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Abstract
Injuries to complex human organs, such as the limbs and the heart, result in pathological conditions, for which
we often lack adequate treatments. While modern regenerative approaches are based on the transplantation of
stem cell-derived cells, natural regeneration in lower vertebrates, such as zebrafish and newts, relies predominantly
on the intrinsic plasticity of mature tissues. This property involves local activation of the remaining material at
the site of injury to promote cell division, cell migration and complete reproduction of the missing structure.
It remains an unresolved question why adult mammals are not equally competent to reactivate morphogenetic
programmes. Although organ regeneration depends strongly on the proliferative properties of cells in the injured
tissue, it is apparent that various organismic factors, such as innervation, vascularization, hormones, metabolism
and the immune system, can affect this process. Here, we focus on a correlation between the regenerative
capacity and cellular specialization in the context of functional demands, as illustrated by appendages and heart in
diverse vertebrates. Elucidation of the differences between homologous regenerative and non-regenerative tissues
from various animal models is essential for understanding the applicability of lessons learned from the study of
regenerative biology to clinical strategies for the treatment of injured human organs.
© 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Restoration of tissue integrity following injury is a fun-
damental property of multicellular organisms. Animals
respond to traumatic organ loss either by reparative seal-
ing of the wound or by regeneration. Non-regenerative
healing often involves synthesis of a scar to repair the
interrupted continuity of the organ without reproduction
of the missing tissue. In contrast, regeneration recre-
ates the architecture and function of the damaged body
part, either without scarring or with transient fibrosis.
This process depends on cellular plasticity, accessibility
to developmental programmes and functional integra-
tion of newly formed tissues with the pre-existing organ
remnants. Despite extensive research in various model
animals, it remains poorly understood what specific fac-
tors predispose for non-regenerative repair versus com-
plete reconstruction of complex vertebrate organs, such
as limbs and heart [1–7].

In humans, injury followed by inadequate regener-
ation and scarring is a common pathological mecha-
nism. This is the case for an irreversible limb loss and
for a heart infarct. By contrast, certain non-mammalian
adult vertebrates, such as zebrafish, newts and axolotls,

can reconstitute fully functional appendages and a car-
diac ventricle [6,8–16]. These animals provide unique in
vivo model systems to understand how damaged mature
organs are naturally capable of a rapid switch between
resting and re-growing phases. A great deal of atten-
tion has been dedicated to the molecular mechanisms
of regeneration, as discussed in many recent reviews
[10–12,17–27]. Here we focus on the cellular and
anatomical features of appendage and heart regeneration
in anamniotic vertebrates (fish and amphibians) and how
this information is relevant for the goals of regenerative
medicine.

Regeneration versus scarring from the functional
and adaptive perspective

The absence of an appendage, such as a limb or a tail,
impedes efficient locomotion, resulting in a decreased
survival rate. Myocardial infarction disrupts the per-
formance of the blood-pumping organ, leading to a
life-threatening condition. Given that the organism sur-
vived the initial trauma, complete organ regeneration
intuitively provides an advantage to regain fitness after
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injury. Ironically, lower vertebrates possess an innate
ability to restore their damaged appendages and the
heart, while mammals lack this capability. This uneven
phylogenic distribution of regeneration could be due to
various proximate constraints of anatomical, physiolog-
ical and molecular nature, such as the high complexity
of the mammalian organs, a cytokine profile of inflam-
matory cells and inaccessible morphogenetic informa-
tion, which arose as adaptive traits or as side-effects
of other evolutionary changes [2,23,28–30]. Among
many concepts, the classic hypothesis proposes that
the regenerative capability declines whenever the lost
part of organ becomes absolutely indispensable for
survival:

To qualify for replacement, a structure … must
be important enough to be missed when it is gone,
but not so vital that an animal cannot survive its
loss long enough to grow a replacement [31].

Accordingly, the loss of limb regeneration in the
evolution of vertebrates may be associated with the
move onto land, when limbs become indispensable
for locomotion, much more than when an animal is
suspended in water (Figure 1A). The limbs of terrestrial
animals have an essential function to carry the body
mass while remaining in direct contact with rough
ground, which might biophysically preclude regenera-
tive outgrowth formation from the stump [25]. Among
urodeles, the efficiency and fidelity of regeneration
become drastically lower in land-phase animals as
compared to water-phase forms [32,33]. The adult
aquatic urodeles, eg newts and paedomorphic axolotls,
can complete regeneration within 30–60 days after
amputation, whereas the terrestrial forms, eg certain
salamanders and postmetamorphic axolotls, require
200–400 days [32–34]. In addition, a proper terrarium
with wet and soft substrates is a prerequisite for limb
regeneration in the land-phase urodeles, as adverse
environmental conditions impair this process [32,35].
It is possible that during the evolution of terrestrial
amniotic vertebrates, beginning with reptiles, the limb
regenerative capability has been replaced with scarring
as a more suitable strategy for repairing stumps while
walking on rough land. Nevertheless, some degree of
appendage restoration can evolve locally, exemplified
by the gain of digit tip regeneration in mice and humans
[36–38].

Although the heart is obviously a life-essential organ,
a partial loss of cardiac muscle can be differentially tol-
erated among vertebrates. Among fish, medakas were
reported to react with high lethality and health impair-
ment to ventricular surgery in comparison to zebrafish
[39]. Zebrafish can generally survive genetic ablation of
60% of cardiomyocytes or damage to 20% of the ven-
tricle [40–46], which would have fatal consequences in
adult mammals [47]. Thus, a portion of the myocardium
can be of low/intermediate importance for the global
function of the heart in certain vertebrates. In the line of
the above-cited hypothesis, proposed by Goss [31,48],

such animals might have a better predisposition for car-
diac regeneration than mammals, especially in a milieu
of low metabolism and with a trabecular myocardium
typical of poikilotherms. In poikilothermic vertebrates,
a significant portion of cardiomyocyte oxygen supply
derives from the blood flow in cavities of the ventricular
chamber. This is in contrast to the compact myocardium
of homeothermic mammals, which depends strongly on
coronary circulation [49–51] (Figure 1B). Indeed, the
thickness of the mammalian compact myocardium pre-
vents gas diffusion from luminal blood to subepicardial
cardiomyocytes, a mechanism that could possibly atten-
uate the damage during left ventricular ischaemia. The
trabecular architecture, such as in zebrafish and newt
heart, may account for a permissive environment for
a regenerative response at the site of injury [11,52].
Mammals, which are homeothermic animals, require
a higher performance of the blood-pumping organ.
Remarkably, the ventricular blood pressure in adult
zebrafish reaches the value of approximately 2.5 mmHg
[53], as compared to an average of 120 mmHg in adult
humans and mice. It is possible that the biomechan-
ical properties of the ventricular wall and the mode
of oxygen supply might limit the choice of the tis-
sue type to restore the interrupted myocardium, while
the heart has to beat continuously during the healing
process.

Studies of anamniotes revealed that the basic regen-
erative principles are similar in the appendages and the
heart [3,6,9]. Nevertheless, specific cellular programmes
are poorly comparable between the appendages and
the heart, as these body parts are built with different
’blocks’. Therefore, we discuss the current knowledge
on regeneration of these two distinct organs in separate
sections.

Appendage: the blastema and the
pro-regenerative environment

Complete restoration of the amputated vertebrate
appendage, called epimorphic regeneration, involves
the creation of two key structures, a blastema and
a wound epithelium [21,54]. Importantly, neither is
fundamentally different from the stump tissues. The
wound epidermis derives from the migrating epithe-
lial cells at the site of injury, whereas the blastema
arises by the conversion of local non-dividing cells
into lineage-restricted proliferating cells, which give
rise to the outgrowth [55–60]. To date, there is no
evidence for the involvement of remote cell sources. To
initiate epimorphic regeneration, the participating cells
change gene expression and reactivate developmental
signalling pathways to guide cell dedifferentiation,
proliferation and migration, as recently reviewed
[10,12,17,18]. The wound epidermis serves not only
for healing of the interrupted organ, but also forms
a specialized layer that acts as a signalling centre
by producing cytokines, such as Wnts, Fgfs and Shh
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Figure 1. Potential impact of external and internal milieux on the regenerative feasibility of vertebrate appendages and heart. (A) The
transition onto land coincides with the reduction of limb-regenerative capability. Fish and aquatic urodeles possess the ability to completely
and efficiently reproduce amputated appendages. Postmetamorphic terrestrial frogs and toads completely lack this capability, while aquatic
Xenopus froglets are capable of heteromorphic regeneration of a cartilaginous ’spike’ from the amputation plane. Amniotic vertebrates,
ie reptiles, birds and mammals, which adapted to life and reproduction on the land, display no limb regeneration. A certain capacity of
appendage restoration can be regained, as exemplified by digit tip regeneration in mice and humans under certain circumstances. (B) The
rise in cardiac workload in endothermic vertebrates correlates with compaction of the myocardial wall and elaboration of the coronary
vasculature; schematic representation of heart anatomy with a transverse section of the ventricle in fish (left) and mammals (right). In
the poikilothermic vertebrates, ie fish, amphibians and reptiles, the ventricle is a trabecular, sponge-like chamber. This architecture allows
for oxygenation of ventricular cardiomyocytes directly from blood flowing through many miniscule cavities of the trabecular wall. The
outer compact myocardial layer is typically thin, with fine coronary vasculature. Among animals with the trabecular heart, zebrafish, newts
and axolotls display heart regeneration. A radical change of cardiac anatomy is observed in homeothermic mammals and birds, in which
the ventricles are composed predominantly of a compact myocardium and a discrete central lumen. Oxygenation of cardiomyocytes is
dependent on coronary circulation. This architecture has been associated with no regenerative capabilities

[17,18]. The reciprocal communication between the
wound epidermis, nerves and the underlying tissues is a
prerequisite for appendage regeneration [17,18,61–63].
The interruption of epithelial–mesenchymal interaction
by covering the amputation plane with a mature skin

graft prevents regeneration [64,65]. A contribution of
the wound epidermis and the mesenchymal blastema
has been observed during digit tip regeneration in mice
and humans, suggesting parallel regenerative strate-
gies between diverse vertebrates [36,66]. In humans,
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it is assumed that dermal scarring and the inability
to form the blastema are responsible for the lack of
limb regeneration. Thus, the mechanisms regulating
wound healing and the plasticity of mature cells are of
central interest in the field of regenerative biology and
medicine.

Blastema formation is associated with cellular de-
differentiation of specialized appendage tissues, such
as bone-forming osteoblasts in zebrafish [56–60,67,68]
and skeletal muscles in urodeles [69–72]. However,
dedifferentiation is not the only mechanism for the
generation of new cells for both of these specialized
tissues. In the fin, genetic ablation of all osteoblasts,
using a nitroreductase system, does not prevent bone
regeneration, suggesting a possible secondary source
of osteoblasts under certain restrictive conditions [59].
Although myofibre dedifferentiation occurs during
urodele limb restoration, Cre–loxP genetic fate map-
ping in the axolotl revealed that new muscle mainly
originates from endogenous Pax7-positive satellite cells
[69]. These examples indicate a conditional plasticity
and a species-specific variability of possible sources of
cells for appendage regeneration.

By contrast to bone and muscle tissues, dermal fibrob-
lasts do not appear to dedifferentiate markedly dur-
ing regeneration, as they are originally at a relatively
low cytospecialization level. Instead, the connective tis-
sue undergoes disorganization and remodelling of the
extracellular matrix (ECM) to facilitate fibroblast pro-
liferation and migration. In urodeles, the population of
mesenchymal cells is highly over-represented in the
blastema in comparison to other cell types [73]. More-
over, mesenchymal cells are the pioneers promoting
the protrusion of the regenerative outgrowth. This sug-
gests that dermal fibroblasts play a leading role in
appendage regeneration. Thus, it is important to iden-
tify the structural differences of dermal tissue between
blastema-forming versus scar-forming model organ-
isms.

As the skin acts as a protective barrier, the surface of
the body in terrestrial vertebrates underwent specializa-
tion from mucogenesis to cornification, while the dermis
shifted toward a more robust collagen fibre-rich matrix
(Figure 2A, F). In most mammals, cutaneous injuries
heal by scarring. In contrast, the surface of wet anatom-
ical sites in humans, such as the oral mucosa, is capable
of scar-free wound closure, which is associated with
a higher proliferative capacity of local keratinocytes
and fibroblasts, beneficial growth factor production and
appropriate matrix deposition, as compared to skin [74].
Based on these observations, it can be proposed that
cellular specialization between homologous structures
may explain the regenerative differences, even in the
same organism.

The zebrafish fin is a non-muscularized dermal
fold that encompasses multiple bony rays spaced by
soft interrays [10]. The stratified epidermis contains
only a few cell layers, while the dermis is subdivided
into two compartments: (a) dermal bone, produced
by osteoblasts; and (b) a network of fibroblasts with

little collagenous matrix (Figure 2B, G). The dermal
bone is located directly underneath the basal layer
of the epidermis, suggesting a contact between both
tissues. Remarkably, a structural connection between
the bone and the epidermis has been reported in the
regenerative part of the mammalian limb, viz. in the
distal tip of the last phalangeal element (P3) in mice
[36]. The significance of the link between the bone and
epidermis during appendage regeneration in vertebrates
remains to be determined. In aquatic urodeles, the
dermis contains relatively few collagen fibrils, espe-
cially in its subepidermal layer [75,76]. Mammals with
exceptionally elastic skin and little fibrillar collagen,
such as the African spiny mouse, can also regenerate
large skin holes perfectly [77]. These examples suggest
a correlation between a low content of collagen fibrils
and regenerative success. Thus, a dense accumulation
of fibrous matrix in the human dermis could cause
one of the barriers for intercellular communication and
tissue plasticity, which are essential factors for organ
regeneration.

The fin and urodele limb initiate regeneration remark-
ably quickly, as the re-epithelialization and local
disorganization of mesenchyme occurs within the first
12 h post-amputation [75,76,78]. During this time,
tenascin C and matrix metalloproteinases become
up-regulated to stimulate tissue remodelling [79,80]. In
zebrafish, a regenerative outgrowth becomes clearly vis-
ible at 3 days post-amputation (dpa) (Figure 2C, H). The
apical zone is considered to be the upstream signalling
organizer of the regenerate, which includes a columnar
wound epithelium and mesenchymal progenitor cells
[81] (Figure 2E, J). The proximal part of the blastema
contains highly proliferative mesenchymal cells and
regenerating osteoblasts that initiate the deposition of
new bone matrix in a proximal–distal direction of the
outgrowth [56] (Figure 2D, I). The progression of regen-
eration depends on a balance between proliferation and
redifferentiation, which is regulated by a combination
of multifunctional signalling pathways, such as FGF,
Wnt, TGFβ, Activin, BMP, IGF, Notch, Shh, retinoic
acid (RA) and Hippo [9,17,68,82–84], and epigenetic
mechanisms [85]. Depending on the temperature, fin
regeneration is completed approximately 3 weeks after
injury [10,86]. It is still poorly understood how the
amputation event triggers the programme that generates
the specialized wound epithelium and the blastema
from the stump tissues. At least, the histological com-
parison of the dermis between intact and regenerating
fins suggests an absence of extracellular obstacles, such
as excessive collagen fibres, which could potentially
impede the execution of the intrinsic regenerative
programme.

What is the particular function of fibroblasts during
blastema formation? Grafting experiments in urodeles
demonstrated an inductive role of dermal fibroblasts
during reconstruction of the appropriate structure along
the body axis [24,87]. A juxtaposition of cells from
the proximal and distal blastemas elicits a segrega-
tion of cells according to their original source. In
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Figure 2. Histological comparison reveals excessive collagenous matrix in human dermis as compared to mesenchyme of the fin. Postnatal
human skin (section of a cheek) and zebrafish fin (longitudinal section of a ray) were incubated with the same histological staining solutions.
(A–E) Haematoxylin (purple-brownish, nuclear marker) and eosin (orange, protein marker) (H&E) staining. (A) The multilayered epidermis
of human skin comprises a stratum corneum with anuclear keratinocytes; the dermis is rich in ECM that is produced by loosely distributed
fibroblasts. (B) The stratified epidermis of the fin is composed of only a few cell layers and lacks a stratum corneum; it contains a basal
cell layer (BC) and specialized epithelial cells, such as mucous cells (MuCs) and alarm-substance cells (ASCs); the dermis of the fin ray
comprises segmented bone produced by osteoblasts and vascularized mesenchymal tissue; Mel, melanocytes. (C–E) A fin regenerate at 3
days post-amputation (dpa); the regenerate is located to the right of the amputation plane (dashed line); wound epidermis (WEp) surrounds
the outgrowth; the basal wound epithelium (BWEp) contains cuboidal cells at the level of the proximal blastema (Prox.Bl) or columnar cells
at the level of the distal blastema (Dist.Bl). (D) Higher magnification of regenerating bone with osteoblasts (Ob). (E) The cells of the distal
blastema are tightly packed under the wound epithelium, with little intercellular space. (F–J) Aniline blue, acid Fuchsin and Orange G
(AFOG) staining reveals collagen or mucous in blue, cornified epidermis in red, mineralized bone matrix in magenta and cytoplasm in
orange; histological procedures were performed in parallel on human skin and fin sections. (F) Dermis of human skin contains a high
amount of ECM with collagen fibrils. (G) The dermal bone of the fin is mineralized (magenta); a thin layer of collagen (blue) covers the bone
surface, the bone canal and joints; dermal fibroblasts of the ray do not deposit extensive collagen fibres, consistent with the mesenchymal
character of this tissue. (H–J) A section adjacent to the specimen shown in (C–E): collagen is detected in the basement membrane (BMem)
and around the osteoblasts (Ob). Scale bars= 100 μm

some instances, the positional discontinuity between
cells stimulates regrowth of the missing intermediate
structures, resulting in intercalary regeneration of an
ectopic appendage that bridges the gap between the
positional disparities [88,89]. Notably, transcriptome
analyses provide evidence that positional memory,
which was established during embryogenesis, is also
present in mature mammalian fibroblasts [90,91]. It will
be essential to elucidate how the coordinates are commu-
nicated between cells to guide pattern formation during
regeneration. Although cell transplantation has been
practised in regenerative medicine, the key unsolved
problem is the creation of such regeneration-competent
progenitor cells that can recognize the position in
the stump, integrate with the host organ and/or act as
’pattern-forming’ cells. The fin and amphibian limb
regeneration models can provide some hints on how
to establish a regeneration-competent environment and
’plasticizing’ agents to enhance survival, intercellular
communication and integration of the transplanted cells
into the stump.

Heart: cardiomyocyte plasticity in vertebrates

The zebrafish heart can fully regenerate within 30–60
days, either after removal of up to 20% of the
ventricle [92], after cardiomyocyte-specific genetic
ablation that causes the loss of up to 60% of the
myocardium [40–43] or after cryoinjury-induced car-
diac infarction of 20–25% of the ventricle [44–46]
(Figure 3). In the newt, complete myocardial restoration
has been observed within 2–7 months after ventricular
apex amputation or mechanical disruption of> 50% of
the ventricle [8,52,93–96]. Cardiac regeneration has
been reported in axolotls 3 months after ventricular
resection [15,16]. These findings have raised several
fundamental questions about the origin of the new
myocardium and signalling pathways involved in this
process and, importantly, whether these findings are
transposable to humans.

Similarly to mammals, there is no evidence of
regeneration-competent cardiac progenitor cells in
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Figure 3. Cardiac injury models in zebrafish. Schematic representation of different experimental procedures to induce cardiac damage in
the zebrafish; illustration shows a longitudinal section of the heart. (A) The ventricular resection method was developed in 2002 [92];
in this model, the apex of the ventricle (about 20% of the heart volume) is amputated with scissors. (B) The cryoinjury procedure was
established in 2011 [44,46,182,183] and is based on rapid freezing–thawing of the cardiac tissue by the application for 20–25 s of a
stainless steel cryoprobe precooled in liquid nitrogen; as a result, massive cell death occurs in the frozen area (about 20% of the heart
volume). (C) The nitroreductase (NTR)/metronidazole (Mtz) genetic ablation system enables depletion of specific cardiac cell types in an
inducible manner [40,42,43,149]; in this method, first applied to zebrafish in 2007 [43,184], a bacterial nitroreductase fused to a fluorescent
protein (Fluo P) is expressed under the control of a tissue-specific promoter, such as the cardiac myosin light chain 2 (cmlc2), which is
specific for cardiomyocytes (CMs) [43,185]. This enzyme catalyses the conversion of the prodrug metronidazole into a cytotoxic agent,
thereby inducing cell death in the NTR-expressing cells. (D) The Cre/loxP transgenic system, developed by Wang and colleagues in 2011,
is based on the inducible expression of diphtheria toxin A chain (DTA) in cardiomyocytes (CMs) [41]; in brief, this procedure is based on
the use of a double transgenic system, including Tg(𝛽actin2:loxP-Fluo P-STOP-loxP-DTA), which contains an inducible cytotoxic DTA gene
preceded by a loxP-flanked reporter gene and stop codon, and the Tg(cmlc2:CreER) [98], which allows expression of the 4-hydroxytamoxifen
(4-HT)-inducible Cre recombinase in cardiomyocytes. Treatment of the intercrossed fish cmlc2:CreER;𝛽actin2:loxP-Fluo P-STOP-loxP-DTA
results in a massive myocardial cell depletion (up to 60% of the ventricle)

the post-embryonic stages in lower vertebrates. In
zebrafish, genetic fate-mapping experiments with
Cre–loxP transgenic lines have demonstrated that the
regenerated myocardium is derived from pre-existing
adult cardiomyocytes [97,98]. Consistently, differ-
ent proliferative assays based on the detection of
G1 –S-phase or mitotic markers have revealed an accu-
mulation of proliferating cardiomyocytes in injured
myocardium [44,45,92,97–99]. In newts, experiments

demonstrating the origin of the new cardiac muscle
are still missing. However, evidence of the cell-cycling
activity in endogenous cardiomyocytes after injury
strongly suggests a regenerative mechanism similar to
that in zebrafish [8,96].

The main question is why adult cardiomyocytes
can multiply to restore a damaged myocardium in
fish and urodeles, but not in mammals. Obstacles for
cell-cycle entry can exist at the molecular, cellular and
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organismic levels. During development, cardiomy-
ocytes are functional as contractile cells but remain at
a low differentiated state that is compatible with cell
division and morphogenesis [26,100]. After the com-
pletion of development, cardiomyocytes differentiate
and adopt a mature cytoarchitecture, which can exhibit
different properties in distinct species. This develop-
mental transition has been associated with a reduction
of proliferative potential in higher vertebrates, but not
in zebrafish and newts. In mammals, the proliferative
capacity becomes dramatically limited at birth, when
the heart switches from a hyperplastic to a hypertrophic
mode of growth [101]. Accordingly, studies in mice and
rats have demonstrated that the regenerative capacity
is restricted to 1 week of life [102–104]. In contrast
to rodents, sheep have already undergone hypertrophic
transition 10 days before birth [105]. Thus, myocardial
maturation follows a distinct temporal frame in altricial
and precocial non-primate mammals, suggesting a
possible correlation between cardiomyocyte differenti-
ation and the increased heart workload associated with
locomotion. In humans, the enlargement of cardiac cells
during early childhood is accompanied by remarkable
cardiomyocyte proliferation [106], which contrasts
with the rapid perinatal switch from proliferation to
binucleation/hypertrophy in other mammalian species.

Adult mammalian cardiomyocytes become enlarged
and more complex compared to their perinatal form
(Figure 4A, B). The tightly packed myofibrils are
separated by invaginations of the plasma membrane
that form transverse T-tubules [107–109]. Cardiac
cytospecialization is less advanced in fish and urode-
les, whereby cardiomyocytes form a rod shape but
remain relatively thin (ca. 5 μm) and lack T-tubules
[110–112] (Figure 4C). In vitro and in vivo experiments
have demonstrated that such adult cardiomyocytes can
undergo cell division (Figure 4C) [96,111]. Despite
these morphological differences, action potential char-
acteristics of cardiomyocytes in zebrafish closely
resemble those in mammals [110,113]. While the
majority of adult cardiomyocytes in fish are mononu-
cleated/diploid, the rodent heart contains predominantly
binucleated/diploid cardiomyocytes, whereas the
majority of human cardiac cells remain mononucle-
ated/polyploid (Figure 4D) [11,27,104,114–116]. Thus,
the degree of cardiomyocyte cytospecialization varies
across species, probably in correlation with the specific
organismic demands. In primates, it is possible that
a transition from tetra- to bipedal locomotion with
vertical blood pumping might have imposed polyploidy
as an adaptation for the increase in myocyte size [117].

In mammals, it has been suggested that the enlarged
size, complex membranous architecture and dense
intracellular sarcomere network might impede cell
division [118]. This assumption has been refined by
studies of cultured cardiomyocytes, showing that the
constraints for cell division are represented by the
loss of centrosome integrity and defective contractile
ring formation [119,120]. Nevertheless, measurements
of nucleotide analogue incorporation and analysis of

Figure 4. Comparison between mammalian and zebrafish car-
diomyocytes in vitro. (A) Image of an isolated adult rat car-
diomyocyte stained with DAPI (false-coloured pink) and antibody
against α-Actinin (green, Z-disc). (B) Image of an isolated neonatal
rat cardiomyocyte stained with DAPI (pink) and antibody against
Myomesin (green, M-band). (A and B) Courtesy of E. Ehler. (C)
Image of adult zebrafish cardiomyocytes after 7 days in culture
and 3 days of BrdU treatment; the cells were stained with DAPI
and antibodies against BrdU (green) and Myosin (red); the presence
of BrdU-positive nuclei (green arrows) indicates proliferative activ-
ity of the cultured cardiomyocytes; non-proliferating cardiomoy-
cytes are indicated by white arrows. (D) Schematic representation
of different levels of cardiomyocyte specialization in the adult heart
across species: differentiated myocytes of zebrafish and newts dis-
play a less complex cytoarchitecture than their mammalian coun-
terparts; the specialization level is adapted to organismic demands

14C levels have provided evidence of DNA synthesis
activity and low cardiomyocyte turnover in the adult
mammalian heart [121–124]. Moreover, several labo-
ratories have demonstrated a proliferative response of
adult cardiac cells after various experimental manipu-
lations, such as transfection with specific micro-RNAs
(miRNAs) [125–127], modulation of cyclin expression
[128,129] or administration of specific extracellular
factors [130–134]. In general, these findings suggest
an inherent potential of differentiated mammalian car-
diomyocytes to access the proliferative machinery under
appropriate circumstances. Boosting of this potential
represents an interesting perspective for regenerative
medicine.

Although adult cardiomyocytes in newts and zebrafish
are capable of proliferation, cardiac injury has been
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Figure 5. Zebrafish heart regeneration involves proliferation of mature and dedifferentiated cardiomyocytes. (A) Model showing two
possible modes of cardiomyocyte proliferation during cardiac regeneration in zebrafish. At the vicinity of the injured zone, cell-cycling
activity is observed in dedifferentiated cardiomyocytes, which re-express embryonic markers; this response predominantly occurs during
the initial stages (1–2 weeks) of regeneration [99]. Cardiomyocytes can also enter mitosis without a visible modification of their structural
differentiation status. This process occurs in an organ-wide pattern during regeneration but also in intact hearts during ontogenetic growth.
(B, C) Confocal images of heart sections from transgenic fish cmlc2:EGFP (blue) at 7 days post-cryoinjury (dpci). (B) A population of
cardiomyocytes (blue) at the injury border expresses a proliferation marker, Minichromosome maintenance complex component 5 (MCM5;
green) and reactivates the expression of an embryo-specific isoform of Cardiac myosin heavy chain (embCMHC; red), which indicates cellular
dedifferentiation. (C) The immunostaining for phospho-(Ser10)-Histone H3 (PH3; green) reveals the presence of mitotic cardiomyocytes at
the injury-remote position; in this case, cell cycle re-entry occurs without a re-expression of embCMHC [99,186]

shown to trigger several features of cellular dedif-
ferentiation in these model organisms. Specifically,
transmission electron microscopy imaging in the
zebrafish has revealed that proliferating cardiomyocytes
show disassembled sarcomeric structures in the vicinity
of the injury [97]. Moreover, certain developmental
genes, such as the cardiac transcription factors gata4
and hand2, or embryo-specific myosin heavy chain,
are up-regulated in the regenerating myocardium in
zebrafish [97–99,135–138]. Ventricular injury in newts
has been associated with the down-regulation of cardiac
muscle genes [8,93–96]. In these species, dediffer-
entiation has been suggested to facilitate mitotic and
morphogenetic activity during reconstitution of the
lost part of the myocardium [96,97,99,136]. Never-
theless, a clear interdependency between these two
processes has not yet been established. Dedifferen-
tiation of adult mammalian cardiomyocytes has also
been observed during cardiac remodelling under diverse
circumstances, including heart ischaemia [139–142].
In addition to sarcomere disorganization, this con-
version is also characterized by a metabolic switch
to carbohydrates to preserve cardiac function under
pathophysiological stress. However, such modulation
of structural and metabolic activities is not asso-
ciated with enhanced cardiomyocyte proliferation
[139,140,143–146]. Further comparative analysis
between different model organisms would shed light on

the mechanisms governing plasticity of cardiomyocytes
in response to heart injury.

In summary, several in vitro and in vivo studies
have shown that mammalian, zebrafish and newt car-
diomyocyte cell division occurs either with or without
any evident sign of dedifferentiation [96,99,111]. In
zebrafish, the local generation of less-differentiated
cardiomyocytes in the proliferative zone of the injury
border is accompanied by stimulation of mitotic
divisions in the remote part of the ventricle, where
dedifferentiation was not detected (Figure 5). The
organ-wide proliferative response resembles a compen-
satory mode of regeneration, such as in mammalian liver
[147]. Further studies are needed to determine the mech-
anisms and significance of enhanced cardiomyocyte
proliferation in the injury-remote part of the ventricle.
Moreover, the level of independence between dediffer-
entiation and proliferation has to be thoroughly assessed
under various conditions, such as cardiac regeneration,
normal ontogenetic growth or homeostatic turnover.

Heart: cellular interactions in cardiac
regeneration

Cardiac regeneration in lower vertebrates involves
essential molecular interplays between cardiomyocytes
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and other cardiac components, such as epicardium,
endocardium and nerves [148–150]. Among these
interactions, FGF, IGF and retinoic acid (RA) signalling
represent key communicative elements between epi/
endocardial cells and cardiomyocytes [138,151–153].
Shortly after injury, the epi/endocardium start to
re-express embryonic markers, including the tran-
scription factors tbx18, wt1 or the RA-synthetizing
enzyme retinaldehyde dehydrogenase 2 (raldh2), and
release RA, which represents an important mitogen for
cardiomyocytes during development and regeneration
[138,152,154]. In addition, epicardial cells have been
shown to enhance the migration and integration of
cardiomyocytes in the injured area [155,156] and to
promote neovascularization in this zone through the
production of epicardial-derived cells (EPDCs), which
migrate in the regenerating myocardium and form
perivascular cells [138,157,158]. Thus, epicardial cells
play pleiotropic roles during cardiac regeneration in
zebrafish. Interestingly, a developmental reactivation
of the adult epicardium has also been observed after
myocardial infarction in adult mammals [148,159,160].
Therefore, the potential of epicardial cells might be fur-
ther considered in the treatment of myocardial infarction
in humans.

In opposition to the concept of ’scarless regenera-
tion’ in vertebrate appendages, accumulation of fibrotic
tissue in the post-infarcted heart is thought to play
a beneficial structural role by providing robustness
to the force-generating contractile organ [161,162]. In
mammals, dense layers of collagen are deposited to
replace a damaged part of the ventricular wall, which
is challenged to withstand the high internal blood pres-
sure. In comparison to humans and rodents, fish and
amphibian ventricles are confronted by a lesser work-
load [53,163,164], which may permit heart regener-
ation without the involvement of compact scarring.
Instead, a transient collagenous trabecular network is
sufficient and necessary to support the function of the
injured ventricle and to provide a guidance scaffold
for invading cardiomyocytes in zebrafish (Figure 6A–D)
and newts [52]. Our laboratory has demonstrated that
the suppression of collagen deposition by inhibition
of TGFβ signalling coincided with regenerative fail-
ure and geometrical deformation of infarct shape [165].
Thus, collagen-deficient infarcts can lead to detrimen-
tal remodelling in both mammals and fish. A balance
between transient fibrosis and progressive replenishing
of cardiomyocytes has to be achieved to synchronize the
reparative and regenerative processes according to phys-
iological conditions.

Transdifferentiation of fibroblasts into myofi-
broblasts, which express α-Smooth muscle actin
(α-SMA), is associated with fibrosis in mammalian
heart [166–170]. In injured hearts of zebrafish, α-SMA-
positive myofibroblasts accumulate along a peripheral
rim of the post-infarct and only a few of these cells
penetrate the central portion of the damaged zone [165]
(Figure 6E, F). This distribution suggests a role of the
contractile fibroblasts in providing mechanical stability

Figure 6. Transient connective tissue in the post-infarcted in
zebrafish; transverse sections of the zebrafish ventricle at 14 days
post-cryoinjury (dpci); the post-infarcted area is encircled with a
dashed line. (A, B) Haematoxylin (dark purple, nuclei) and eosin
(red, proteins) (H&E) staining; the infarct contains acellular rem-
nants of fibrin that were deposited shortly after cryoinjury (pink)
and granulation tissue. (C, D) Aniline blue, acid Fuchsin and Orange
G (AFOG) staining reveals collagen in blue, fibrin in red and cyto-
plasm in orange; the infarct tissue is supported by fibrin (red) and
loose network of collagen fibres that serves as a provisional struc-
tural matrix and a scaffold for migrating cardiomyocytes (orange)
[44]. (E–J) Confocal images of heart sections immunostained with
antibody against Tropomyosin (TPM; red) to highlight the intact
myocardium and a marker of connective tissue. (E, F) α-Smooth
muscle actin (α-SMA)-positive myofibroblasts (green) accumulate
along the outer border of the infarct. (G, H) Fibronectin (green)
forms a reticular pattern in the infarct zone. (I, J) Tenascin C (green)
is predominantly detected at the interface of connective tissue and
regenerating myocardium. Scale bars= 100 μm

to the outer border of the damaged ventricular wall in
zebrafish. Other fibroblast populations infiltrate the mid-
dle portion of the post-infarct, where they produce the
ECM that is known not only to have structural functions
but also to regulate many cellular processes, including
cell migration, proliferation and differentiation, via, for
instance, integrin signalling [171–174]. Cell–substrate
communication has been attributed to various adhesive
and matricellular proteins, including fibronectin and
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242 A Jaźwińska and P Sallin

tenascin C, respectively [166,175–177]. During heart
regeneration in zebrafish, the entire post-infarct area dis-
plays abundant expression of fibronectin, while tenascin
C remains predominantly enriched at the interface
between the regenerating myocardium and connective
tissue [155,165] (Figure 6G–J). Similarly, fibronectin,
tenascin-C and hyaluronic acid form a pro-regenerative
matrix in the newt heart [178]. During regeneration,
this connective matrix progressively resolves by mech-
anisms that still remain poorly understood. Defining
the intrinsic properties of fibroblasts and the external
factors that determine the composition and dynamics
of the ECM in the myocardial post-infarcts would be
highly relevant for regenerative medicine.

Outlook

The appendage and heart cells of some anamniotic
vertebrates possess an intrinsic ability to respond to
injury by proliferation and reactivation of morpho-
genetic programmes to replace the missing structures.
This remarkable regenerative capability correlates with
the relatively low cytospecialization of the adult organs
in teleost fish and urodele amphibians in comparison to
mammals. Histological analyses indicate that the adult
differentiated cells of the non-mammalian and mam-
malian species cannot be directly placed on the same
scale. Although mature appendage and cardiac cells
in fish and urodeles maintain an intrinsic proliferative
potential, cellular dedifferentiation is often observed at
the site of injury of the regenerating organs. This sug-
gests a general significance of the separation of tissues
from one another and a function of tissue isolation for
regaining of a certain degree of cellular plasticity. In this
context, dedifferentiation does not need to imply a com-
plete reversion to an embryonic state, but a temporary
reduction of the cellular complexity, which may facil-
itate proliferation and morphogenesis. Mimicking this
strategy in injured mammalian organs would demand
a molecular toolkit to impose a transient and partial
reversion of the local tissue complexity without repro-
gramming into the pluripotent state. The recent advances
of cell fate conversion suggest that the manipulation of
cellular specialization seems to be an achievable goal
[179–181]. The challenging part of this task concerns
the understanding of organismic factors that impact
tissue regeneration at molecular and biomechanical
levels. The combination of findings across different
animals will help to recognize the permissive and
restrictive factors to establish a regeneration-competent
environment. These advances will move the
field of regenerative biology closer to clinical
implementation.
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