table 2. Age of diagnosis, FIGO stage, pathological grade, PLOE mutation status, P53 mutation
status, MSI status, risk score, and immune score were analyzed by univariate Cox regression with the
overall survival in TCGA-UCEC dataset. Then, those parameters with p-value lower than 0.5 were
enrolled for multivariate Cox regression analysis.

Univariate Cox Regression Multivariate Cox Regression

Variates p HR 95% CI p HR 95% CI

Age 0.001 1.038 1.017–1.060 0.011 1.028 1.006–1.051
Stage 0.000 2.012 1.667–2.427 0.000 1.696 1.400–2.055
Grade 0.001 2.696 1.777–4.088 0.065 1.522 0.975–2.735

POLE mutation 0.293 0.463 0.111–1.941
P53 mutation 0.329 1.411 0.707–2.817

MSI 0.331 1.158 0.862–1.565
Risk score 0.000 2.718 2.096–3.525 0.001 1.707 1.255–2.323

Immune score 0.023 1.001 1.000–1.002 0.166 1.001 1.000–1.001

3.6. Immune Microenvironment Analysis

Based on the immune and stromal scores which were acquired through ESTIMATE,
we analyzed their relation with the prognosis data in the TCGA-UCEC cohort. Wilcoxon
rank sum test was used to compare the immune score, stromal score, and tumor purity
between the high-risk and low-risk groups in the TCGA-UCEC cohort. All p values were
lower than 0.05, demonstrating a significant difference in immune score, stromal score, and
tumor purity between the groups (Figure 9a). The proportions of 22 tumor cells–immune
cells were displayed in Figure 9b, and macrophage M0 and macrophage M2 were the top 2
components in EC tumor immune microenvironment. There was a significant difference
between the high-risk and low-risk groups regarding to the proportion of the immune cells,
and the result was shown in Figure 9c. Additionally, a higher proportion of macrophage
M1 and lower macrophage M2 was found in the high-risk group, which indicate a potential
benefit from the immune checkpoint blockades therapy.

3.7. Immune Checkpoint Blockades Therapy and Drug Sensitivity Prediction

Nowadays, immune checkpoint blockades targeting CTLA-4 and PD-1 has emerged
as a promising strategy in various malignant tumor [21]. Clinical response to immune
checkpoint blockades was estimated, and results show that T cells dysfunction was lower
in the high-risk group, which indicate a more promising response to immune checkpoint
blockades targeting CTLA-4 and PD-1 (Figure 10a), To obtain a better comprehensive
analysis of chemotherapy response, drug sensitivity data were acquired from the GDSC
database and the IC50 were compared. Pearson correlation between the risk score and
IC50 of different chemical compounds was conducted, and 8 chemical compounds were
identified for a negative correlation with the risk score (r < −0.3, p < 0.05). Results were
displayed in Figure 10b. Among the 8 compounds, A.443654 is a selective Akt inhibitor.
ABT.263 and BI 2536 both can induce apoptosis. Lower IC50 of these drugs indicates that
high-risk EC patients were more sensitive to the treatment compared with the low-risk
EC patients.
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patients. (c) Difference in immune cell infiltration abundance between high– and low–risk groups.
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Figure 10. Immunotherapy and drug sensitivity prediction. (a,b) T cell dysfunction and T cell
exclusion in the high– and low–risk patients with TCGA-UCEC. (c–j) Wilcoxon rank sum test was
applied for comparing the different chemotherapeutic response predictions in high– and low–risk
patients. *** equals p < 0.001.

4. Discussion

It has been widely proved that EMT is an important biological process in cancer,
including endometrial cancer. Specifically, EMT is characterized by downregulation of
the epithelial cell properties and activation of the mesenchymal characteristic. EMT is
thought to be one of the major mechanisms that determine the invasion and metastasis of
cancer cells.
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In this study, we collected the high-throughput data about the transcriptional ex-
pression of 543 EC samples and 35 nontumor samples with their corresponding clinical
data from the TCGA database. At the same time, 1184 EMT-related genes (ERGs) were
acquired from the Human EMT Database. Among these, we screened out the differentially
expressed ERGs between EC samples and nontumor endometrium samples. Then, the
differentially expressed ERGs were listed and analyzed, biological functions pathways
analysis indicated that differentially expressed ERGs can promote cancer-related pathways,
including focal adhesion and EGFR tyrosine kinase inhibitor pathways, and may lead
to transcriptional misregulation in cancer. The AGE–RAGE axis is involved in the onset
and progression of various chronic disorders and metabolic syndrome. Several recent
researchers revealed an association of the AGE–RAGE signaling with different pathological
conditions involved in the progression of cancer including cell proliferation, invasion,
metastasis, and angiogenesis [24]. AGEs biomarkers pentosidine malondialdehyde (MDA),
a lipoxidation product closely linked to AGEs, is suggested to be found in high amounts in
breast cancer and lung cancer patients [25]. Our findings also imply that the AGE−RAGE
signaling pathway may play a role in tumorigenesis of EC for the first time.

A novel machine learning method LASSO was used to finally identify 9 EMT-related
genes, including EPHB2, TUFT1, CDKN2A, ONECUT2, RBP2, KLF8, E2F1, SIX1, and ERBB2
as an independent prognostic predictor, and a formula about risk score (RS) was raised
through multivariate Cox regression analysis. Some of these genes, such as CDKN2A, E2F1,
and ERBB2, have been characterized in endometrial cancer tumorigenesis. CDKN2A is one
of the crucial defenses against cancer development in several human cancers. CDKN2A was
found to be inactivated in EC and its hypermethylation was correlated with an increased
risk of EC [26,27]. The HER2 (ERBB2) gene is amplified in 17–33% of carcinosarcoma, uterine
serous carcinoma, and a subset of high-grade endometrioid endometrial tumors [28,29].
However, for the remaining genes, their functions have not been revealed in EC. TUFT1
was initially found to play an important role in the development and mineralization of
tooth enamel and was later discovered in many cancerous tissues, including pancreatic
cancer and hepatocellular carcinoma. Its expression was correlated with unfavorable
clinicopathologic characteristics and poor survival [2]. Recent studies have shown that
TUFT1 promotes proliferation, metastasis, and epithelial–mesenchymal transformation
of cancer cells through the Ca2+/PI3K/AKT pathway [30]. ONECUT2 is a member of
the one cut family of transcription factors, known to be an important regulator of early
retinal cell fate during development. ONECUT2 may play a critical role in pan-cancer-wide
tumorigenesis [30]. RBP2 histone demethylase suppresses NOTCH signaling to sustain
neuroendocrine differentiation and promote small cell lung cancer tumorigenesis [31].
Krüppel-like factor 8 (KLF8) is a critical inducer of EMT and invasion. KLF8 induces EMT
primarily by repressing E-cadherin transcription. KLF8 promotes human breast cancer cell
invasion and metastasis by transcriptional activation of MMP9 [32]. Sine oculis-related
homeobox 1 homolog (SIX1) is a transcription factor that regulates the development of many
tissues and becomes reactivated or overexpressed in multiple types of human cancer. Recent
research showed that SIX1 was essential for normal endometrial epithelial differentiation,
and delayed DES-induced endometrial carcinogenesis by promoting basal differentiation
of CK14þ/18þ cells [32]. Another study also indicated that the SIX1 oncoprotein correlated
with uterine cancer. SIX1 was not present in normal endometrium but was expressed in
a subset of endometrial cancers in patients who were also more likely to have late-stage
diseases [33]. Further studies of the function of these genes may identify new drivers and
therapeutic targets for endometrial cancer.

A prognostic EMT-related gene signature for EC specimens was constructed and EC
patients were divided into high-risk and low-risk groups according to the risk score in each
sample. The results showed that the risk score could successfully predict the survival of
EC patients, in which the high-risk group had a significantly worse OS than the low-risk
group. The ROC curves also indicated that the EMT-related gene signature had favorable
prognostic power. All of these findings were validated in GEO data sets. In addition,
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we comprehensively analyzed the relationship of the EMT-related genes signature with
different clinicopathological features. We found that our prognostic signature risk score
was significantly correlated with clinicopathological data, including age, tumor grade,
and tumor stage. We also constructed the nomogram by the age, grade, stage, and EMT
signature that showed a good performance in predicting the survival of EC patients.

Tumors could acquire the possibility of aggressiveness and metastases through the
EMT process [34]. Immune cells also participate in EMT via various pathways and in turn,
cancer cells crosstalk with immune cells to release immunosuppressive substances to create
an immunosuppressive microenvironment that promotes invasion and metastasis [35,36].
Then, we explored the immune microenvironments of the high- and low-risk group, and
the high-risk group get a lower stromal score, immune score, and tumor purity. Immune
infiltration analysis showed that macrophage M2 is lower and macrophage M1 is higher
in cell fractions in the high-risk group, which indicated a proper microenvironment that
enhanced T cells cytotoxic function.

Researchers had studied the whole gene expression signature that may indicated
poor survival among the EC patients [37,38], and more evidence show that alterations in
cancer genomes can strongly influence clinical response to anticancer therapies [23]. There
were few studies reporting immunotherapy and EMT targeted therapy in EC patients,
and certain EC patients can benefit from Pembrolizumab [39]. We further evaluated the
likelihood of response to immunotherapy in the high- and low-risk groups. T cells dysfunc-
tion score by TIDE algorithm also indicated a promising response to immune checkpoint
blockades therapy targeting CTLA-4/PD-1. As second-line chemotherapy was still debat-
able in advanced EC patients, we screened out eight compounds that may be crucial in
the substitute chemotherapy in the GDSC database. A.443654 is a selective Akt inhibitor.
PI3K/Akt/mTOR pathway is crucial in various tumors, including endometrium carcinoma.
PTEN can regulate the tumor cells’ proliferation via the mTOR pathway, and 30–60% EC
exhibits a lack of PTEN. Reports showed that mTOR inhibitors can improve disease-free
survival in advanced EC patients [40]. ABT.263 disrupts Bcl-2/Bcl-xl interactions with
pro-death protein, leading to the initiation of apoptosis, BI 2536 is a Plk1 inhibitor, which
can induce apoptosis and attenuates autophagy. and BI 2536 both can induce apoptosis.
Lower IC50 of these drugs indicates that high-risk EC patients may be more sensitive to
these chemo treatments.

5. Conclusions

In conclusion, we identified and validated an EMT-related, 9-gene signature with
certain prognostic values for EC patients. Immune microenvironment characters of the
high- and low-risk groups were revealed, which may contribute to a better understanding
of the molecular mechanism of EC and provide references for decision making during EC
patients’ treatment.
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EMT epithelial—mesenchymal transition
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GEO Gene Expression Omnibus
EPHB2 EPH receptor B2
TUFT1 tuftelin 1
CDKN2A cyclin-dependent kinase inhibitor 2A
ONECUT2 one cut homeobox 2
RBP2 retinol-binding protein 2
KLF8 Kruppel-like factor 8
E2F1 E2F transcription factor 1
SIX1 SIX homeobox 1
ERBB2 Erb-b2 receptor tyrosine kinase 2
RS risk score
ESTIMATE estimation of stromal and immune cells in malignant tumor tissues using expression

data
ICB immune checkpoint blockade
TIDE tumor immune dysfunction and exclusion
GDSC Genomics of Drug Sensitivity in Cancer
ERGs EMT-related genes
UCEC uterine corpus endometrial carcinoma
ROC receiver-operating characteristic
TME tumor microenvironment
LASSO least absolute shrinkage and selection operator
IC50 the half-maximal inhibitory concentration
FDR false discovery rate
MMRd mismatch repair-deficient
CTLA-4 cytotoxic T-lymphocyte antigen 4
PD-L1 programmed cell death-ligand 1
FIGO The International Federation of Gynecology and Obstetrics
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OS overall survival
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