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Abstract
Previous research has found that adolescent ethanol (EtOH) exposure alters drug seeking

behaviors, cognition and neuroplasticity. Using male Sprague Dawley rats, differences in

spatial working memory, non-spatial discrimination learning and behavioral flexibility were

explored as a function of age at the onset (mid-adolescent vs. adult) of chronic EtOH expo-

sure (CET). Concentrations of mature brain-derived neurotrophic factor (mBDNF) and beta-

nerve growth factor (β-NGF) in the prefrontal cortex and hippocampus were also assessed

at different time-points: during CET, following acute abstinence (48-hrs), and after pro-

tracted abstinence (6–8 wks). Our results revealed that an adolescent onset of CET leads

to increased EtOH consumption that persisted into adulthood. In both adult and adolescent

onset CET groups, there were significant long-term reductions in prefrontal cortical mBDNF

and β-NGF levels. However, only adult onset CET rats displayed decreased hippocampal

BDNF levels. Spatial memory, assessed by spontaneous alternation and delayed alterna-

tion, was not significantly affected by CET as a function of age of drinking onset, but higher

blood–EtOH levels were correlated with lower spontaneous alternation scores. Regardless

of the age of onset, EtOH exposed rats were impaired on non-spatial discrimination learning

and displayed inflexible behavioral patterns upon reversal learning. Our results indicate that

adolescent EtOH exposure changes long-term consumption patterns producing behavioral

and neural dysfunctions that persist across the lifespan.

Introduction
Approximately 17 million adults suffer from an alcohol use disorder (AUD) and the majority
of adults diagnosed with an AUD began consuming alcohol during adolescence [1]. Adoles-
cence is identified as a vulnerable developmental time period during which exposure to drugs,
including alcohol, can have long lasting effects on memory, cognition, anxiety and social
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interaction [2–4]. Early ethanol (EtOH) exposure appears to solidify adolescent-typical behav-
iors in rodents, such as increased impulsivity, decreased behavioral inhibition, and behavioral
inflexibility, well into adulthood [5,6]. These unique behavioral effects are sustained through
long-lasting neural changes in critical brain regions such as the frontal cortex and the hippo-
campus [7,8]. Thus, early EtOH exposure can produce a state wherein the adult brain is primed
for later chronic alcohol abuse and associated behavioral impairment [9].

The hippocampus is vulnerable to chronic EtOH exposure and these alterations contribute
to memory deficits associated with alcoholism [10–13]. In rodents, chronic exposure to EtOH
results in reduced interneuron, pyramidal and granule cell numbers [14–16], as well as reduced
long-term potentiation within in the hippocampus [17,18]. Hippocampal neurogenesis is also
very sensitive to chronic EtOH exposure. Several chronic EtOH delivery paradigms, both inter-
mittent and continuous, decrease the number of newly born surviving neurons (by 40–60%)
within the dentate gyrus [12,19]. High blood ethanol concentrations (BECs) are needed to
observe reductions in neurogenesis [20]. Because newborn hippocampal neurons in adolescent
rats are less likely to incorporate into a functional neural network following excessive EtOH
treatment, the adolescent hippocampus displays a distinct vulnerabililty to chronic EtOH [21].
In human and non-human primates, hippocampal volume loss is greater following adolescent-
onset alcohol consumption, compared with adult-onset [22,23]. These EtOH induced changes
in hippocampal structure are believed to contribute to the initial spatial processing, episodic
learning, and memory impairments observed in alcoholics [24].

The frontal cortex is also adversely affected by EtOH exposure, perhaps to a greater degree
than the hippocampus [25–27]; a region that is developmentally sensitive to EtOH toxicity
[28]. The extent of reduction in frontal cortical volume is largely dependent upon the extent of
alcohol exposure [28–31]. Shrinkage of the frontal cortex in alcoholics is related to reduced
neuronal size, branching of basal dendrites [32] and glial cell density [33]. Markers of cell
death are increased in the prefrontal cortex of alcoholics, suggesting alcohol-related neural
degeneration within this region [34]. Chronic EtOH exposure in adolescence leads to the
induction of a persistent neural immune response within the frontal cortex that contributes to
alcohol-related brain damage [35]. In both humans and nonhuman mammals, increased EtOH
consumption correlates with decreases in behavioral flexibility and response inhibition, behav-
iors that are modulated by the frontal cortex [36–39].

EtOH is known to disrupt several signaling cascades and one target effector is BDNF [40].
Abnormalities in neurotrophins are associated with cognitive deterioration [41,42] and neuro-
nal atrophy [43]. In particular, brain-derived neurotrophic factor (BDNF) and nerve growth
factor (NGF) are of interest due to their role in homeostatic neural function and recovery dur-
ing and after EtOH exposure [44–47]. Previous research indicates a biphasic temporal effect of
EtOH on BDNF and NGF levels: short exposures appear to increase levels, while prolonged
exposures seem to reduce levels [44]. In addition, BDNF levels are not changed during exces-
sive adolescent binge EtOH exposure [21]. Altered levels of neurotrophins appear to contribute
to alcohol-related brain damage and affiliated cognitive impairment [48].

Given the potential interactions between the timing of EtOH exposure, brain regional sensi-
tivity, and neurotrophin levels, the current project investigated whether age differences (mid-
adolescence versus adulthood) at onset of CET would modulate the degree of neural and behav-
ioral dysfunction typically associated with AUDs. Chronic EtOH exposure in drinking water has
been used as a model to evaluate the effects of long-term alcohol abuse observed in middle-aged
to advanced-aged populations [49,50]. Specifically, this model was instrumental in revealing that
the forebrain cholinergic population and cholinergic innervation of the hippocampus and cortex
are very sensitive to long-term EtOH toxicity. CET models have also demonstrated that exoge-
nous NGF application improved neural and behavioral outcomes after CET [51–55].
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We monitored total EtOH consumption throughout a 6-month forced EtOH exposure par-
adigm, followed by a battery of behavioral tests that included spatial and non-spatial discrimi-
nation learning, as well as reversal learning as a measure of behavioral flexibility. Visuospatial
function has been reported to be initially impaired in abstinent alcoholics and is associated
with reduced hippocampal volume [24]. Behavioral or cognitive flexibility, which is dependent
on the frontal cortex, is also impaired in abstinent alcoholics [56]. Thus, tasks were chosen that
are dependent on hippocampal and frontal cortical functioning. Neurotrophic factors
(mBDNF, β-NGF) were measured within the frontal cortex and hippocampus at three time-
points to examine neural adaptions as a function of intoxication, withdrawal and protracted
abstinence. It was hypothesized that initiation of chronic EtOH exposure during adolescence
would produce persistent disruptions in drinking patterns, neurotrophin levels and cognitive
function.

Materials and Methods

Ethics Statement, Minimization of Potential Pain, Distress and
Treatment of Animal Subjects
All experimental procedures were in compliance with the National Institutes of Health (NIH)
Guide for Care and Use of Laboratory Animals and approved by the Institutional Animal Care
and Use Committee (IACUC) at the State University of New York at Binghamton. During
treatment, behavioral testing, and tissue collection procedures were devised to minimize the
potential pain and distress of the animals used in this study. All rats were frequently monitored,
at least three times a week, for health status.

Adult (postnatal day [PD] 72–75; n = 40) and adolescent (PD 35; n = 40) male, Sprague-
Dawley rats were obtained from litters bred at Binghamton University. Rats were doubly
housed in a temperature (20°C) and humidity controlled room under a 12-hour light/dark
cycle, 7:00 a.m.-7:00 p.m. No more than one rat from each litter was included in a given treat-
ment condition. Rats were provided with ad libitum access to rat chow. Rats were randomly
assigned to 1 of 3 tissue collection time-points. At time-point 1 (T1; intoxication), brain tissue
was collected during the 28th week of CET while rats were still consuming 20% EtOH. At time-
point 2 (T2; acute abstinence or withdrawal), brain tissue was collected 48-hrs after CET
ended, in an EtOH-free state. At time-point 3 (T3; protracted abstinence or recovered), brain
tissue was collected after behavioral testing, approximately 6–8 weeks following the cessation
of CET. Rats were randomly assigned to the following treatment onset conditions: Adolescent
control (T1 = 4�, T2 = 4� [�note: T1 and T2 groups were combined into a common control
group]; T3 = 8); Adult control (T1 = 4�, T2 = 4�; T3 = 8); Adolescent Onset CET (T1 = 8;
T2 = 8; T3 = 8); Adult Onset CET (T1 = 8; T2 = 8; T3 = 8). Fig 1 illustrates the treatment and
behavioral timeline for rats undergoing CET and the treatment conditions are defined in detail
below.

Chronic EtOH treatment (CET)
CET began on PD 35 for mid-adolescents and PD 72–75 for adults. Rats exposed to CET were
provided with an aqueous solution of EtOH (95% EtOH v/v) diluted with tap water to the
appropriate v/v as the sole source of liquid for the duration of CET. Bottles were weighed and
refilled every Monday, Wednesday and Friday. The grams of EtOH per kilogram of body
weight was determined by the following formula: (milliliters of EtOH consumed x the percent
concentration of EtOH x the density of EtOH/ weight of the animal). Average daily EtOH con-
sumption was determined by dividing the average weekly consumption by seven days across
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the EtOH exposure phase. CET rats initiated their treatment using a”fading on” procedure
[52,57,58]: EtOH exposure started at 6% (v/v) for 4 days and incrementally increased by 3%
every 5 days until reaching 12% (v/v), at which point the concentration was increased to 20%
(v/v) and maintained for 28 weeks. At the beginning of 20% (v/v) exposure, adolescent onset
CET rats were PD 50 and adult onset CET rats were approximately PD 90. After 28 weeks, ani-
mals in the T3 groups were gradually “faded off” CET in a series of deescalating EtOH concen-
trations: 12% (v/v) for 5 days, 9% (v/v) for 5 days, 6% (v/v) for 5 days before given ad libitum
access to water. Control rats were provided with unlimited access to tap water. Water con-
sumption data were collected from age-matched, male, Sprague Dawley rats (S1 Fig).

After 1 month of exposure to 20% EtOH v/v, tail blood was collected from all rats at approx-
imately 12:00 AM. This procedure was repeated at months 2, 4, and 6 of CET. Plasma was sep-
arated using a centrifuge and blood EtOH concentrations (BEC) were analyzed via Analox
(AM1, Analox Instruments, London, United Kingdom). Tail bloods were collected and ana-
lyzed from both CET and control groups in order to maintain equal treatment parameters
across all animals and in order to validate the BEC assay.

Brain Collection
Upon rapid decapitation at their given time-points (T1, T2, T3; Fig 1), each rat’s brain was
immediately extracted and fresh tissue was extracted from a hemi- dissection. The prefrontal
cortex was blocked and collected to include all subregions, and the entire hippocampus was
dissected from the hemisphere. Tissue was stored at -80°C to be used for neurotrophin
enzyme-linked immunosorbent (ELISA) assays.

Enzyme-linked immunosorbent assay (ELISA)
The concentration levels of mBDNF (Emax1 Immunassay system, Promega, Madison, WI,
USA) and β-NGF (Duoset ELISA β-NGF kit, R&D Systems, Minneapolis, MN) were assessed
using the respective vendor procedures and protocols. Each region was homogenized, as

Fig 1. Chronic Ethanol Treatment (CET) Protocol Outline. Schematic illustrating the age range, ethanol (EtOH) exposure procedures, brain collection
time points, and behavioral testing paradigms and for both adolescent onset and adult onset CET animals.

doi:10.1371/journal.pone.0149987.g001

Consequences of Chronic Drinking in the Adolescent and Adult Rat

PLOS ONE | DOI:10.1371/journal.pone.0149987 March 1, 2016 4 / 24



described by Gearhart and colleagues [59], and returned to the -80°C freezer until ELISA analy-
sis. Total protein concentrations for each region of interest were determined with BCA assay
(Pierce TM BCA Protein Assay Kit, Thermo Scientific, Rockford, IL). The total protein concen-
tration for each neurotrophin and of each sample was calculated using regression analysis
based on the standard curve optical densities.

Mature BDNF ELISA. Corning Costar1 96-well flat bottom plates (Corning Life Sciences,
Corning, NY) were coated and incubated overnight at 4°C with monoclonal anti-BDNF car-
bonate buffer (supplied by Promega). Plates were washed in Tris-buffered saline with Tween
20 (TBST) following all incubation periods. The next day, plates were incubated with block and
sample buffer for 1-hr at room temperature. Standards (supplied by Promega) were diluted in
blocking buffer to create working concentrations of 500, 250, 125, 62.5, 31.5, 15.625, 7.8125,
and 0 pg/mL. All samples were diluted at a ratio of 1:4 for the frontal cortex and 1:5 for the hip-
pocampus to allow for an appropriate detection range of the standard curve. Following block,
samples were plated and incubated for 2-hrs at room temperature. Samples were then incu-
bated with the supplied BDNF polyclonal antibody for 2-hrs at room temperature. BDNF
plates were washed and treated with anti-IgY horseradish peroxidase (HRP) conjugate for
1-hr. After the final wash, a color development reaction was initiated by adding TMB One solu-
tion for 10 min at room temperature. The color development reactions were stopped by adding
1 N HCl. Optical densities were measured using a Tecan plate reader (Tecan Infinite M200
Pro, Mannëdorf, Switzerland) and plates were read at a 450 nm wavelength.

β-NGF ELISA. Corning Costar1 96-well flat bottom plates were coated and incubated
overnight with goat anti-rat β-NGF (R&D systems) at 20°C. Plates were washed with 0.05%
Tween-20 in phosphate buffered saline following each incubation. The following day, plates
were blocked with BSA reagent diluent for 1-hr at room temperature. Standards (supplied by
R&D systems) were diluted in blocking buffer to create working concentrations of: 1000, 500,
250, 125, 62.5, 31.5, 15.625, and 0 pg/mL. Samples were diluted at a ratio of 1:4 for the frontal
cortex and 1:5 for the hippocampus to allow for an appropriate detection range of the standard
curve. Samples were plated and incubated for 2-hrs at room temperature. Plates were then
incubated with a detection antibody for 2-hrs at room temperature, followed by an incubation
with streptavidin-HRP for 20 minutes. A color development reaction was initiated by adding
vendor supplied H2O2 and tetramethylbenzidine for 20 minutes at room temperature. The
color development reactions were stopped by adding 2 N H2SO4. Optical densities were mea-
sured using a Tecan plate reader at a 450 nm wavelength.

Behavioral Testing
Following the cessation of CET and the fade-off EtOH procedure, T3 rats began a 3-week
EtOH free recovery period. During this time rats were weighed and handled daily. Prior to the
start of behavioral testing, rats were food restricted to 90% of their free feed weight over the
course of 5 days. Rats were behaviorally tested in the following sequence: spontaneous alterna-
tion, delayed alternation, non-spatial discrimination learning, and behavioral flexibility.

Spontaneous Alternation. Previous findings indicate that a rat performs optimally on a
spontaneous alternation maze task when the animal is slightly food restricted, presumably by
increasing their motivation to explore a new environment [60]. Once a rat reached 90% of
their free weight, they were tested on a single session of spontaneous alternation. Spontaneous
alteration was conducted in a plus maze (105.5 x 14.4 x 15 cm) with clear plastic walls and
black painted wooden floors. The testing room was rich in visual cues. To habituate the animal
to the testing room, rats were placed in the testing room for 20-min before initiating testing.
The rat was then placed into the center of the apparatus, and allowed to explore the maze for
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18-min of testing, during which arm entries (all four paws within an arm) were recorded. An
alternation was defined as entry into four different arms in overlapping successive sequences of
4 arm entries (e.g., the successive arm entries of A, D, C, B, D, A, C, D, B, D, A, C, D, A, C; the
first sequence of ADCB was an alternation, but the following sequence of 4 arm entries DCBD
was not). The percent alternation score is equal to the ratio of (actual alternations/possible
alternations [trial number-3]) X 100. (For the above data set: 5/(15–3) = .416 X 100 = 41.6%.)
This criterion is similar to that used in previous experiments [61–63]. Spontaneous alternation
scores were corrected for differences in activity between CET and control groups: Arm entries
were only recorded up to the average number of entries made by the adult control group (25
total entries), which had the lowest activity level.

Delayed Alternation. After spontaneous alternation testing, rats continued food restric-
tion until they reached 85% of their free feed weight. For the two sessions of delayed alternation
testing, a T-maze was used that had clear Plexiglas sidewalls (12 cm high), with two goal arms
(55 cm), and a start arm (66 cm). The arms were made of wood, painted black, and the maze
was elevated 80 cm from the floor. Transparent Plexiglas guillotine doors separated the start
box and the two goal boxes from the choice area. The T-maze was located in the same testing
room as the spontaneous alternation maze with the same visual cues. The mazes were placed in
the same location so that exposure to spontaneous alternation would also serve as pre-exposure
for delayed alternation.

After a 20-min habituation period, the rat was placed in the start box of the maze. On the
first trial of each testing day, each rat was allowed a free choice to enter either the left or right
arm of the maze, and either response was rewarded with a ½ Frosted Cheerio (General Mills,
Minneapolis, MN). After consuming the reward, the rat was manually removed from the goal
box and placed back into the start box. There was a 30-sec delay interval between the end of
the previous trial and the beginning of the next trial. A correct choice (entering the previously
non-visited goal arm) was rewarded with ½ Cheerio. An incorrect response (repeat visit to the
previous arm) was not rewarded and the rat was confined to the goal box for a 10-sec time-out
period before being returned to the start box. The correct response after an error trial was to
alternate to the opposing arm. Percent alternation scores were determined by the number of
correct alternations divided by the total number of possible alternations.

Non-spatial discrimination learning and Reversal Learning. Following delayed alterna-
tion testing, rats began dig training in their home cage for 3 days. Small ceramic bowls (diame-
ter = 9 cm; depth = 4 cm) were filled with wood shavings and baited with ¼ frosted Cheerio.
Training began by placing a Cheerio portion on top of the shavings; Cheerios were incremen-
tally placed lower in the shavings until the animal learned to dig the reward out from the bot-
tom of the bowl.

Non-spatial discrimination learning and reversal testing took place in a white opaque plastic
box (70.3 x 40 x 36.4 cm) with a black floor. A white, opaque, removable divider sectioned the
apparatus into the start box (16.5 x 40) and the testing area (53.8 x 40 cm). Two ceramic bowls,
filled with digging substrate termed medium (see Table 1), were located near the back wall sep-
arated by another removable divider (19.8 x 25.9 cm). The first phase of training consisted of
habituation to the chamber. After 5 min, the divider was lifted allowing the rat to access the
baited bowls. When a rat approached the bowls reliably within 30 sec and ate the reward on
6-consecutive trials within 2 min, the rat would advance to discrimination training. This
benchmark (a rat approaching and eating from the correct baited bowl on 6 consecutive trials)
was used to determine the total number of trials required to reach criterion for the simple,
compound and reversal discrimination tasks.

The second phase of training consisted of each rat learning two simple discriminations: a
scent-based and medium-based discrimination. The final phase of testing required each rat to
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perform a series of five discriminations (see Table 1): (1) Simple discrimination consisted of a
single dimension (scent or medium); (2) Compound discrimination included both a unique
smell and digging medium that were distinctive from those used in previous discriminations;
(3) After reaching criteria on the first compound discrimination, the rule was changed
(reversed) such that the previous incorrect combination of stimuli were now correct; (4) A sec-
ond compound discrimination was trained in which each rat learned a novel complex discrimi-
nation with new stimuli (both scent and medium); (5) A final reversal was conducted that
switched the rewarded stimuli from the second compound discrimination.

Experimental Design and Statistics
Analyses were performed in SPSS (IBM Corporation, version 22, Armonk, New York). The
neurotrophin data were analyzed using a 2 (Age: adult vs. adolescent) x 2 (Treatment: CET vs.
control [water]) x 3 (Time-point of tissue collection: intoxicated [during CET], withdrawal
[48-hrs post CET], or protracted recovery [6-8-wks post CET]) factorial analysis of variance.
All behavioral data, including both drinking and cognitive assessment, were analyzed with a 2
(Age: adult vs. adolescent) x 2 (Treatment: CET vs. control) factorial analysis of variance.
Bivariate correlations were analyzed using Pearson’s correlation coefficient between BECs,
neurotrophin level and behavior.

Results

Treatment Parameters
All rats gained weight across treatment, but CET and Control rats differed at specific

time-points. All rats gained weight (Fig 2) during the course of the experiment (F[27,1431] =
853.44, p<0.001). Adolescent onset CET rats weighed significantly more (3.5%) than their age-
matched controls (F[1, 38] = 30.63, p<0.0001] during weeks 8–11, but no difference was found
between these two groups during the remainder of the experiment. Adult onset CET rats
weighed significantly more than age-matched controls during weeks 4–7, but adult control rats
were significantly heavier (8.4%) than adult onset CET rats from weeks 12–27 (F[1,38] = 6.13,
p<0.02).

Adolescent onset CET rats consumed more EtOH solution. As shown in Fig 3, there
were age differences in the amount of EtOH consumed during treatment. The average daily
EtOH consumption for adult onset rats averaged 9.28 ± 0.61 (SEM) g/kg, whereas adolescent
onset rats consumed 11.80 ± 1.11 g/kg. There was a significant interaction between Age and
Time (analyzed as weekly intake) on EtOH consumption (F[30,1380] = 11.02, p<0.001).

Table 1. Non-Spatial Discrimination Reversal Learning Examples

Discrimination Task Medium-based Cues Scent-base Cue

Bowl 1 Bowl 2 Bowl 1 Bowl 2

Simple easter grass shredded paper clove/bedding nutmeg/bedding

Compound 1 thyme/rocks citronella/tubes piña colada/confetti lavender/colored beads

Reversal 2 thyme/rocks citronella/tubes piña colada/confetti lavender/colored beads

Compound 2 rosemary/sand cinnamon/gravel sweet pea/sand vanilla/wood chips

Reversal 2 rosemary/sand cinnamon/gravel sweet pea/sand vanilla/wood chips

Bolded exemplar indicates the rewarded cue. Half of the animals underwent training with medium-based cues, and the other half underwent training with

scent-based cues. The type of exemplar used did not interact with treatment conditions (all p’s>0.10).

doi:10.1371/journal.pone.0149987.t001
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Follow-up analyses were conducted by dividing the 34-week treatment phase into 3 (fading-on
or fading-off periods) or 4-week bins. Adolescent onset rats drank more than adult onset rats
during weeks 4–7 (F[3,138] = 8.83, p<0.05), 8-11(F[3,138] = 4.12, p<0.05), 16–19 (F[3,138] =
11.63, p<0.05), 20–23 (F[3,138] = 6.32, p<0.05), 24–27 (F[3,138] = 3.5, p<0.05), 28–31 (F
[3,138] = 9.62, p<0.05). No significant differences were found between weeks 12–15 and 32–34.

As shown in S1 Fig, there was a significant difference in average daily water consumption
between adolescent and adult rats during weeks 1–4 (F[3,45] = 3.97, p<0.2). Adolescent ani-
mals consumed more water compared to adult animals during week 1 (F[1,18] = 87.66,
p<0.001), week 2 (F[1,15] = 28.80, p<0.001), and week 3 (F[1,15] = 12.82, p<0.01). After week
4, there was no significant effect of Age on average daily intake (all F’s<2.2, p’s>0.05). These
results indicate that age-related differences in normal liquid consumption equalize at about
P55, the age at which adolescent onset CET animals began exposure to 20% (v/v) CET.

Rats exposed to chronic EtOH had BECs in the binge range. CET rats had significantly
higher BECs than control groups at each analysis time-point (month 2, 3, 4 and 6; F [1,76] =
239.56, p<0.001), indicating that control rats were not exposed to EtOH, whereas CET rats
were intoxicated. The average BECs across the months were above the binge range of 80 mg/dL
(Reilly et al, 2014). A significant Age effect was only found in the month 1 BEC analysis, where

Fig 2. All rats gained weight across treatment, but there were time-points when group weight differences were evident. A significant difference was
observed between adolescent onset CET and their age-matched controls during weeks 8–11 [E, p <0.05], but not for the remainder of the experiment. During
weeks 4–7 and 12–27 [E*, p <0.05], a significant difference was also observed between adult onset CET and their age- matched controls.

doi:10.1371/journal.pone.0149987.g002
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adult onset CET rats had lower BECs compared to adolescent onset animals (Fig 3; F[1,47] =
5.13, p<0.05).

Chronic EtOH drinking reduced neurotrophin levels in the prefrontal
cortex

Brain derived neurotrophin factor. The cortices of 5 rats (1- Adolescent CET/T1; 1-
Adolescent control/T3; 1-Adult CET/T1; 2-Adult Control T1) were not processed due to lim-
ited tissue. We hypothesized that there would be no differences across time-points for neuro-
trophin content in the control groups. This hypothesis was supported by the ANOVA (both
F’s<1.21, p>0.30), allowing us to collapse our data across time-points and use a single control
group at each age. There was a main effect of Treatment (CET vs. Control) on prefrontal
cortex BDNF levels (F[1,66] = 21.29, p<0.0001), where CET rats had lower BDNF levels than
controls rats. In the CET groups, there was significant Age x Time interaction (F[2,66] = 3.55,
p<0.05). As shown in Fig 4A, adolescent onset CET rats at T1 (intoxicated) and T3 (protracted
abstinence/recovered) had significantly decreased BDNF levels relative to control rats (T1:
F[1,21] = 9.27, p<0.05; T3: F[1,22] = 4.76, p<0.05). At T2 (acute abstinence/withdrawal) there
were was a trend (F[1,21] = 3.75, p = 0.07) for adolescent onset CET rats to have higher BDNF
levels than control rats, but this difference failed to reach significance. In contrast, the adult
onset CET rats had suppressed BDNF levels, relative to their control group, at all time points

Fig 3. Adolescent onset of drinking, relative to adult onset, leads to higher EtOH consumption levels and initial higher blood ethanol
concentrations. A difference in EtOH consumption was observed between the adult and adolescent CET onset rats on weeks 5–11 and 16–31, [A, p <0.05],
where adolescent onset rats consumed significantly more EtOH solution compared to adult onset rats. Despite significant differences in consumption, a
significant difference in BEC was only observed after 1 month of CET [A, p <0.05], where adolescent onset rats had significantly higher BEC levels compared
to adult onset rats.

doi:10.1371/journal.pone.0149987.g003
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(F[1,32] = 11.66, p<0.01). Unlike the adolescent CET rats, adult CET rats did not differ across
the three time points (F<1).

β-Nerve growth factor. The cortex of 1 rat (1-Adolescent CET/T2) was not processed due
to limited tissue availability. There were no age related differences in prefrontal cortex β-NGF
levels in control (both F’s<1.76, p’s>0.20) or CET groups (both F’s<1.13, p’s>0.30) across the
3 time-points. Therefore, the data were collapsed across time points for both treatment groups.
A main effect of Treatment was found (F[1,71] = 6.01, p<0.05), with CET rats having lower
levels of β-NGF (Fig 4B). However, there was no main effect of Age (F’s< 0.58, p’s>0.451, or
Time point (F’s< 1.31, p’s>0.28) and the interaction between those variables was non-signifi-
cant (F’s< 1.3, p’s> 0.28).

Higher BECs correlated with lower prefrontal cortical BDNF levels. Regardless of the
age at which EtOH exposure initiated, rats with higher BECs had decreased BDNF content
within the prefrontal cortex (Fig 4C). Average BEC levels had a significant, negative correlation
with prefrontal BDNF content, r = -0.35, p<0.05. This was the only regional neurotrophin
level that correlated with BEC.

Chronic EtOH drinking reduces hippocampal BDNF levels in adult onset
rats

Brain derived neurotrophin factor. The hippocampi of 4 subjects (1-Adolescent CET/T1;
1-Adolescent CET/T2; 2 Adult CET/T2) were not processed due to dissection issues or tissue
availability. Neither adolescent nor adult rats, CET nor control, significantly differed in hippo-
campal BDNF levels as a function of Time point (F’s<1, p’s> 0.60); thus, data were collapsed
across time-points (Fig 5A). Analysis of variance revealed a trend towards significance in the
interaction between Age and Treatment (F(1,68) = 3.79, p = 0.056). Post-hoc analyses revealed
that adult onset CET rats had significantly lower hippocampal BDNF levels than adult control
rats (F[1,36] = 4.16, p<0.05). This treatment effect was not observed between the adolescent
onset rats (F<1).

β-Nerve Growth Factor. Both control and CET groups were collapsed across time-points
as levels of β-NGF in the hippocampus did not differ as a function of time-points (F’s<1,
p’s>0.90). Regardless of treatment condition, animals that began the exposure protocol as ado-
lescents had significantly higher concentrations of β-NGF in the hippocampus than their adult
counterparts (F[1,68] = 9.48, p<0.01; Fig 5B). There was no significant interaction between
Age and Treatment (F[1,72] = 1.65, p>0.20).

Behavioral Testing
All T-3 groups (Adolescent onset CET, Adolescent water control, Adult onset CET, Adult
water control) had 8 subjects that completed all phases of behavioral testing.

Higher BECs correlated with lower spontaneous alternation scores. Analysis of the per-
cent alternation scores revealed a significant Age x Treatment interaction (F [1,28] = 4.66,
p<0.05; Fig 6A). Adult onset CET rats displayed lower alternation scores compared to their

Fig 4. Chronic EtOH exposure alters prefrontal neurotrophin levels. (A) Average concentration of mature BDNF levels (pg/mg) in the prefrontal cortex
according to Age, Treatment group and Time-point for tissue collection (control groups were collapsed across time-points). In the adolescent group, time-
point 1 [E, p<0.05, intoxicated; thin stripe] and time-point 3 [E, p<0.05, recovered; thick stripe] rats had significantly less BDNF content compared to controls.
There was also a significant main effect of Treatment in the adult consumption groups [E, p<0.05], with CET rats having lower BDNF content compared to
controls. (B) Mean concentration levels (pg/mg) for β-NGF in the prefrontal cortex by Age and Treatment group, collapsed across time-points. There was a
main effect of Treatment [E, p<0.05], with CET rats displaying significantly decreased levels of β-NGF in the prefrontal cortex. (C) Correlation between
average BEC levels during CET and BDNF content in the prefrontal cortex. There was a significant negative correlation between average BEC and BDNF
content: Rats that had higher average BECs had reduced BDNF levels within the prefrontal cortex.

doi:10.1371/journal.pone.0149987.g004
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age-matched controls. In contrast, adolescent onset CET rats did not display significantly dif-
ferent alternation scores relative to age-matched controls. However, CET rats, regardless of
age, made significantly more arm entries compared to control rats (F [1, 28] = 7.77, p<0.01;
Fig 6B). Thus, alternation scores were corrected for overall activity, with percent alternation
scores only including a maximum of 25 arm entries (the lowest group activity level).

Fig 5. Chronic EtOH drinking decreases hippocampal neurotrophin levels only in adult onset EtOH drinking rats. (A) Mean concentration of mature
BDNF levels (pg/mg) in the hippocampus according to Age and Treatment conditions, collapsed across time-points for tissue collection. Adult CET rats have
less BDNF neurotrophin content compared to adult controls [E, p <0.05]. (B) Mean concentration levels of β-NGF (pg/mg) in the hippocampus according to
Age and Treatment groups, collapsed across time-points for tissue collection. There was a main effect of Age [A, p<0.05] on β-NGF levels, where adult rats
have significantly less β-NGF detected in the hippocampus compared to adolescent rats.

doi:10.1371/journal.pone.0149987.g005
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Subsequent analysis failed to yield a significant difference between adult onset CET and the
adult control group (F[1,14) = 2.95, p = 0.11; (Fig 6C).

However, the correlation analysis revealed a negative relation (r = -0.37, p<0.05) between
high BECs and low spontaneous alternation scores (Fig 6D). Regardless of the age at which
EtOH exposure initiated, rats with higher BECs at the end of the CET paradigm had signifi-
cantly fewer spontaneous alternations.

Delayed Alternation is not affected by chronic EtOH drinking. There were no signifi-
cant differences in delayed alternation scores or arm entries as a function of Age or Treatment
(F’s[1,28)<1.73; p>0.10). Furthermore, there was no interaction between Age and Treatment
on delayed alternation scores (All F’s<0.25, p’s>0.05; Fig 7).

Chronic EtOH drinking impairs non-spatial discrimination learning and behavioral
flexibility. Fig 8A demonstrates the average number of trials required to reach criterion as a
function of the type of non-spatial discrimination task for each group. The number of trials to
criterion varied as a function of test (F[4,112] = 12.96, p<0.001). There was a main effect of
CET that demonstrated impaired non-spatial discrimination learning, (F[1,28] = 8.82,
p<0.01), but EtOH exposure interacted with the type of task (F[4,112] = 2.99, p<0.025). We
therefore analyzed separate ANOVAs for each type of task. This analysis revealed that CET
rats required more trials to learn the simple discrimination (F [1, 28] = 4.33, p<0.05). However,
the effect was driven by the CET adolescent group requiring more trials to master the simple
discrimination rule (F[1,28] = 4.65, p<0.05), whereas adult CET rats did not differ from adult
controls (F<1). Since there was no significant difference across both compound (F[1,28] =

Fig 6. Lower spontaneous alternation behavior correlated with higher blood EtOH concentrations. (A) Percent alternation analysis reveals an Age by
Treatment interaction [A x E, p<0.05], with adult onset CET rats alternating significantly less than age-matched controls. (B) Mean number of arm entries
according to Age and Treatment groups. Regardless of age, CET rats made significantly more arm entries compared to controls. (C) Analysis of percent
alteration scores corrected for a maximum of 25 arm entries revealed no difference between adult control and CET rats. (D) Final (month 6) BECs were
significantly negatively correlated with spontaneous alternation behavior: As BECs increased, spontaneous alternation performance decreased.

doi:10.1371/journal.pone.0149987.g006
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3.36, p>0.05) and reversal tasks (F[1,28] = 1.55, p>0.05), each test was collapsed. Both CET
age groups required more trials to learn the complex discriminations (F[1, 28] = 4.93, p<0.05).
Furthermore, the greatest deficit (Cohen’s d = 0.79) was seen in reversal learning, where
CET rats were impaired on reversal learning regardless of the age of onset (F[1, 28] = 7.27,
p<0.025).

Fig 7. Chronic EtOH drinking did not impair delayed alternation behavior. (A) Average percent delayed alternation according to Age and Treatment
conditions. There was no effect of Age or CET on delayed alternation performance. (B) Average number of arm entries according to Age and Treatment
groups. No group differences were found.

doi:10.1371/journal.pone.0149987.g007
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We did not find a significant correlation between BEC levels at the end of CET and the
number of trials to reach criterion for non-spatial discrimination learning or reversal learning
(all p’s>0.05).

Discussion
Four main findings emerged from the present study: first, adolescent onset of chronic EtOH
drinking led to increased EtOH consumption that persisted beyond the adolescent period into
adulthood. Second, chronic EtOH drinking altered both brain BDNF and NGF levels during
intoxication, withdrawal and protracted abstinence. In the prefrontal cortex, CET produced
long-term decreases in both BDNF and NGF, regardless of the age at which EtOH consump-
tion was initiated. However, adolescent onset CET rats displayed a unique increase in BDNF
levels during the acute abstinence (withdrawal) phase. In the hippocampus, only rats that
started consuming EtOH as adults displayed reductions in BDNF. Third, higher BECs were
correlated with lower hippocampal-dependent spontaneous alternation behavior. Fourth,
regardless of BECs or age of drinking onset, non-spatial discrimination learning and behavioral
flexibility, which is dependent on the frontal cortex, was impaired by chronic EtOH drinking.

Epidemiological work has consistently demonstrated that adolescent alcohol abuse increases
the lifetime risk for developing a later AUD [9,64,65]. This has been mirrored in animal models

Fig 8. Chronic EtOH drinking, regardless of age of drinking onset, impaired complex non-spatial discrimination learning and reduced behavioral
flexibility. (A) The average number of trials required to reach criterion during non-spatial discrimination learning and reversal tasks. Criterion was defined as
making a correct discrimination on 6 consecutive trials. Significant CET effects [E] were found on the simple discrimination task, compound discrimination
and reversal phases. In these three tasks, CET rats all required more trials to reach criterion compared to controls (E, p’s<0.05).

doi:10.1371/journal.pone.0149987.g008
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demonstrating that adolescent EtOH exposure predisposes rats to consume elevated levels of
EtOH in adulthood, compared to an EtOH naïve rat [66–71]. Rats with an adolescent onset of
CET had comparable BEC levels to adult onset CET rats after month 1, despite the fact that
adult onset CET rats consumed, on average, 10% less EtOH. The data suggest a greater meta-
bolic tolerance in the adolescent onset CET group relative to the adult onset ETOH group. This
finding complements data showing that adolescent rats exposed to a chronic, intermittent
binge EtOH treatment display an increased metabolic rate, relative to adult rats [72]. The com-
parable BEC levels across the adolescent and adult onset CET groups likely contributed to the
similar profile of behavioral impairment seen in both exposure groups.

Our CET animals exhibited impairments in non- spatial discrimination learning, as well as
overall reductions in neurotrophin levels. It is hypothesized that alcohol-related brain damage,
leading to behavioral dysfunction, is a result of alterations in the balance between neurotro-
phins, which are reduced, and neuroimmune signaling, which is typically increased, after
chronic EtOH exposure [48,73]. At high doses, EtOH decreases cyclic AMP-responsive ele-
ment binding protein (CREB)-DNA binding while increasing nuclear factor kappa-light-chain
enhancer of activated B cells (NF-kB; [74]). EtOH-induced disruptions of CREB and NF-kB
levels may result in decreased neurotrophin levels and increased chemokine and cytokine acti-
vation, which exacerbate EtOH-induced glutamate excitoxicity, which could manifest in
behavioral deficits [48].

Neuroimaging studies of the alcoholic brain have demonstrated that the frontal lobes, rela-
tive to other brain regions, have the most pronounced abnormalities [75,76]. These findings
are paralleled by an increase in markers of cell death and neural neuroinflammation within the
frontal cortex in both rodent models of adolescent binge EtOH exposure and in post mortem
brain tissue of alcoholics with an early age of drinking onset [26]. Abstinent alcoholics display
decreased gray matter volume in the dorsolateral, dorsomedial and ventromedial prefrontal
cortex that are correlated with increased impulsivity [77]. Orbital frontal cortical shrinkage is
also observed in abstinent alcoholics [78] and has been associated with impaired behavioral
flexibility [37], including reversal learning [79]. Similarly, rodents exposed to chronic intermit-
tent EtOH exposure as adults [80] or adolescents [26] display an initial impairment in reversal
learning, but in adult mice the reversal impairment was no longer evident with an extended
recovery period (10-days post EtOH). Our data demonstrate that long-term, continuous EtOH
exposure leads to a persistent and long-lasting impairment in reversal learning, regardless of
age of drinking onset or BEC.

However, brain and behavioral recovery following abstinence from alcohol consumption
has been observed in humans, but there are considerable individual differences [81]. Following
excessive binge EtOH exposure in rodents, in the acute abstinence phase (48-hrs post EtOH),
there is a burst of cell genesis and an increase in phosphorylated CREB in multiple brain
regions, including the cortex and hippocampus [82]. However, the increase in these markers of
plasticity eventually subsides. Alcoholic patients going through withdrawal show an acute tran-
sient increase in plasma concentrations of BDNF levels, but not NGF levels [83,84]. Further-
more, the intensity of acute alcohol withdrawal symptoms have been correlated with an
increase in BDNF serum levels [46], which was taken as evidence that BDNF may be involved
in neuroadaptation during the early alcohol withdrawal period. The transient increase in fron-
tal cortical mBDNF observed in the current study (during the acute abstinence phase in adoles-
cent onset CET rats) may represent an attempt to compensate for neurodegeneration. This
effect could be indicative of an intrinsic mechanism for the repair of alcohol-induced structural
damage, similar to what has been observed after adolescent binge EtOH exposure [20]. Age at
the time of EtOH exposure maybe a key factor in both the expression and extent of the
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recovery of function observed in abstinent alcoholics. The manner in which age and alcohol
interact to modulate both neural adaption and plasticity markers needs further examination.

In the adult nervous system, the mature forms of BDNF and NGF support neuronal survival
and are critical for synaptic plasticity that is altered by addiction [85]. However, both pro-NGF
and pro-BDNF activate the p75 receptor that leads to cell death [86,87]. Chronic, continuous
EtOH exposure decreases the mRNA for BDNF within the adult cortex during CET [88] and
within the hippocampus 48-hrs after EtOH cessation [89]. The down-regulation of BDNF tran-
scription, induced by CET, could lead to the reduction of BDNF synthesis, thereby resulting in
decreased detection of mBDNF levels after prolonged EtOH consumption. Chronic EtOH
intake in rats also decreases the immunoreactivity of NGF and choline acetyltransferase, an
enzyme regulated by NGF, within the hippocampus and medial septum [51]. This suggests
that NGF synthesis and/or biological activity is also affected by chronic EtOH drinking. This is
supported by studies demonstrating that exogenous NGF delivery recovers both behavioral
impairment and the loss of forebrain cholinergic neurons that project to the hippocampus and
cortex in the CET model [53,54].

We observed a significant loss of NGF in the frontal cortex, regardless of age of drinking
onset, an effect not observed in the hippocampus. This regional sensitivity may be attributed to
the fact that most ELISA kits measure both the pro- and mature forms of NGF [90]. Consider-
ing the opposing effects of pro and mature forms of NGF and BDNF on cell survival, it is criti-
cal in future studies to determine the ratio between pro and mature neurotrophins. The altered
balance across pro- and mature neurotrophin levels could be a biomarker of neurodegenera-
tion or repair in several diseases, including chronic alcoholism.

Behavioral deficits on tasks that rely on the hippocampus and/or frontal cortex are seen in
abstinent alcoholics [91,92] and rodent models of chronic continuous or intermittent EtOH
exposure [93]. Factors that contribute to the extent of both hippocampal and cortical
impairment are drinking history duration and degree of intoxication, which can be reflected in
BECs. It has been stated that a high volume of alcohol drinking (35 drinks per week for men;
28 drinks per week for women) for an extended period of time (more than 5 years) are key risk
factors in the development of alcohol-related brain damage [94]. The forced EtOH consump-
tion models (EtOH in the drinking fluid or liquid diet) are analogs of the later stages of sus-
tained alcohol addiction [50]. Such forced EtOH consumption models are commonly used to
achieve high EtOH intake for extended periods of time [49], which appear to modulate alco-
hol-induced behavioral dysfunction.

Spatial memory impairments have been observed after adult onset CET with a long duration
(12 months) of EtOH exposure [95] or with shorter durations (6–8 months) when BEC are
over 100 mg/dl [96]. Sex also appears to modulate the behavioral effects of chronic EtOH: we
found that adult female rats exposed to CET were impaired on delayed matching to position,
whereas adult male CET rats only displayed impairment when the rule was reversed to non-
matching-to-position [57]. In the current study, we found that higher BECs at the end of treat-
ment were correlated with lower spontaneous alternation performance, a hippocampal depen-
dent task [97]. However, our data reveal that the same correlation between BEC and reversal
learning, an orbital frontal cortical dependent task [98], was not significant. Regardless, there
was a main effect of CET on reversal learning, irrespective of age of drinking onset. This sug-
gests that EtOH-induced abnormalities in frontocortical-dependent behaviors can be found
across a range of metabolic EtOH concentrations. Thus, frontocortical behaviors, like neural
plasticity measures, appear to be more sensitive to EtOH, compared to hippocampal-depen-
dent behaviors.
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Conclusions
Recent data establishes adolescence as a vulnerable time period for EtOH related toxicity that
leads to neuropathological, behavioral and motivational changes [99]. Initiating alcohol drink-
ing at a young age leads to a greater propensity for the development of AUDs. Individuals who
begin drinking by the age of 13 are over 3 times more likely to engage binge drinking (more
than 5 drinks per episode) and extreme drinking (greater than 10 drinks per occasion; [100].
Exposure to EtOH during adolescence in rodents can produce greater EtOH intake during
adulthood [101,102] and we replicated those finding in a continuous access model.

However, adolescence is a protracted period of developmental neural adaption that appears
to have epochs of vulnerability to alcohol exposure, which influences certain long-term behav-
ioral outcomes, including abuse propensity [103]. In rodents, researchers have identified three
adolescent epochs: early- (PD 21–34), mid- (PD 34–46), and late- (PD 46–59) adolescence
[103,104]. In a summary of recent data, Spear [103] suggests that early adolescent EtOH expo-
sure has been associated with affective and hippocampal abnormalities, whereas late adolescent
EtOH exposure disrupts behaviors dependent on the developing pre-frontal cortical systems.

The lack of persistent hippocampal dysfunction after mid-adolescent onset CET may be
related to the unique, time- dependent, developmental windows that occur during adolescence.
One caveat of our model is that the EtOH “fade on” period takes the adolescent rats through
“emerging adulthood” [99]. Thus, the impact of the moderate to high EtOH doses did not
occur until emerging adulthood. Exposure to binge EtOH levels during early adolescence have
been linked to deficits in spatial memory acquisition and reversal learning [105,106]. These
EtOH related deficits are either not elicited or less pronounced when exposure occurs during
mid to late adolescence [103]. Therefore, we hypothesize that the lack of age- dependent, EtOH
related behavioral deficits was possibly due to the fact that we missed a critical window of
EtOH exposure. If EtOH exposure was initiated at an earlier age, it is possible that we would
have detected pronounced behavioral and neural deficits compared to those seen with adult
onset exposure.

However, even moderate drinking during mid-adolescence contributed to heavy EtOH con-
sumption in adulthood. It has been shown, and we replicated, that by PD 55, water consump-
tion stabilizes across adulthood [107]. Thus, differences in EtOH consumption from day 55
onward are not due to adolescent-typical hyperdipsia.

The current data extend our understanding of the different patterns of neuroadaptation,
specifically of BDNF and NGF, within two key brain regions (hippocampus and frontal cortex)
in an animal model of late-stage sustained alcohol addiction. By collecting brain samples at dif-
ferent phases of the addiction cycle (intoxication, acute and protracted abstinence), we revealed
that chronic EtOH exposure beginning in mid-adolescence or early adulthood leads to reduc-
tions in frontocortical plasticity during intoxication and following protracted abstinence. The
neurotrophin reductions that occur during active drinking and protracted abstinence may
modulate several disease process associated with alcoholism, including both functional (deci-
sion making) and structural (neuropathological) changes that likely contribute to the cycle of
addictive behaviors [108].

Supporting Information
S1 Data. Behavioral and neurotrophin data. Data is presented for each Treatment condition
as a function of age (Age of Onset) at which drinking started (postnatal day 35 = Adolescent;
postnatal day 73–75 = Adult), and time (Timepoint) when brains were collected (1 = during
ethanol consumption; 2 = 48-hrs after ethanol removal; 3 = 6–8 weeks after ethanol fading-off
and behavioral testing). Data is present for each behavioral task (DA = Delayed Alternation
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[Day 1; Day 2]; SA = Spontaneous Alternation; % = Percent alternation; # = Number of arm
entries). Discrimination data is summarized as the number of trials to reach criterion. There is
also neurotrophin data (Brain-Derived Neurotropic Factor [BDNF] and Nerve Growth Factor
[NGF], both presented as pg/mg of protein, as a function of brain region (PFC = prefrontal cor-
tex; HPC = hippocampus).
(PDF)

S2 Data. Estimated daily ethanol consumption. Estimated daily EtOH consumption (g/kg) as
a function of ethanol concentration (6%, 9%, 12%, 20%) for 28 weeks for rats that started
drinking at either postnatal day 35 (see Age at Onset; Adolescent) or postnatal days 73–75 (see
Age at Onset; Adult). Brains were collected at 3 time points (Timepoint): 1 = During ethanol
consumption; 2 = 48-hours after ethanol removal; 3 = 6 to 8 weeks post ethanol exposure and
after behavioral testing.
(PDF)

S1 Fig. Adolescents initially have higher water consumption compared to adults, but this
difference disappears by emerging adulthood. A difference in water consumption was
observed between adult and adolescent age- matched animals on weeks 1–4 [A, p<0.05],
where adolescent animals consumed significantly more liquid compared to adult age- matched
rats. No further age dependent differences were found on consumption levels after week 4.
(TIF)
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