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Abstract: Motility behavior of an engineered chemosensory particle (ECP) in fluidic environments is
driven by its responses to chemical stimuli. One of the challenges to understanding such behaviors
lies in tracking changes in chemical signal gradients of chemoattractants and ECP-fluid dynamics
as the fluid is continuously disturbed by ECP motion. To address this challenge, we introduce a
new multiscale numerical model to simulate chemotactic swimming of an ECP in confined fluidic
environments by accounting for motility-induced disturbances in spatiotemporal chemoattractant
distributions. The model accommodates advective-diffusive transport of unmixed chemoattractants,
ECP-fluid hydrodynamics at the ECP-fluid interface, and spatiotemporal disturbances in the
chemoattractant concentrations due to particle motion. Demonstrative simulations are presented
with an ECP, mimicking Escherichia coli (E. coli) chemotaxis, released into initially quiescent fluids
with different source configurations of the chemoattractants N-methyl-L-aspartate and L-serine.
Simulations demonstrate that initial distributions and temporal evolution of chemoattractants and
their release modes (instantaneous vs. continuous, point source vs. distributed) dictate time histories
of chemotactic motility of an ECP. Chemotactic motility is shown to be largely determined by
spatiotemporal variation in chemoattractant concentration gradients due to transient disturbances
imposed by ECP-fluid hydrodynamics, an observation not captured in previous numerical studies
that relied on static chemoattractant concentration fields.

Keywords: chemotaxis; engineered chemosensory particle; multiple chemoattractants; particle-fluid
hydrodynamics; multiscale numerical model

1. Introduction

Intellectual and technological advances in a variety of fields continue to refine our understanding
of the principles and potential applications of nanorobotic systems. Of great interest in this area is the
understanding and development of control systems through which nanorobotic devices or bacterial
biohybrids carrying a payload can be effectively directed to a specified target. Work in this field
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holds particular promise in applications relevant to health and biomedicine [1–5]. In addition to
considerations of cargo and payload storage design, successful nanorobotics-based therapies must
rely on a clear understanding of the structure and function of actuators, sensors, and power sources
that govern the devices’ abilities to interact with their fluidic environments [6]. While the fluidic
environment poses navigational challenges to device design in each of these areas [7], natural biological
systems, which have undergone adaptation and evolutionary selection for optimized solutions to these
issues, have provided insights and inspiration [8–12]. Indeed, bacterial cells have been engineered to
target specific locations in animal systems, most notably cancer tissue [2,13–15].

A variety of actuation systems have been explored, including magnetic and acoustic fields, light
and chemical energy [5]. While each of these actuating systems is characterized by distinct design
features, advantages and limitations, they all share in common the fact that the engineered device
operates in a fluidic environment. Therefore, it is essential to computationally and experimentally
investigate how various fluidic environments influence the motility of particles, with the guiding
principle that an understanding of actuation mechanics as well as particle-fluid dynamics will provide
valuable insights into the design properties and behaviors of engineered devices in fluids. As such,
biomimetics of the flagellar chemosensing bacterium Escherichia coli (E. coli), whose motility in fluids is
driven by sensing chemical gradients and transformation of electrochemical energy into motion [16],
could lead to the enhanced design of autonomous chemosensory structures with diverse applications
in a variety of fluidic environments.

In this paper, we present a novel multiscale numerical model to simulate chemotactic behavior of
an engineered chemosensory particle (ECP) swimming in a fluidic environment (Figure 1). The model
is built through the dynamic coupling of three modular components involving (i) ECP chemical
attractant signal sensing and swimming response based on the chemotaxis adaptive phosphorelay
circuit that governs the operation of the E. coli flagellar motor (MRC module); (ii) chemotactic ECP
hydrodynamic interactions with the bulk fluid (CLB module); and (iii) chemical substrate transport
phenomena in a fluidic environment, validated against a 2D benchmark problem and described in this
paper (ADT module). The first module (MRC) simulates submicron−scale cell signaling processes
that determine the run and tumble biased random walk behavior of the ECP based on the chemical
environment. The second and third modules (CLB and ADT) simulate particle-fluid hydrodynamics
and spatiotemporal variations in the fluid velocity and substrate concentration at the cm-scale.
Hence, the new model is a coupled multiscale numerical model that simulates the transformation of
chemical energy by an ECP to mechanical energy as it swims through fluidic environments containing
concentration gradients of chemoattractants. This is accomplished by accommodating dynamic
changes in spatiotemporal distributions in the fluid velocity and concentration fields due to ECP motion.
Details of each of these module components comprising the multiscale model are described below.

We recently developed multiscale computational models for E. coli chemotactic sensing by
coupling the Monod-Wyman-Changeux mixed chemosensory receptor cluster model, known as
RapidCell (RC) [17], with the method of regularized Stokeslets [18] or the colloidal lattice Boltzmann
(CLB) models [19,20]. These models were used to simulate motility of chemosensory particles in
confined fluidic environments with externally imposed chemoattractant gradients [21,22]. In this paper,
we extend the coupled RC-CLB model to simultaneously simulate advective-diffusive transport (ADT)
of two unmixed chemoattractants, ECP-fluid hydrodynamics, and disturbances in spatiotemporal
distributions of chemoattractants due to particle motion. We equip the ECP with the well-established
model of chemical stimulus sensing circuitry of E. coli, which confers on the ECP the ability to detect
and respond to gradients of chemoattractant compounds in the fluidic environment. We refer to our
upgraded model as MRC-CLB-ADT, corresponding to the modified RapidCell (MRC)-colloidal lattice
Boltzmann (CLB)-advective-diffusive chemoattractant transport (ADT) model. The MRC-CLB-ADT
model is used in this paper to follow the position and swimming trajectories of an ECP in fluidic
environments in which two unmixed chemoattractants are introduced on opposite sides of a confined
flow domain. We also utilize the model to investigate how the residence times of the ECP are affected
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by chemoattractant release mode (instantaneous vs. continuous, point source vs. distributed) as
concentration and fluid velocity fields are altered through ECP swimming behavior.

In the following sections, we first describe the mathematical formulation of the new coupled
MRC-CLB-ADT model to simulate the motility of ECPs in two-dimensional (2D) fluidic environments
in response to spatiotemporal variations in concentrations of the amino acid chemoattractants
N-methyl-L-aspartate (MeAsp) and L-serine (Ser). The selection of these amino acids is based
on their frequent use in experimental studies of E. coli chemotaxis mechanics and chemoreceptor
biochemistry [16]. Using this modeling framework, we present and discuss the results from simulations
with increasing levels of complexity and realism. The first set of simulations is performed using
imposed temporally-invariant, but spatially-variant concentration fields. In these simulations,
chemoattractant distributions are presumably not affected by ECP-fluid hydrodynamics, and are
used as benchmark cases. A second more realistic set of simulations incorporates the effects of ECP
motility in the fluidic environment on the chemoattractant distributions. Through the incorporation of
a dynamically-evolving mixed chemical environment, the MRC-CLB-ADT model simulations reveal
critical roles of the ECP-fluid hydrodynamics on the chemosensory particle motility not previously
recognized in static concentration field-based models.
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Figure 1. Coupling of the modules of the multiscale MRC-CLB-ADT model and information exchanges
among the modules.

2. Mathematical Framework of the MRC-CLB-ADT Model

A mathematical description of main submodels (MRC, CLB, and ADT) and the optional submodel
(static chemoattractant concentration fields) of the MRC-CLB-ADT model and their coupling are
provided in this section. Numerical validations of the CLB and ADT modules are also discussed in
this section.

2.1. Module 1. Modified RapidCell (MRC) Model for Particle Chemosensing in Two Chemoattractant Fields

We modified the RapidCell (RC) model to simulate chemotactic motility of the ECP with the
premise that the ECP mimics E. coli chemotaxis in the presence of two unmixed chemoattractants.
The RC model [17] was originally developed to simulate flagellar bacterial chemotaxis in an
environment with a spatiotemporally varying concentration gradient of a single chemoattractant,
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and performs two tasks: chemoattractant signal processing by the methyl-accepting chemotaxis
protein (MCP) sensory lattice and adaptive feedback response of the sensory array [16,23–25].
Signal processing by the cell occurs through interactions between chemoattractant-activated
chemoreceptors, CheA kinase, and other regulators including CheY, CheR, CheB, and CheZ (Figure 2).
Chemoattractant-receptor interactions regulate the autophosphorylation activity of CheA [24]. CheA-P
phosphoryl transfer activity may then result in switching of direction of motor rotation through
CheY-P [26] or adjustment of adaptive response through MCP methyl group hydrolysis by CheB-P [27].

Figure 2. Chemotactic signaling by Tar and Tsr MCPs in E. coli. Chemoattractants such as
N-methyl-L-aspartate and L-serine (represented by triangle and diamond shapes) are sensed by Tar
and Tsr MCPs, respectively, and binding results in signal transduction across the cell membrane to
a phosphorelay response circuit. Phosphoryl group (P) transfer to Che proteins controls direction
of rotation of flagellar motor and MCP methylation-dependent adaptive response. Default flagellar
rotation is counterclockwise, causing cell to run; switching to clockwise rotation results in reorientation
of cell through tumbling motion due to flagellar unbundling. Circled letters represent Che proteins
described in text, e.g., A represents CheA, Y represents CheY, etc.

The RC model was modified to account for the presence of two unmixed chemoattractants using
the total free energy differences in [28]. The effect of the total free energy differences between ‘on’ and
‘off’ states for two receptors sensing two chemoeffectors is described as

F = N

[
h(m) + νa ln

(
1 + [MeAsp]/Ko f f

a
1 + [MeAsp]/Kon

a

)
+ νs ln

(
1 + [Ser]/Ko f f

s
1 + [Ser]/Kon

s

)]
, (1)

where N is the number of chemoreceptors in the receptor cluster. [MeAsp] and [Ser] are the extracellular
chemoattractant MeAsp and Ser concentrations, respectively [28]. The binding of MeAsp by Tar is
given in the modified total free energy by νa and the binding of Ser by Tsr is represented in the modified
total free energy by νs. The offset energy, h(m) is given by 1−m/2 where m is receptor methylation
defined in Equation (4). The dissociation constant for the chemoattractant in the ‘on’ or ‘off’ state is
specified as Kon/o f f

r (r = a, s).
The total free energy differences F from Equation (1) are used in the RC model to compute the

receptor methylation (m) and the basal motor bias (mb)

Ac =
1

1 + eF (2)

[CheY-P] = 3
kYks Ac

kYks Ac + kZ[CheZ]tot + γY
, (3)

dm
dt

= a(1− Ac)[CheR]− bAc[CheB], (4)

mb = (1 + (1/mb0 − 1)([CheY-P]H)−1, (5)
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where Ac is the probability of the cluster activity, CheY-P is the concentration of phosphorylated
CheY, kY, kZ and γY are the rate constants, ks is the scaling coefficient, [CheZ]tot is the total CheZ
concentration, a and b are the methylation scaling factors, m is receptor methylation, mb is the motor
bias, mb0 is the basal motor bias, and H is the motor Hill coefficient. In RC model simulations, the initial
methylation state of the receptor cluster is obtained from a steady-state methylation level associated
with the initial chemoattractant concentration bound to the chemoreceptor cluster. The methylation is
then updated by solving Equation (4) using the forward Euler finite difference method. Motor bias
values may range from 0 to 1 with higher values corresponding to a greater likelihood of running
motion of bacteria. To determine whether a particle will run or tumble, a uniform random number ξ is
generated between 0 and 1; and if ξ < mb, the particle runs; otherwise, it tumbles. A complete list and
description of the parameters, variables, and functions in Module 2.1 are provided in Tables A1 and A2
in the Appendix A.4.1.

Our modification to the RC model provides a framework for relating the time history of multiple
chemoattractant concentration sensing events at the particle’s chemosensory array to the run-tumble
probability output and is called the modified RapidCell model (MRC).

2.1.1. Static (Time-Invariant) Concentration Fields

If externally-computed time-invariant radial concentration gradients are used for MeAsp and Ser
in numerical simulations, the concentration gradients are described by [28]

[MeAsp] = ω

[
Ca0 + exp

(
−
√
(x + xa)2 + y2

)]
[Ser] = ν

[
Cs0 + exp

(
−
√
(x + xs)2 + y2

)]
,

where Ca0 and Cs0 are the minimum chemoattractant concentrations for MeAsp and Ser, respectively.
x and y are the horizontal and vertical coordinates, and ω and ν are scaling parameters for MeAsp and
Ser gradients, respectively. The parameters (xa, ya) and (xs, ys) describe the location of the maximum
MeAsp and Ser concentrations in a 2D square domain, described as (x, y) = {x, y ∈ R : [−L∗, L∗]},
in which L∗ is the domain length [28]. The imposed chemoattractant concentration gradients of MeAsp
and Ser are scaled, using a scaling parameter of r, for larger domains in RC-CLB simulations as follows

[MeAsp] = ωr

[
Ca0 + exp

(
−
√
(x + xa)2 + (y + ya)2

r

)]
, (6)

[Ser] = νr

[
Cs0 + exp

(
−
√
(x + xs)2 + (y + ys)2

r

)]
. (7)

2.1.2. Dynamic (Time-Variant) Concentration Fields

In reality, the MeAsp and Ser concentrations change according to their own diffusion process while
being advected by the fluid flow and the ECP motion as time goes on. Therefore, the concentration
fields cannot be externally computed and independent of time as in the ideal case of Section 2.1.1.
At each time step the fluid-ECP interactions need to be taken into account so that the distributions
of MeAsp and Ser concentrations can be updated properly. Section 2.2 presents how the fluid-ECP
interactions are modeled. Section 2.3 shows how the resultant fluid velocities from Section 2.2 affect
the transport of MeAsp and Ser.

2.2. Module 2. Colloidal Lattice Boltzmann (CLB) Model for Particle-Fluid Interactions

The CLB model has two submodules, (i) fluid flow submodule and (ii) particle flow submodule,
The former calculates the local changes in the fluid velocity field in response to ECP motion. The latter
subsequently updates angular and translational velocities of an ECP in the disturbed fluid velocity
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field. These two new submodules operate sequentially in each time step and calculations are based
on momentum exchanges between a motile ECP and the bulk fluid across the ECP’s surface. In the
fluid flow module, the fluid flow is governed by the Navier-Stokes equation and it is solved using
the lattice-Boltzmann method (LBM) [29]. In the particle flow module, the angular and translational
velocities of an ECP are computed based on Newton’s equation of motion. Mathematical details of
these two submodels are presented next.

2.2.1. Fluid Flow Submodule (FFS)

In the fluid flow submodule of the CLB model, the mesodynamics of the transient, weakly
compressible, Newtonian fluid flow is described by a single relaxation time [30].

fi (r + ei4t, t +4t)− fi (r, t) =
4t
τ

[ f eq
i (r, t)− fi (r, t)], (8)

where fi(r, t) is the complete set of population density of discrete velocities ei at position r and discrete
time t with a time increment of4t, and τ is the relaxation parameter. The left-hand side of Equation (8)
describes the streaming of populations from a lattice node r to the closest neighbor in the direction
ei. The right-hand side of Equation (8) represents the local collision process. f eq

i in Equation (8) is the
discrete equilibrium Maxwell-Boltzmann distribution approximated by the low Mach number mass
and momentum conserving expansion [31]

f eq
i = ωiρ

(
1 +

ei·u
c2

s
+

(ei·u)2

2c4
s
− u·u

2c2
s

)
, (9)

where ωi is the weight associated with ei, cs is the speed of sound, cs = 4x/
√

34t, and 4x is the
lattice spacing. The local fluid density, ρ, and velocity, u, at the lattice nodes are given by

ρ = ∑
i

fi, ρu = ∑
i

fiei + τρg, (10)

where g is the acceleration due to external forces [32]. In Equation (10), ρg = 4P/L∗, and hence, ρg
specifies the pressure differential across the fludic domain with the length of L∗. If the fluidic domain
is stagnant, then g = 0. Otherwise, the flow strength across the fluidic domain can be specified by ρg.

Through the Chapman-Enskog approach [29], in the limit of small Knudsen number for weakly
compressible fluids (4ρ/ρ ∼ M2 ∼ 1× 10−4, where M is the Mach number), the LB method for
single-phase fluid flow recovers the Navier-Stokes equations

∇ · u ∼ 0, ∂tu + (u · ∇) u = −∇P
ρ

+ ν̃∇2u + g. (11)

where ν̃ is the kinematic viscosity of the fluid. Pressure is computed via the equation of state for an
ideal gas, P = c2

s ρ. A commonly used D2Q9 (two-dimensional nine velocity vector) lattice geometry
(Figure 3), which ensures fourth-order lattice isometry, was adopted in LB simulations in this paper.
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Figure 3. D2Q9 (two-dimensional nine velocity vector) lattice geometry. The vector basis set for the
D2Q9 model consists of a null vector (rest population), which improves the stability of the algorithm,
four off-diagonal vectors of length unity directed towards the nearest neighbor nodes, and four diagonal
vectors of length

√
2 directed toward the next-nearest neighboring nodes.

For which unit discrete velocities ei at each lattice node are defined as

e =

[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
. (12)

The first column vector of e in Equation (12) is the null vector corresponding to the rest population,
the second through fifth column vectors correspond to the four vectors of length unity directed toward
the nearest neighboring lattice nodes, and the sixth through ninth column vectors correspond to
the four vectors of length

√
2 directed toward the next-nearest neighboring lattice nodes (Figure 3).

Equation (8) recovers the Navier-Stokes equation for ωi = 4/9 for the rest populations (i = 0),
ωi = 1/9 for the off-diagonal populations (i ∈ [1, 4]), and ωi = 1/36 and for the diagonal populations
(i ∈ [5, 8]) in Equation (9) and τ = 0.5 + 3ν̃

[
4t/(4x)2] in Equation (8), which are obtained through

the Chapman-Enskog expansion [29]. Hence, τ in the LB method is determined by the kinematic
viscosity of the fluid, ν̃. Numerical stability in fluid flow simulations was ensured by τ = 0.8 < 1.0.

In each time-step in numerical simulations, fi and f eq
i were computed at each lattice node via

Equations (8) and (9). fi’s can be altered locally by ECP motion, which will be discussed in the next
section. After fi’s were computed, the fluid velocity and density at each lattice node were computed
via Equation (10). In these simulations, the fluid was Newtonian; therefore, ν̃, and hence, τ were
constants. Moreover,4x and4t remained constant throughout simulations.

The LB method is second accurate in space and time. The LB model was preferred over classic
Navier-Stokes solvers in this paper as the computationally demanding nonlinear convective term in the
Navier-Stokes equation, (u · ∇) u, is replaced by a linear arithmetic streaming term (the left-hand side
of Equation (8)) in the LB method. The streaming is exact and local mass and momentum conservations
are accurate to machine round-off error [29,33].

2.2.2. Particle Flow Submodule

The particle flow submodule of the CLB model [19,20], built on the LBM formulation
by [34–36], was modified to simulate hydrodynamic interactions between an ECP (represented as a
circular-cylindrical particle in the LBM) and the bulk fluid [21]. ECP-fluid hydrodynamic forces, Frb at
boundary nodes located halfway between the intra-particle lattice node, rv, and extra-particle lattice
node, rv + ei, are computed based on momentum exchanges between the ECP and surrounding fluid
(Figure 4) [34,37]

Frb = −2
[

f ′i (rv + ei4t, t∗) +
ρωi
c2

s

(
urb · ei

)]
ei, (13)

where f ′i is the population density in the −ei direction at the post-collision time t∗, and urb is the local
particle velocity at the boundary node rb. Equation (13) is related to the continuum-scale particle-fluid
hydrodynamic force on the particle
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∑
rb

Frb = mp
(
u−Up

)
/4t, (14)

where mp is the particle (ECP) mass and Up is the particle velocity. Steric interaction forces, Fri ,
between the particle and stationary solid zones are expressed in terms of two-body Lennard-Jones

potentials [38] such that Fri = −ψ
(
|ri |
|rit |

)−13
n, where | ri | is the distance between a particle surface

node and the stationary solid node located on channel walls or inline obstacles (ri = rpw); p is the ECP
index; w is the wall or obstacles index; | rit | is the repulsive threshold distance; n is the unit vector
along ri; and ψ is the stiffness parameter used to adjust the repulsive strength between the particle and
stationary solid zones. Then, the total force, FT , on the ECP is

FT = ∑
rb

Frb + ∑
rc,u

b

Frc,u
b

+ ∑
|rpw |≤|rit |

Frpw + Frun, (15)

where Frc,u
b

= ±ρ
(

urc,u
b
−Up

)
/4t is the force induced by covered, rc

b, and uncovered, ru
b , lattice nodes

due to particle motion [35,37,39]. The force associated with the running motion of the ECP is defined
as Frun = (rcl−rc)

|rcl−rc | fm, where rcl is the location of the receptor cluster, rc is the position of the particle
centroid, and fm is the force strength. rcl is placed on the boundary nodes. The total torque on the ECP,
TT , is defined as

TT = ∑
rb

(rb − rc)× Frb + ∑
rc,u

b

(
rc,u

b − rc
)
× Frc,u

b
+ ∑
|rpw |≤|rit |

(rw − rc)× Frpw + Ttumble. (16)

Figure 4. LB model representation of an ECP (left) and the momentum exchanges between the ECP
and the fluid (right) [34,38,39]. Filled circles are the intra-particle virtual fluid nodes of ECP closest to
its surface, filled triangles outside the ECP surface represent its extra-particle bulk fluid nodes, and
the filled square represents the boundary node located half-way between the intra-particle node (rv)
and extra-particle node ( rv + ei4t). Hydrodynamic links along which the ECP exchanges momentum
with the fluid are shown by red line segments.

Torque due to the ECP tumbling motion as it seeks the highest chemoattractant gradients,
Ttumble, is

Ttumble (t +4t) =
Υ
4t

(
4θ

4t
−Ωtumble (t)

)
, (17)

where Υ is the time-scaling factor associated with the angular rotation of the ECP due to its tumbling
motion. This is different from the time-scale associated with its translation velocity resulting from
running motion. Ωtumble (t) is the ECP’s angular velocity due to particle torque resulting from its
tumbling state at time t and is defined as Ωtumble (t + ∆t) = Ωtumble (t) +4tTtumble (t +4t) /Ip,
where Ip is the moment of inertia of the ECP (Ip = mprp

2/2, in which rp is the radius of the circular
ECP) and Ωtumble (t = 0) = 0. The angular rotation, 4θ, of the ECP associated with its tumbling
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motion over4t is computed by4θ = 2π(ϕ− 0.5) where ϕ is a uniformly distributed random number
between 0 and 1. The translational velocity, Up, and the angular velocity of the ECP, Ωp, are advanced
in time according to the discretized forms of Newton’s equations of motion

Up (t +4t) ≡ Up (t) +
4t
mp

FT (t) +
4t
ρp

(ρp − ρ)g, (18)

Ωp (t +4t) ≡ Ωp (t) +
4t
Ip

TT (t) . (19)

Local velocities at the boundary nodes are computed by

urb = Up + Ωp × (rb − rc) . (20)

The new position of the ECP is computed by

rc (t +4t) = rc (t) + Up (t)4t. (21)

Then the position of the receptor cluster on the ECP surface is updated by

rcl (t +4t) = rc(t +4t) + rp{cos[θcl (t + ∆t)], sin[θcl (t + ∆t)]}, (22)

where rp is the particle radius and the rotational angle of the receptor cluster is defined as θcl (t + ∆t) =
θcl (t) + Ωp (t +4t)4t. Finally, the population densities at the intra-particle node, rv, and the
extra-particle node, rv + ei4t, are updated to account for momentum-exchange between the ECP and
bulk fluid via [34] (Figure 4)

f ′i (rv, t +4t) = fi(rv, t∗)− 2ρωi
c2

s

(
urb · ei

)
, (23)

fi (rv + ei4t, t +4t) = f ′i (rv + ei4t, t∗) +
2ρωi

c2
s

(
urb · ei

)
. (24)

In each time-step in numerical simulations, the total force, FT, and the total torque, TT, on the
ECP were computed via Equations (15) and (16). The resultant translational and angular velocities of
the ECP were calculated by Equations (18) and (19). Local velocities at the boundary nodes of the ECP
and the new position of the ECP were computed next by Equations (20) and (21). The new location of
the receptor cluster on the ECP’s surface, at which chemical sensing of chemoattractants was simulated
via MRC, was then computed by Equation (22). Local disturbances in the immediate vicinity of the
motile ECP altered population densities, fi, in accordance with Equations (23) and (24). The altered fi’s
near the ECP’s surface were used to compute the new fluid velocity field via Equations (8) and (10).

The CLB model was validated in [36] against numerically-computed (via the finite-element
method) settling trajectories of a circular-cylindrical particle in an initially quiescent fluid [40].
As reported in [36], the CLB model also closely predicted terminal velocities of spherical particles 5%
and 10% denser than the bulk fluid [36] in particle settling experiments reported in [41].

2.3. Module 3. Advective-Diffusive Transport (ADT) Model for Chemoattractant Distributions

In the original RC model [17], the chemoattractant environment surrounding chemosensory
particles was not fluid-based; therefore, static chemottractant concentrations were externally computed
(as discussed in Section 2.1.1) and artificially imposed onto the fluidic domain. To overcome this
shortcoming, a chemoattractant transport model, based on the LBM, was formulated in this paper to
simulate spatiotemporal distributions of chemoattractants in the fluidic environment of the ECP by
accommodating the effects of particle motion-induced disturbances in the flow and chemoattractant
concentration fields. The advective-diffusive chemoattractant transport was solved using the LBM on
a D2Q9 lattice [42,43]:
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gi (r + ei4t, t +4t)− gi (r, t) =
4t
τc

[geq
i (r, t)− gi (r, t)], (25)

where gi(r, t) is the complete set of population density of discrete velocities ei associated with the
chemoattractant concentration at position r and time t with a time increment of4t. τc is the relaxation
parameter associated with the chemoattractant transport. In Equation (25), geq

i is the local equilibrium
for the chemoattractant transport process and is given by [43]

geq
i = ωiC

(
1 +

ei·u
c2

s
+

(ei·u)2

2c4
s
− u·u

2c2
s

)
. (26)

The local chemoattractant concentration at each lattice node r is given by C = ∑i gi. Through
the Chapman-Enskog expansion [43], Equations (25) and (26), recovers the continuum-scale transient
advective-diffusive substrate transport equation,

∂C
∂t

+ u · ∇C = D∇2C, (27)

where C is the chemoattractant concentration, D is the Fickian diffusion coefficient, and u is computed
by Equation (10). Equation (25) is equivalent to Equation (27) for τc = 0.5 + 3D[4t/4x2]. The ADT
model was validated with a 2D benchmark problem (Appendix A.1) and its performance was tested
with different flow simulations (Appendix A.2) in the Appendix A.

In each time-step in numerical simulations, gi and geq
i were computed at each lattice node via

Equations (25) and (26), using the fluid velocity computed at each lattice node by Equation (10).
After gi’s were computed, chemoattractant concentrations at each lattice node were calculated by
C = ∑i gi. Computed chemoattractant concentrations were used by the MRC to determine the tumble
or run motion of the ECP. Decision on the tumble or run motion of the ECP affected FT and TT in
Equations (15) and (16), and hence, altered local fi’s in the vicinity of the mobile ECP according to
Equations (23) and (24). A complete list and description of variables and parameters used in the CLB
and ADT modules are provided in Table A3.

In this paper, we adopted the Fickian diffusion process via Equation (27), following the earlier
numerical work by [42,43], in which D is constant in space and time, so that the diffusion process is
described by D∇2C. However, future work, involving also experimental tasks, will explore the use of
the Fokker-Planck equation instead to describe the diffusive processes with temporal dispersion rather
than spatial dispersion [44–47] of chemoattractant transport in determining chemotactic motility of
ECPs. The LB method has been shown to be capable of solving 2D Fokker–Planck equations with
variable coefficients by [48].

2.4. Coupling of the Modules, MRC-CLB-ADT Model

The MRC and CLB models are coupled via Equations (15), (16), and (22) [21]. Although each
ECP is subject to its own signal processing and chemotactic swimming behavior, as described by
Equations (1)–(5), their interactions with the bulk fluid and stationary solid zones are accounted for by
particle-fluid hydrodynamic forces and particle-wall steric interaction forces in Equation (15). If the
concentration fields for MeAsp and Ser are externally computed and imposed onto the fluidic domain
using Equations (6) and (7), the coupled MRC-CLB model may be used to describe the transient
behavior of ECPs without using the ADT model. Section 3.1 presents simulation results obtained by
using such static concentration gradients.

Chemoattractant concentration distributions, however, are not static in real systems. As the ECP
moves, it would disturb the flow and chemoattractant concentration fields. The proposed coupled
MRC-CLB-ADT model accounts for spatiotemporal variations in chemoattractant concentrations due
to ECP-fluid interactions. At each time step, (i) the CLB calculates the fluid velocity field, u, in response
to ECP motion, and passes the computed fluid velocity field to the ADT; (ii) the ADT updates the
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concentration fields for MeAsp and Ser, [MeAsp] and [Ser] respectively, based on the new fluid velocity
field and then sends the updated concentration fields to the MRC; and (iii) the MRC calculates the
ECP motility in the fluidic environment with the new concentration fields and gradients. The MRC
passes the running force, Frun, and tumbling torque, Ttumble, to the CLB in the subsequent time step to
calculate angular and translation velocities of the ECP, the new position of the ECP, the new position
of the receptor cluster on the ECP’s surface, and the resultant local disturbances in the flow field due
to ECP motion. Figure 5 displays the flow of information in the MRC-CLB-ADT model for simulations
discussed in Section 3.2.

MRCCLB

ADT

Figure 5. Data exchanges between submodels (MRC, CLB and ADT) in each time step. [MeAsp] and
[Ser] are MeAsp and Ser dynamic concentrations; u is the fluid velocity; Frun and Ttumble are the force
and torque associated with direct run and tumble motion of an ECP.

2.5. Simulation Parameters

The motility of chemosensory particles in a fluidic environment is typically described by Reynolds
number, Re = |Up|Dp/ν̃ where Dp is the particle size. In our simulations, considering the average
|Up| being 6.09× 10−3 cm/s, ν̃ being 8.70× 10−3 cm2/s, and the representative size of the ECP being
2 cm, the Re associated with the ECP motility is 1.4, residing in the creeping flow regime. In this case,
the ECP travels from one side of the square flow domain of 3232.4 cm2 to the opposite side in a straight
flow path in 2.6 h at a rate of 0.3% of its body length per second.

ECP’s mass was 4.2 g in simulations. The force strength associated with the run motion of
ECP was set to 3.25× 10−4 kN to keep Re on the order of 1. The time-scaling factor associated with
tumbling-induced rotation of bacteria, Υ, in Equation (17), was previously estimated to be 5 from
simulations with a single chemotactic particle released into a confined domain in the absence of inline
obstacles [21]. Therefore, Υ = 5 was adopted in simulations in this paper.

In simulations, |rpw| = 1.5 lattice unit (l.u.) and ψ = 1. ECP-wall steric interaction forces would
be non-zero only when surface boundary nodes of the ECP move within 1.5 l.u. (0.43 cm) of stationary
wall surfaces to avoid physically unrealistic overlaps [36]. When the boundary nodes of ECP the moves
in within 1.5 l.u. of wall nodes, instantaneous, short-lived (within a few time-steps) relatively large
(typically within an order of magnitude of Frb ) steric pulse applies to keep the ECP-wall separation
distance larger than 1.5 l.u.

Our simulations were conducted with two unmixed chemoattractants, MeAsp and Ser. When
these concentrations were imposed in the environment using the Equations (6) and (7), the scaling
parameters ω and ν controlled the peak concentrations. ω = 1 returned the optimal sensitivity of
chemoreceptors to MeAsp in the imposed environment as observed in [28]. Two values of the scaling
parameter ν (0.1 or 0.001) were chosen to control the sensitivity of the chemoreceptor response to Ser.
When ν = 0.1, a dense level of cell accumulation to the Ser peak was expected in [28] due to a higher
peak concentration compared to the one with ν = 0.001. Therefore, in our simulations, ω was kept at 1
while ν = 0.1 or ν = 0.001 to compare the transient behavior of ECPs in different scenarios given the
imposed environment (i.e., Equations (6) and (7) were used instead of the ADT model) or the dynamic
environment (i.e., the ADT module was coupled as shown in Figure 5).
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In our simulations, the diffusion coefficient values, D, for Ser and MeAsp were chosen such that
they are within the range of experimentally reported values for Tar and Tsr substrates [49–51]. Because
diffusion of chemoattractants would be enhanced by disturbances (additional mixing) in the fluid [52]
by ECP motion, the values of D were increased by a factor of 10 to account for enhanced diffusion in
MRC-CLB-ADT simulations. The factor of 10 was chosen so that the concentration distributions were
spreading out reasonably within 50,000 time steps. However, the actual value of the enhancement
factor and D could be obtained from experiments in future studies. Thus, for our simulations, D for
Ser is set to 8.7× 10−5 cm2/s and D for MeAsp is set to be 1.08 times higher than for Ser.

The scaling parameter r in Equations (6) and (7), is set to 14.3 cm. The initial maximum
concentrations of MeAsp and Ser are located at (14.3 cm, 28.9 cm) and (42.9 cm, 28.9 cm), respectively,
which correspond to P1 = (50, 101) and P2 = (150, 101) on a lattice grid. The minimum concentrations
for MeAsp and Ser, Ca0 and Cs0, are set to 0.1 µM. In our simulations, 1 unit of concentration
corresponds to 1 µM.

3. Results

In MRC-CLB-ADT simulations discussed in the subsequent sections, except for the validation test
(Appendix A.1) and supplementary simulations (Appendix A.2) in Appendix, the fluid was initially
quiescent and the fluid domain was bounded in all directions. A no-slip (wall) condition was imposed
along the domain boundaries when the flow domain was bounded. Simulation results were reported
at dimensionless times (i.e., in LB units) to ease the repeatability of the results, but simulation times
can be expressed in seconds by multiplying their dimensionless counterparts by a factor of 0.938.
Similarly, spatial lengths in LB units can be expressed in cm by multiplying them by a factor of 0.286.
The MRC-CLB-ADT model was coded in MATLAB [53].

3.1. Simulations with Imposed Temporally-Invariant, Spatially-Variant Chemoattractant Concentrations

Base case simulations involving temporally-invariant, spatially-variant chemoattractant
concentration fields were used to compare MRC-CLB model results to the simulation results by
Edginton and Tindall [28]. Time-invariant chemoattractant concentration fields (Figure 6) computed
by Equations (6) and (7) were imposed onto the flow field, instead of being computed in each time-step
by the ADT model. Hence, temporal disturbances in the chemoattractant concentration fields due to
motility of the ECP were not accounted for. These base case simulations are classified as “Imposed”
due to the static nature of the chemoattractant concentration fields artificially imposed onto the
fluid domain.

The MeAsp gradient parameter was set to ω = 1, based on previously reported Tar sensitivity
curve data in [54]. The gradient parameter for Ser was set to ν = 0.1 or ν = 0.001. These ν values, in
combination with the fixed ω gradient value, were chosen to account for changes in the bias of an
ECP to travel toward increasing MeAsp concentrations due to saturation effects [28,54]. To account
for the biased motion of an ECP in this environment, ten trial simulations were performed with ν =
0.1 or ν = 0.001. The ECP trajectories were different in these replicates due to the randomness in the
MRC method (Equation (17)) that would determine if the ECP would run or tumble. The set up for
simulation was a bounded domain of size [1200]× [1200] in LB units, corresponding to 56.85 cm ×
56.85 cm. In each replicate, an ECP was released from the center of the domain located at (101, 101).

The coordinates (x, y) of the centroid of a motile ECP were tracked for 50,000 time steps,
corresponding to 13 h. At any given time-step, if x > 100, the ECP would be located in the right half of
the domain, where the center of the Ser concentration field was initialized at (150, 101), which will
be referred to as “On Ser Half”. Similarly, if x < 100, the ECP would be located in the left half of the
domain, where the center of the MeAsp concentration field was initialized at (50, 101), which will be
referred to as “On MeAsp Half” hereafter.
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(a) (b)

Figure 6. Spatially-variant, temporally-invariant MeAsp and Ser concentration fields in a 2D
fluidic domain. Axes represent distances across the domain and colorbars represent amino acid
chemoattractant concentrations in 4C, (red/yellow = MeAsp, leftward side of gradient and
blue/magenta = Ser, rightward side of gradient). In MRC-CLB simulations, two different ratios
of chemoattractant gradient were chosen, with MeAsp gradient parameter ω set at ω = 1, and Ser
gradient parameter ν set at either (a) ν = 0.1 or (b) ν = 0.001.

Figure 7 shows the average number of time steps from ten replicate simulations, for which the
ECP was found in either the Ser- or MeAsp-half of the domain, in response to static chemoattractant
gradients specified by ν = 0.1 or ν = 0.001. The large error bars indicate that trajectories of the ECP from
these replicates were broadly distributed across the domain. The overall trends of the average values
and error bars in Figure 7 are in good agreement with the results by [28], which showed an affinity of
the chemosensory particle to (i) the Ser concentration field with scaling parameters ω = 1 and ν = 0.1,
and (ii) the MeAsp concentration field with scaling parameters ω = 1 and ν = 0.001. These results
reveal that ECP motility is governed by receptor sensitivity rather than absolute chemoattractant
concentrations when time-invariant concentration fields are assumed.

Figure 7. Average number of time steps the ECP resided in the “MeAsp half” or in the “On Ser Half”,
concluded from ten replicates of MRC-CLB simulations with “Imposed” chemoatrractant concentration
fields at the end of 50,000 time steps. Simulations were performed for two different values of ν (MeAsp
parameter ω is fixed at ω = 1, leading to ω/ν ratios of 1/0.1 and 1/0.001).

3.2. Simulations with Spatiotemporal Variations in Chemoattractant Concentrations Computed via ADT Model

Using the coupled MRC-CLB-ADT model (Figure 5), two-dimensional simulations of ECP motility
with incrementally improved realism in the problem set-up are discussed in this section. In order to
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represent the chemotatic behavior of an ECP in fluidic environments more realistically, the ADT model
is used to simulate spatiotemporal variations in Ser and MeAsp concentration fields as the fluid is
continuously disturbed by ECP motion. This is a significant conceptual and modeling improvement
over the simulations discussed in Section 3.1, in which externally-computed time-invariant
chemoattractant concentrations were artificially imposed onto the fluidic environment. Here, four cases
with different chemoattractant source specifications were implemented in MRC-CLB-ADT simulations
to analyze the effect of the initial distributions and release modes of chemoattractants on the transient
chemotactic motility of an ECP:

• Case 1. “ADT Point: Initial”: At t = 0, MeAsp and Ser were released into the fluid from point
sources at (x = 50, y = 101) and (x = 150, y = 101), respectively. No additional chemoattractant
releases occurred for t > 0. Snapshots from this simulation are shown in Figure 8.

(a)	 (b)	

(c)	 (d)	

Figure 8. Trajectories of the ECP computed by the MRC-CLB-ADT model for Case 1 “ADT Point:
Initial” and ν = 0.1 at the dimensionless times (in LB units) of 10, 000; 18, 000; 30, 000; and 50, 000 are
shown in (a–d). Simulation times can be expressed in seconds by multiplying the dimensionless times
by a factor of 0.938. Each snapshot shows the contour plots of the concentration fields of MeAsp (left
color bar) and Ser (right color bar). The center of MeAsp was initially on the left half and the center of
Ser was on the right half of the domain. The total mass of MeAsp and Ser remained unchanged.

• Case 2. “ADT Point: Continuous”: After the initial condition was set up as in Case 1, (4C) of each
chemoattractant was released into the fluid in each time-step for t > 4t from their respective
point source locations, at which their maximum concentrations were maintained throughout the
simulation. Snapshots from this simulation are shown in Figure 9.



Entropy 2019, 21, 465 15 of 31

Figure 9. Trajectories of the ECP computed by the MRC-CLB-ADT model for Case 2 “ADT Point:
Continuous” and ν = 0.1 at the dimensionless times (in LB units) of 10, 000; 18, 000; 30, 000; and 50, 000
are shown in (a–d). Simulation times can be expressed in seconds by multiplying the dimensionless
times by a factor of 0.938. Each snapshot shows the contour plots of the concentration fields of MeAsp
(left color bar) and Ser (right color bar). The center of MeAsp was initially on the left half and the center
of Ser was on the right half of the domain.

• Case 3. “ADT Imposed: Initial”: Initial concentration fields of the chemoattractants were specified
via Equations (6) and (7) and imposed onto the fluidic domain. No additional chemoattractant
releases occurred for t > 0. Snapshots from this simulation are shown in Figure 10.

• Case 4. “ADT Imposed: Continuous”: After the initial concentration fields of chemoattractants
were established as in Case 3, (4C) of each chemoattractant was released into the fluid in each
time-step for t > 4t from their respective point source locations. Snapshots from this simulation
are shown in Figure 11.

Figures 8–11 show trajectories of the ECP and temporal variations in concentration fields of
the chemoattractants for ν = 0.1. The fluid was quiescent in the beginning of the simulations.
In early times, the ECP moved toward the Ser field on the right half of the fluidic domain. However,
as the Ser concentration gradually diffused out, the trajectory of the ECP became unpredictable.
The motile ECP continuously disturbed and altered the flow field and concentration fields of the
chemoattractants as it exchanged momentum with the bulk fluid. The resultant alterations in the
concentration fields subsequently affected the signaling pathway of the ECP, and hence, its tumbling
and running motion. These simulations demonstrate that trajectories of the ECP were sensitive not only
to initial distributions of the chemoattractants, but also to temporal variations in the chemoattractant
concentration fields. Therefore, the consideration of ECP motion-induced disturbances in the fluid
velocity field is imperative in ECP motility studies, and hence, should be accommodated in simulations.



Entropy 2019, 21, 465 16 of 31

(a) (b)

(c) (d)

Figure 10. Trajectories of the ECP computed by the MRC-CLB-ADT model for Case 3 “ADT Imposed:
Initial” and ν = 0.1 at the dimensionless times (in LB units) of 10, 000; 18, 000; 30, 000; and 50, 000 are
shown in (a–d). Simulation times can be expressed in seconds by multiplying the dimensionless times
by a factor of 0.938. Each snapshot shows the contour plots of the concentration fields of MeAsp (left
color bar) and Ser (right color bar). The center of MeAsp was initially on the left half and the center of
Ser was on the right half of the domain.

Ensemble-average of temporal changes in chemotactic activities of the ECP over ten replicates for
Case 1 through Case 4 are shown in Figure 12. The ECP was released from the center of the bounded
domain and its position was tracked for 50,000 time steps. In Figure 12, the distance between the ECP’s
location at any given time-step and the center (50, 101) of the MeAsp field at t = 0 was computed and
then averaged over ten replicates. The ensemble-average distance is denoted by d(50,101). Similarly, the
distance between the location of the ECP at any given time-step and the center (150, 101) of the Ser
field at t = 0 was computed and then averaged over ten replicates. The ensemble-average distance is
denoted by d(150,101). Initially, the release locations or spatial distributions of the chemoattractants and
the release locations of the ECPs were symmetric about the midpoint of the fluidic domain. Therefore,
in each time-step, if [d(50,101)−d(150,101)] < 0, the ECP would be on the left half of the domain, where
the center of the MeAsp concentration field was initialized (“On MeAsp half”); otherwise it would be
on the right half of the domain, where the center of the Ser concentration field was initialized (“On
Ser half”).

The “Imposed” case in Figure 12a exhibits consistent results with the the bar graph in Figure 7 in
the sense that the ECP motility was biased toward the MeAsp/left half for ν = 0.001 (solid red curve),
but toward the Ser/right half for ν = 0.1 (dashed blue curve). Figure 12a further reveals that in the
end of the simulations, the ECP tends to remain on the side (either Ser or MeAsp) from which it was
initially released. The early steep rise for ν = 0.1 is associated with the strong initial response of the Tsr
chemosensory component to the static Ser gradient. The initial average ECP behavior in the “Imposed”
condition with ν = 0.001 also shows a strong tendency toward the MeAsp gradient, albeit with a lower
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sensitivity toward this attractant. This could be due to the lower sensitivity of the Tar receptor relative
to that of the Ser receptor Tsr. Intermittent periodicity in ECP’s ensemble-average behavior in Figure 12a
is associated with the sequence of its tumble and run motion. As the ECP continually runs and tumbles,
it would move into, through, and out of zones of maximal chemoattractant concentration in some time
steps. When the ECP senses continual temporal decreases in chemoattractant concentrations where it
resides in the fluidic environment, it would begin to tumble and run back up to the zones with steeper
concentration gradients. Based on the average positions of the ECP in reference to the center of the
chemoattractant field in Figure 12a, such correction occurs sooner with Ser chemosensing for ν = 0.1
than MeAsp sensing with parameter ν = 0.001.

(a) (b)

(c) (d)

Figure 11. Trajectories of the ECP computed by the MRC-CLB-ADT model for Case 4 “ADT Imposed:
Continuous” and ν = 0.1 at the dimensionless times (in LB units) of 10, 000; 18, 000; 30, 000; and 50, 000
are shown in (a–d). Simulation times can be expressed in seconds by multiplying the dimensionless
times by a factor of 0.938. Each snapshot shows the contour plots of the concentration fields of MeAsp
(left color bar) and Ser (right color bar). The center of MeAsp was initially on the left half and the center
of Ser was on the right half of the domain.
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(a)

(b) (c)

(d) (e)

Figure 12. The source location of MeAsp and Ser is initially at P1 = (50, 101) and P2 = (150, 101),
respectively. For ten replicates per simulation type, the time history of the average spatial distance
between the position of the ECP and P1 or P2 is d(50,101) or d(150,101) in two different fluidic
environments, characterized by ν = 0.1 or ν = 0.001. If d(50,101)−d(150,101) < 0, the ECP retains
its chemotactic activities mostly in the left half; otherwise, it would largely reside in the right half of
the fluidic domain. The simulation types include (a) imposed concentrations, (b) Case 1, (c) Case 2,
(d) Case 3, and (e) Case 4.

Simulations with ν = 0.1 and ν = 0.001 showed in Figure 12b–d that the ECP in general traveled
across both halves of the fluidic domain, rather than residing mostly in one half the domain as
in Figure 12a, when spatiotemporal disturbances in the concentration fields due to ECP motion
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are accounted for. Simulations with Case 1 (Figure 12b) or Case 4 (Figure 12e) show that the ECP
maintained its transient chemotactic activities predominantly on the MeAsp half, as in the “Imposed”
Case, when ν = 0.001. On the other hand, the effect of this enforced biased travel on the ECP’s
ensemble-average trajectories was negligible in Case 2 (Figure 12c) The ECP maintained more than
99% of its chemotactic activities on the Ser half. Furthermore, the point injection of chemoattractants to
the fluidic domain, in comparison to the imposed concentration fields at t = 0, resulted in transient
chemotactic activities of the ECP on the opposite halves of the fluidic domain for ν = 0.1. Even in
Case 3, where the initial concentration fields were set up as in the “Imposed” case, the concentration
fields were spatially and temporally evolving due to ECP motion, which affected run and tumble
motion and overall ensemble-average trajectories of ECP. Similarly, bias in ECP’s motility toward the
Ser half introduced by ν = 0.1 had insignificant effect on particle ensemble-average trajectories in Case
1 and Case 4 when the concentration fields are not static. As a result, the ECP retained most of its
chemotactic activities in the MeAsp half. In contrast, the biased ECP traveled toward the Ser half as in
the “Imposed” case.

In summary, Figure 12 demonstrates that the biased ECP motility in a fluidic environment with
multiple static chemoattractant concentration fields (i.e., “Imposed” environment) can be enforced
and controlled through a fixed decisive factor of ν. However, if the concentration fields dynamically
evolve spatially and temporally, ECP motility and trajectories are determined by its interactions
with dynamically-evolving surrounding fluidic and chemoattractant environments, which cannot be
represented accurately by a static factor ν.

4. Discussion

The average number of time steps the ECP spent in the MeAsp half or Serine half (i.e., the mean
residence time of the ECP in each half) computed by the MRC-CLB-ADT model for Case 1 through Case
4 is compared against the “Imposed” case in Figure 13. Although ECP trajectories in Case 3 and the
“Imposed” simulations were different in Figure 12a,d, the resultant mean residence times of the ECP
and the associated errors were comparable in Figure 13. As noted previously, Case 3 and the “Imposed”
had the same initial chemoattractant distributions, but the concentration field dynamically evolved in
Case 3, unlike in the “Imposed” simulation . Although trajectories of the ECP were different in Case 3
and the “Imposed’ in each realization, the ensemble-average (the statistical mechanics) ECP motility
data were similar and appear to be insensitive to spatiotemporal variations in the chemoattractant
fields when the chemoattractants are spatially distributed initially and no additional chemoattractants
are introduced into the fluid in later times. Hence, in such problem set-ups, the mathematically simpler
and computationally less-expensive “Imposed” case could be used to evaluate the statistical mechanics
of ECP motility in the design or performance assessment of ECPs.

When the chemoattractants were continuously released into the flow field in Case 4, the ECP
preferentially spent more time in the MeAsp half, regardless of the value chosen for ν (Figure 13).
This rather surprising result can be explained by the concentration distributions in Figure 11. Case 4
simulation is similar to the “Imposed” simulation with the exception that4C of the chemoattractants
was continuously injected at the point sources in each time step. Although the injection maintained the
highest local concentration of chemoattractants at the source locations, MeAsp spread more rapidly
than Ser throughout the domain due to its higher diffusion coefficient, which in turn more strongly
influenced the chemotactic activities of the ECP. This is clear from Figure 12e that shows a strong bias
of ECP trajectory toward the MeAsp half over the entire simulation period.

When the chemoattractants were only initially released into the fluid as point sources in Case 1, the
ECP spent more time in the MeAsp half of the domain. The maximum chemoattractant concentrations
occurred at the point source location only at the start (Figure 10b). Because the ECP was initially
farther away from point source locations and no additional chemoattractants were released into
the fluid at later times, the ECP was incapable of accurately detecting the chemoattractants in early
times. However, as advection and diffusion processes redistributed the chemoattractants as the time
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advanced, ECP trajectories were governed by continuously spreading and gradually diminishing local
concentration gradients of chemoattractants.

(a)

(b)

Figure 13. Ten simulations of 50,000 time steps each were performed for the“Imposed” case, and Case
1 through Case 4, in which trajectories of an ECP in a fluidic environment with an ω/ν ratio of (a) 1/0.1
and (b) 1/0.001 were traced. Heights of the bars correspond to the total residence time of an ECP either
in the right half, in which the Ser concentration was initialized, or in the left half, in which the MeAsp
concentration was initialized, of the fluidic domain. The first set of bars in both (a) and (b) are repeated
from Figure 7 while the remaining sets are from ADT model simulations.

When the chemoattractants were continuously released into the fluid for t > 0 in Case 2, the
ECP retained its chemotactic activities mostly in the Ser half, regardless of the value chosen for ν.
A comparison of Case 1 and Case 2 simulations with ν = 0.001, (Figure 10b,c) shows that the ECP



Entropy 2019, 21, 465 21 of 31

in Case 2 was initially positioned too far from MeAsp to detect any signal and respond to it. As a
result, despite the smaller Ser gradient parameter value, the ECP responded to Ser only. Apparently,
Tsr sensitivity dominated over Tar sensing even for the lower ν value. Similarly, ECP response to Ser
in simulations with ν = 0.001 was delayed as the ECP was initially too far from the Ser point source
location (Figure10c, ν = 0.1). However, stronger Tsr response was observed after local chemoattractant
gradients were established in the fluid and sensed by the ECP at approximately time step 15,000.
These findings provide compelling evidence that unlike in Case 3, the “Imposed” condition would not
be suitable to simulate chemotactic behaviors of the ECP in the problem set-ups in Case 1, Case 2, and
Case 4.

In summary, unlike previously reported simulation results with imposed static chemoattractant
concentration fields [28], our results with dynamically changing chemoattractant fields in response
to ECP motion reveal for the first time that the relative magnitudes of ω and ν are not the sole
factors in determining on which side of the fluidic domain an ECP would reside in. Instead, mutual
dynamic interactions between particle motion and dynamically-varying concentration and flow fields
would determine the statistical mechanics (ensemble-average) of ECP motility. Moreover, the release
modes of the chemoattractants (point vs. non-point source and/or initial vs. continuous releases) and
spatiotemporal evolution of chemoattractant concentration fields are found to be the critical factors
for chemotactic activities and the statistical mechanics of motility of ECP, which would determine the
zone(s) where an ECP would reside in a fludic domain.

5. Conclusions

We developed a new multiscale chemotactic motility model to investigate the behavior of ECPs in
dynamic fluidic environments with spatially and temporally-varying gradients of two chemoattractants
in response to ECP motility. We quantified the behavior of ECPs mimicking E. coli chemotaxis in fluidic
environments containing the unmixed amino acid attractants N-methyl-L-aspartate and L-serine which
function as strong chemical signals in the chemosensory system of E. coli. This was accomplished by
formulating a novel dynamically coupled numerical model, MRC-CLB-ADT model, to simulate the
motility of ECPs in an initially quiescent fluid with spatially and temporally-evolving chemoattractant
concentrations. The MRC-CLB-ADT is capable of simulating the motility of ECPs by accommodating
(i) spatial and temporal distributions of two distinct, non-interacting chemoattractants, (ii) effects of
ECPs motion on the spatial and temporal distributions of the chemoattractants, and (iii) interactions of
ECPs and the surrounding fluid environment.

The results and analysis of a variety of simulation set-ups allowed quantitative assessment for
how chemoattractant distribution, particle-fluid dynamics, and particle-chemoattractant concentration
field interactions affect the chemosensing properties of the ECPs. Results from “Imposed” simulations
supported previous findings indicating that the ECP behavior is governed by receptor sensitivity
rather than absolute attractant concentration [28,54]. Similarly, more recent biochemical work [55]
has also substantiated the long-held notion that the networked architecture of chemosensory receptor
arrays in E. coli plays a vital role in the cell’s robust response behavior. Results of simulations that
incorporate CLB-ADT emphasize the importance of advective-diffusive transport phenomena in
modeling ECP trajectories in fluidic environments. Fluid effects on ECP chemosensing are significant
both in those environments with pre-established chemoattractant gradients and in environments
with distal point source chemoattractants. An example is shown in Appendix A.3: Figures A5
and A6 represent a more complex environment with solid obstacles and one attractant. ECPs will
behave differently depending on whether or not chemoattractant is continually introduced into the
environment. Further development and refinement of the model will be valuable for the exploration
of other aspects of fluid-based ECP motility, such as the effects of fluid viscosity, non-Newtonian
fluids, MCP stoichiometry in chemosensory arrays, chemoeffectors with varying affinities for MCPs,
including repellent molecules, and environments comprising varying ECP population densities.
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Appendix A

Appendix A.1. Numerical Validation of the ADT Model

Prior to coupling with the MRC and CLB models, the ADT model was validated using a
two-dimensional analytic solution provided in [56]. The analytic solution calculates spatiotemporal
evolution of an inert substrate after being instantaneously injected into a Coutte flow at the center,
xc = (xc, yc), of the flow domain. The concentration distributions across the flow domain are
computed by

C (x, t) =
exp

[
− 1

2 xTΥ−1 (t) x
]

2π
√

det [Υ (t)]
, (A1)

where x is the Cartesian coordinates of the lattice node, t is the time, Υ (t) is the variance matrix, det is
the determinant operator. The variance matrix, Υ (t), is defined as

Υ =

[
Υ11 Υ12

Υ21 Υ22

]
=

[
2D1t + 2

3 D2α2t3 D2αt2

D2αt2 2D2t

]
, (A2)

where D1 and D2 are the diffusion coefficients and α = ux(x2)/x2, in which ux is the x-component of
the specified fluid velocity at the top boundary and x2 is the vertical distance between the substrate
release location and the top boundary.

The benchmark problem is illustrated in Figure A1. The model parameters in the LBM simulation
were left in non-dimensional lattice units to be consistent with the benchmark problem. The size of the
flow domain was set to 100× 100 (lattice node numbers run from 1 to 101 in both directions). The fluid
across the flow domain was initially stationary (i.e., u = 0). Specified fluid velocity was imposed at
the top and bottom boundaries, but in the opposite directions. The lateral boundaries were assumed
to be periodic. This resulted in zero flow velocity at the center of the flow domain (at xc = (xc, yc)).
In the analytic solution, a point-like unit substrate concentration was instantaneously injected into the
flow domain at the center, xc. The diffusion coefficient, D, of the substrate was set to unity (D = 1).
The D1 and D2 in the variance matrix in Equation (A2) were also set to unity for an isotropic and
homogeneous flow domain. From the half length of the domain, x2 = 50, and the specified velocity at
the top boundary, u(x2) =1, we compute α = 2× 10−2. Hence, the typical timescale associated with
the shear rate is τs = α−1 = 50.

Instantaneous point injection of the substrate in the analytic model [56] was represented by a
point-like initial distribution of the substrate described by C (xc, t = 0) = δ (xc), for which C → ∞ for
t = 0 in Equation (A1). We simulated instantaneous substrate injection as a point source at xc in the
LBM by implementing C (xc, t = 0) = 1, which resulted in ∑x C (x, t) = C (xc, t = 0) = 1 for t > 0.

A comparison of the spatial distributions of the substrate computed by the analytic solution and
numerical simulations via the ADT model for t = τs and t = 2τs are shown in Figures A2 and A3.
Figure A2 shows that analytically and numerically computed spatial distributions and temporal
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evolution of the substrate are the same for t = τs and t = 2τs, except that the peak concentration
at xc appears to be higher from the ADT model solution than the analytic solution at t = 0.2τs.
This was further confirmed from the horizontal and vertical cross-sections of the concentration field
with respect to the center of the flow domain in Figure A3. Use of C (xc, t = 0) = δ (xc) in the
analytic model and C (xc, t = 0) = 1 in the ADT model led to discrepancies in the peak concentration,
C (xc, t > 0) at early times while matching the concentration profiles almost perfectly away from
the point source. At later times, concentration profiles computed by the ADT model matched the
analytically computed concentrations perfectly. The total mass was strictly conserved in every time-step
in the ADT model simulation.

Figure A1. Benchmark problem used to validate the ADT model based on the LBM. Temporal and
spatial distributions of a substrate were computed following its instantaneous injection into a Couette
flow as a point source at x = 0. The flow domain was sheared along the top and bottom boundaries
with the same magnitude of velocity, u, but in the opposite directions at a vertical distance of x2 from
the injection point. The lateral boundaries are periodic. The velocity profile is shown on the right panel.

(a) (b)

Figure A2. Cont.
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(c) (d)

Figure A2. Comparison of analytically and numerically (by the ADT model) computed concentration
gradient dynamics for solute following instantaneous release into a Coutte flow at center of domain.
The ADT model simulation results at (a) t = τs and (b) t = 2τs; analytic results at (c) t = τs and
(d) t = 2τs.

(a) (b)

Figure A3. Comparison of analytically and numerically computed (by the ADT model) substrate
concentration profiles along the horizontal and vertical cross-sections with respect to the center of the
concentration field at (a) t = τs and (b) t = 2τs. xc = (xc, yc) = (51, 51) is the center point, where the
instantaneous point source was located.

Appendix A.2. ADT Model Simulations of Advective-Diffusive Substrate Transport in a Flow Channel

Figure A4 demonstrates ADT model simulation of advective diffusive transport of a substrate
(chemoattractant) in a horizontal flow channel with and without an internal obstacle. A no-slip
boundary condition was implemented on the channel walls and a periodic boundary condition
was imposed at the inlet and outlet. A steady Poiseuille flow was established in the horizontal
channel prior to start of ADT model simulations. The Péclet number, Pe = ussW/D was set to 500
in these simulations, in which us is the average steady fluid velocity at the inlet prior to release of
the chemoattractant into a flow domain and W is the channel width. The dimensionless time, Ω, was
rendered as Ω = tus/L, where L is the channel length and Ω = 0 corresponds to the time at which
chemoattractant was released into the steady flow field. τ = 0.501 in these simulations. The results
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show that the obstacle enhances chemoattractant diffusion, which in turn alters its temporal and spatial
gradients, which would have significant effects on motility behavior of a chemosensory particle.

(a) (b)

Figure A4. Advective and diffusive transport of a chemoattractant, characterized by Pe = 500, in a
horizontal flow channel (a) without internal obstacles or (b) with a circular obstacle shown in white.
Snapshots are taken at at Ω = 0.0, 0.11, 0.18, 0.25, 0.35 and 0.49.

Appendix A.3. With Simulated ADT-Concentrations Moving around Obstacles

Figures A5 and A6 demonstrate the motility of a chemosensory particle in an initially quiescent
fluid with a dynamically evolving chemoattractant concentration field. The size of the domain was
set to 200 × 400 in lattice units. The chemoattractant concentration was initialized at the center of
the domain, surrounded by concentric rings of solid obstacles depicted by black squares. A no-slip
boundary condition was imposed on the domain walls and on the surfaces of internal obstacles.

In Figure A5, the chemoattractant concentration was initialized at the center of the domain at
t = 0 with no additional chemoattractant releases for t > 0. Hence, the total chemoattractant mass
remained constant throughout the simulation. On the other hand, for the simulation results shown in
Figure A6, the chemoattractant concentration was initialized at the center of the domain at t = 0 and
in each subsequent time-step, t > 4t,4C was released from the center of the flow domain.

In both simulations, the chemosensory particle, shown as a black circle, was initially placed
outside the concentric ring of obstacles while the chemoattractant was initialized inside the ring.
In MRC-CLB-ADT model simulations, the chemosensory particle sensed and avoided inline obstacles
while navigating towards the spatially- and temporarily-varying maximum concentration gradients
inside the ring. Consideration of the effects of inline obstacles on the spatial and temporal distributions
of the chemoattractant concentration field, also simultaneously altered by particle-fluid hydrodynamic
forces, is the unique modeling capability of the MRC-CLB-ADT model.
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(a) (b)

(c) (d)

(e) (f)

Figure A5. Snapshots of the chemoattractant concentration field (whose contour lines are shown
by solid lines) and trajectory of a chemosensory particle (shown by a light green dashed line) at
time-steps of 1000; 28, 000; 68, 000; 80, 000; 174, 000; and 204, 000 in (a) through (f), respectively. The total
chemoattractant mass remained constant throughout this simulation.

(a) (b)

Figure A6. Cont.
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(c) (d)

(e) (f)

Figure A6. Snapshots of the chemoattractant concentration field (whose contour lines are shown by
solid lines) and trajectory of a chemosensory particle (shown by a light blue dashed line) at time-steps
of 1000; 14, 000; 32, 000; 42, 000; 52, 000; and 62, 000 in (a) through (f), respectively. Because the
chemoattractant was continuously added to the center of the domain, the total chemoattractant mass in
the fluidic domain increased in time. As a result, the domain was saturated with the chemoattractant
at later times, which led to the random walk in particle trajectory towards the end of the simulation.

Appendix A.4. Tables of Parameters and Variables for All the Modules

Appendix A.4.1. Prescribed Parameters for the MRC Module

Table A1. Descriptions and values of predetermined parameters in Equations (1)–(7).

Parameter Description [Source] Value

N Number of chemoreceptors in receptor cluster [28] 18
va : vs Ratio of Tar to Tsr receptors [28] 1:1.4
Kon

a Dissociation constant in the on state of Tar receptors [17] 0.012 µM
Ko f f

a Dissociation constant in the off state of Tar receptors [17] 0.0017 µM
Kon

s Dissociation constant in the on state of Tsr receptors [17] 106 µM
Ko f f

s Dissociation constant in the off state of Tsr receptors [17] 100 µM
[CheR]tot Total CheR concentration [17] 0.16 µM
[CheB]tot Total CheB concentration [17] 0.28 µM
[CheZ]tot Total CheZ concentration [17] *
mb0 Basal motor bias [17] 0.65
H Motor Hill coefficient [17] 10.3
a Scaling factor for methylation [17] 0.0625
b Scaling factor for demethylation [17] 0.0714
kZ Rate constant [17] 30/[CheZ]tot µM−1 s−1

kY Rate constant [17] 100 µM−1 s−1

ks Scaling coefficient [17] 0.45 µM
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Table A1. Cont.

Parameter Description [Source] Value

γY Rate constant [17] 0.1 s−1

Ca0 Minimum chemoattractant concentration for MeAsp 0.1 µM
Cs0 Minimum chemoattractant concentration for Ser 0.1 µM
ω Scaling parameter for MeAsp gradient 1
ν Scaling parameter for Ser gradient 0.1 or 0.001
(xa, ya) Location of the maximum MeAsp concentration initially (14.3 cm, 28.9 cm)
(xs, ys) Location of the maximum Ser concentration initially (42.9 cm, 28.9 cm)
L∗ Domain length 57 cm
r Scaling parameter for domain size 14.3 cm

l(*) indicates that the total [CheZ]tot concentration does not need to be specified explicitly since it is canceled
with itself when multiplying with kZ in Equation (3).

Table A2. Descriptions of functions and variables in Equations (1)–(7).

Variable Description [Source]

F Total free energy differences between ‘on’ or ‘off’ state [28]
h(m) Offset energy given by 1−m/2 [28]
[MeAsp] Chemoattractant MeAsp concentration [28]
[Ser] Chemoattractant Ser concentration [28]
Ac Probability of the cluster activity [17]
[CheY-P] Concentration of phosphorylated CheY [17]
m Receptor methylation [17]
mb Motor bias [17]
x, y Horizontal and vertical coordinates

Appendix A.4.2. System Parameters and Variables for the CLB ad ADT Modules

Table A3. Notations used in CLB and ADT Modules. FFS and PFS correspond to the Fluid Flow
Submodule (Section 2.2.1) and the Particle Flow Submodule (Section 2.2.2) of the CLB Module.

Notation Type Description Used by

cs parameter speed of sound FFS, ADT
e parameter unit velocity vectors FFS, PFS , ADT
fi variable population densities associated with fluid flow FFS, PFS
f eq
i variable equilibrium distribution associated fluid flow FFS

fm parameter particle force strength PFS
g parameter acceleration due to external forces FFS, PFS
gi variable population densities associated with substrate transport ADT
geq

i variable equilibrium distribution associated substrate transport ADT
i variable index FFS, PFS, ADT
mp parameter particle mass PFS
r variable position vector FFS, PFS, ADT
rb variable position of boundary nodes of ECP PFS
rc

b variable covered lattice nodes by ECP motion PFS
ru

b variable uncovered lattice nodes by ECP motion PFS
rc variable position of the ECP’s centroid PFS
rcl variable location of the cluster receptor PFS
ri variable distance vector PFS
|rit| parameter repulsive threshold distance PFS
rp parameter particle radius PFS
rpw variable surface to surface distance between the wall and ECP PFS
rv variable position of intra-particle lattice node PFS
t variable time FFS, PFS, ADT
t∗ variable post-collision time PFS
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Table A3. Cont.

Notation Type Description Used by

u variable fluid velocity FFS, PFS, ADT
C variable chemoattractant concentration ADT
D parameter diffusion coefficient of chemoatractant ADT
Frun variable forces associated with running motion of ECP PFS
Frb variable hydrodynamic forces PFS
Fc,u

rb variable forces associated with (un)covered lattice nodes PFS
Frpw variable steric interaction forces between ECP and wall PFS
FT variable total force imposed on ECP PFS
Ip parameter moment of inertia of ECP PFS
L∗ parameter domain length FFS
M parameter Mach number FFS
Ttumble variable torque associated with tumble motion of ECP PFS
Up variable translation velocity of of ECP PFS
θcl variable rotation angle of the receptor cluster PFS
ν̃ parameter fluid kinematic viscosity FFS
ρ variable fluid density FFS, PFS
τ parameter relaxation parameter associated fluid flow FFS
τc parameter relaxation parameter associated substrate transport PFS
ψ parameter stiffness parameter associated with steric interaction forces PFS
ωi parameter weights associated with the D2Q9 lattice geometry FFS, PFS, ADT
ϕ̃ variable uniform deviate PFS
4P parameter pressure differential FFS
4t parameter temporal increment FFS, PFS, ADT
4x parameter lattice spacing FFS, PFS, ADT
4θ variable angular rotation of ECP FFS
Ωtumble variable angular velocity of ECP due to its tumbling motion only PFS
Ωp variable angular velocity of of ECP PFS
Υ parameter time-scale factor associated with ECP’s angular rotation PFS
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