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The medial entorhinal cortex s part of a neural system for mapping the position of an
individual within a physical environment'. Grid cells, akey component of this system,
fireinacharacteristic hexagonal pattern of locations?, and are organized in modules?
that collectively forma population code for the animal’s allocentric position’.

Theinvariance of the correlation structure of this population code across
environments*® and behavioural states®’, independent of specific sensory inputs,

has pointed to intrinsic, recurrently connected continuous attractor networks (CANs)
asapossible substrate of the grid pattern*®'. However, whether grid cell networks
show continuous attractor dynamics, and how they interface with inputs from the
environment, has remained unclear owing to the small samples of cells obtained so
far. Here, using simultaneous recordings from many hundreds of grid cells and
subsequent topological data analysis, we show that the joint activity of grid cells from
anindividual module resides on a toroidal manifold, as expected in atwo-dimensional
CAN. Positions on the torus correspond to positions of the moving animal in the
environment. Individual cells are preferentially active at singular positions on the
torus. Their positions are maintained between environments and from wakefulness to
sleep, as predicted by CAN models for grid cells but not by alternative feedforward
models®. This demonstration of network dynamics on a toroidal manifold provides a
population-level visualization of CAN dynamics ingrid cells.

Theidea of a CAN has become one of the most influential conceptsin
theoretical systems neuroscience®™, ACANis a network in which recur-
rentsynaptic connectivity constrains the joint activity of cellstoa con-
tinuous low-dimensional repertoire of possible coactivation patterns
inthe presence of awide range of external inputs. Few systems are more
suitable for analysis of CAN dynamics than the spatial mapping circuits
oftherodentbrain, owing to the continuous, low-dimensional nature
of space, and the availability and interpretability of data from these
circuits’®. In medial entorhinal cortex (MEC) and surrounding areas,
head direction cells' encode orientation whereas grid cells? encode
position. CAN models conceptualize the neural representations of
these variables as spanning periodic one- or two-dimensional (1D or 2D)
continuaonaring” " oratorus"®™, respectively. In this scheme, activity
withinthe neural network stabilizes as alocalized bump when cells are
ordered according to their preferred firing directions or locations in
physical space. The activity bump may be smoothly translated along
the network continuum by speed and direction inputs, or by external
sensory cues.

In agreement with CAN models®™, head direction cells’**** and
modules of grid cells*”” maintain fixed correlation structures. In head
direction cells, cell samples of a few dozen have been sufficient to
demonstrate that the network activity traverses a ring?>2*, but for
grid cells, the number of possible locations in the two-dimensional

state space has been too large for the topology of the manifold
to be uncovered. Here we take advantage of recently developed
high-site-count Neuropixels silicon probes®?* to determine in many
hundreds of simultaneously recorded grid cells whether, as predicted
by two-dimensional CAN models® ™, the population activity in an indi-
vidual grid-cellmodule resides on a toroidal manifold, independently
of behaviouraltasks and states and decoupled from the position of the
animalin physical space. We focused onindividual modules because
(i) these are the unit networks of CAN models*®*%; and (ii) topological
analysis of multi-module representations would require even larger
numbers of cells?.

Visualization of toroidal manifold

Werecorded extracellular spikes of atotal of 7,671 single unitsinlayers
I1and 11l of the MEC-parasubiculum region in freely moving rats with
unilateral or bilateral implants (total of 4 recordings, in 2 rats with
bilateral single-shank probes and1rat with a unilateral 4-shank probe;
from 546 to 2,571 cells per recording; Extended Data Fig. 1). During
recordings, the rats were engaged in foraging behaviour in a square
open-field (OF) enclosure or on an elevated track, or they sleptin a
small resting box. Using a clustering-based approach, we identified
six grid modules across all rats (4 recording sessions, from 140 to 544
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Fig.1|Signatures oftoroidal structureintheactivity ofamodule ofgrid
cells. a, Firing rates of 149 grid cells co-recorded from the same module and
shown, inorder of spatial information content, as afunction of rat positionin OF
arena (rates colour-coded, max 0.2-35.0 Hz; rat ‘R’day 1, module 2; Extended
DataFig.2b).b, Nonlinear dimensionality reductionreveals torus-like structure
inthe populationactivity of asingle grid module (same 149 cells; 3 different views
ofsame point cloud). Each dotrepresents the population state at one time point
(dots coloured by first principal component). Bold line shows a 5-s trajectory,
demonstrating smooth movement over the toroidal manifold. Right,
correspondingtrajectory in OF. ¢, Toroidal positions of spikes from three grid
cells from the moduleina. Each panel shows the same 3D point cloud of
populationstatesasinb, withblack dotsindicating when the cell fired. Insets
show:left: the cell’s 2D firinglocations in OF (black dots on grey trajectory);

grid cells per session; 7.8% to 25.6% of total number of cells; Extended
DataFig.2a-d, g, h). Each grid module cluster contained a mixture
of nondirectional (‘pure’) grid cells and conjunctive grid x direction
cells?, from 66 to 189 grid cells per module (total pure and conjunctive
grid cells; Extended Data Fig. 2g). We initially limited our analyses to
the subset of pure grid cells because (i) the expected toroidal topol-
ogy might be distorted by additional directional modulation; and (ii)
detection of topology in conjunctive cells may require alarger number
of cells than recorded here?.

To visually inspect the structure of the population activity of grid
cells for signatures of toroidal topology, we constructed a three
dimensional (3D) embedding of the n-dimensional population activ-
ity of amodule of n =149 pure grid cells (Fig. 1a). For this, we applied
atwo-stage dimensionality reduction procedure on the matrix of
firing rates. First, to improve robustness to noise, we conducted a
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middle: colour-coded firing rate map in OF (range O to max); right: colour-coded
autocorrelogramof the rate map (range -1to +1). Maximumrate and grid score
(GS)areindicated.d,Sameasin c (samecells) but withthe rat runningonan
elevated, wheel-shaped track (‘wagon-wheel track’; WW). Note preserved
toroidal field locations. e, f, Barcodesindicate toroidal topology of grid-cell
population activity. Results of persistent cohomology analyses (30 longest bars
inthefirstthree dimensions: H°, H' and H?) are shown for three grid modules
fromonerat (R1-R3day1,n=93,149 and 145 cells, respectively), in OF () and WW
(f). Grey shadingindicateslongest lifetimes among 1,000 iterations in shuffled
data (aligned to lower values of original bars). Arrows show four most prominent
barsacross alldimensions (all longer than in shuffled data). One prominentbar in
dimension 0, twoin dimension1and oneindimension2indicates cohomology
equaltothatofatorus.

principal component analysis (PCA). We retained the first six prin-
cipal components, which explained a particularly large fraction of
the variance for all grid modules in the OF condition (with a similar
tendency seen duringsleep; Extended Data Fig. 4a). Next, we applied
uniform manifold approximation and projection (UMAP) to reduce
the six principal components into a 3D visualization. This visualiza-
tionrevealed a torus-like structure (Fig. 1b, Supplementary Video 1).
Movement of the ratin the OF was accompanied by similarly continu-
ous movement of the population activity across the toroidal mani-
fold (Fig. 1b). When the activity of individual cells was plotted with
reference to the 3D population representation, spikes for each cell
were localized within a single patch of the population state space
(Fig. 1c). The offsets between the firing locations of individual cells
in the arena corresponded with the relative firing locations of the
cellsinthe toroidal state space.
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Fig.2|Cohomological decoding of position onaninferredstatespace
torus. a, b, Individual grid cells have distinct firing fields on the inferred torus
(Extended DataFig. 5). Toroidal coordinates for population activity vectors
were decoded from the two significant 1D holes (red circlesina) in the barcodes
inFigle,f.a, Left,3D embedding of the toroidal state space displaying
colour-coded mean firing rate of one grid cell as a function of toroidal position.
Right, a2D torus may be formed by gluing opposite sides of arhombus.

b, Representative grid cells from module R2 day 1showing tuning to toroidal
coordinates (allR2 cells: Supplementary Fig.1). Each row of four plots
corresponds toone cell. Left toright, colour-coded maps of cells’ firing rates
across the environment (OF or WW) and on the inferred torus (toroidal OF,
toroidal WW, aligned to common axes). ¢, d, Toroidal information content

(c) and explained deviance (d) for toroidal position (T) versus spatial position

Quantification of toroidal topology

Although the UMAP projection allowed a toroidal point cloud to be
visualized, the method does not lend itself to straightforward quanti-
fication of the topology of the state space or comparison of represen-
tations across experiments. We therefore turned to the framework
of persistent cohomology, a toolset from topological data analysis
in which the structure of neural data can be classified by identifying
holes of varying dimensionality in topological spaces assigned to point
clouds of the cells’ firing rates?*?, In applying this toolset, we replace
each point of the point cloud by a ball of common radius. The union
of balls results in atopological space in which the number of holes of
different dimensions can be counted. By increasing this radius from
zero until all the balls intersect, we observe the lifetime of each hole—
the range of radii from when the hole first appears until it disappears
(see Extended Data Fig. 3C). The lifetimes of the holes are depicted as
barsandthetotality of bars referred to as the barcode. For atorus, the
barcode must display four bars of substantial length: a 0D hole (asingle
component connecting all points); two 1D holes (describing circular
features); and a 2D hole (a cavity; Extended Data Fig. 3B).

Persistent cohomology analyses allowed us to classify the shape of
the six-dimensional representation that serves as anintermediate step
in UMAP (Extended Data Fig. 3A). We constructed barcodes for each
of the six individual modules of grid cells recorded in the OF arena
(three modules fromrat ‘R’, 2 fromrat ‘Q’and 1fromrat ‘S’, henceforth
named R1, R2,R3, Q1, Q2 and S1). The barcodes showed clear indica-
tions of toroidal characteristics. For all sixmodules, we detected four
long-lived bars representing a single OD hole, two 1D holes and a 2D
hole. Their lifetimes were significantly longer than the lifetime of any
bar obtained in 1,000 shuffles of the data in which spike times were
randomly rotated (Fig. 1e, f, Extended Data Fig. 6Aa; P<0.001). The
findings suggest that network dynamics during OF foraging resides on
alow-dimensional manifold with the same barcode as a torus. We noted
the appearance of additional short barsinthe barcodes for all modules,
but these are expected for toroidal point clouds?, as we confirmed with
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(S)in OF (top) and WW (bottom). Explained deviance is an R*-statistic (range
0-1) expressing goodness-of-fit of GLM models for S or T. Left, scatterplots
with dots showing individual cells; colour indicates module (inset). Right,
mean *s.e.m.foreachmodule.n =93 (R1),149 (R2),145(R3),94 (Ql), 65 (Q2)
and 73 (S1) cells. e, f, Distances between toroidal firing field locations. e, Field
locations of allR2 cellsin OF and WW. Lines connect fields of the same cell.
Toroidal OF and WW axes were aligned either separately (‘separate’) or
commonly to OF (‘common’).f, Left, cumulative frequency distribution of field
distances (allR2 cells; green curve, separate alignment; grey lines, common
alignment (to either OF or WW); black curve, shuffled data, n=1,000 shuffles).
Right, meandistance between field centres (+s.e.m.) for allmodules. ncells as
inc,d.g,Sameasf, but showing Pearson correlations between pairs of toroidal
rate maps.

simulated data from several CAN models'®" and point clouds sampled
fromidealized tori, which in each case exhibited similar features (see
Extended Data Fig. 7).

Tori persist despite grid distortions

The appearance of a torus in the point cloud, and the mapping of the
activity of individual grid cells onto the torus (Fig. 1c), are consistent
with arelationship between position in 2D physical space and position
in the dimensionality-reduced neural state space. However, in many
environments, this relationship may notbeisometric, asthe grid pattern
isdistorted by geometrical features of the environment, such aswalls and
corners®*or discretelandmarks and rewardlocations®>**, We thus asked
whether such geometric features could similarly distort the toroidal
organization of network activity in the point cloud. We tested ratsonan
elevated running track shaped like awagonwheel with four radial spokes
(‘wagon-wheel track’ (WW); Fig. 1d, f). Spatial autocorrelation analyses
confirmed thatthestrict periodicity of the grid pattern was compromised
in this task (Extended Data Fig. 2e, f). Despite these distortions of the
grid pattern in individual cells, toroidal tuning was maintained in the
transformed population activity (Fig. 1d). The persistent cohomology
analysis continued toidentify one OD hole, two 1D holesand one 2D hole
with lifetimes that substantially exceeded those of shuffled data (Fig. 1f,
Extended Data Fig. 6Ab). We also determined how the neural popula-
tionactivity mapped onto the torus by calculating angular coordinates
fromeachofthetwo 1D holes identified by the barcode (‘cohomological
decoding’; Extended Data Fig. 5). The two angular coordinates defined
directions intersecting at 60°, identifiable as a twisted torus (Fig. 2a).
Consistent with CAN models, the vast majority of grid cells were tuned to
asinglelocationonthetorusineachmodule and across environments,
independent of geometry and local landmarks (Fig. 2b, Extended Data
Fig. 4f, Supplementary Information).

To test how faithfully location in the environment is mapped onto
the toroidal representation, we next asked whether grid-cell activity is
predicted better by the cells’ tuning to the inferred torus than by their
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Fig.3|Preservation oftoroidal structure duringsleep. a, Barcodes
indicating toroidal topology for grid-cellmodule R2 day 2 (n =152 cells) during
REMsleep and SWS (asinFig. 1e, f). b, Toroidal rate maps showing preserved
toroidal tuning for individual cells across environments and brain states (asin
Fig.2b; all cells shownin Extended Data Fig. 10). From left: rate map for OF in
physical coordinates; and rate maps for OF, REM sleep and SWS in toroidal
coordinates. ¢, Distribution of toroidal field centres (as in Fig. 2e) in OF and
sleep (nasina).d, e, Left, cumulative distributions of distances between
toroidal field centres (d) and Pearson correlation rvalues (e) of rate maps for all
R2grid cells, asin Fig. 2f, g, but comparing OF with REM or SWS. Right, mean
value +s.e.m. forallmodules. n=111(R1),152 (R2),165 (R3), 94 (Q1), 65 (Q2) and
72(S1) cells.n=1,000 shuffles.

tuning to physical space. For five out of six grid modules in OF and four
out of six in WW, the information content conveyed about position,
in bits per spike, was higher for position on the torus than for posi-
tion in physical space (Fig. 2c; R2,R3, Q1, Q2: all P< 0.001, W>1,932
in OF and WW; R1: P< 0.001, W=4,010 in OF, P=0.586, W=2,129 in
WW; S1: P=1.000 in OF and WW, W= 620 in OF, W=129 in WW; Wil-
coxonsigned-rank test). We verified this difference by comparing the
cross-validated prediction of two Poisson generalized linear model
(GLM)-based encoding models of each cell’s activity that included
toroidal position (decoded as above) and 2D spatial position. For both
environments (OF and WW), the toroidal covariate was closer to a per-
fectly fitted model of the data than was the physical position covariate
infive out of sixgrid-cellmodules (Fig.2d; R1,R2,R3,Q1,Q2: P< 0.001,
W>2,045in OF and WW;S1: P< 0.001, W=1,941in OF, P=1.000, W=727
in WW; Wilcoxon signed-rank test). Together, these differences point
totoroidal structure as the primary feature of the population activity
ofgrid cells, superior to that of the 2D coordinates of the animal’s cur-
rent position in the physical environment.

If grid cells operate on a toroidal manifold determined by intrinsic
network features, this manifold may be expressed universally across
environments, independently of sensory inputs. We tested this propo-
sition by assessing, on the inferred tori, whether the locations of fir-
ing fields of different grid cells were maintained between OF and WW
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(Fig. 2b, Supplementary Information). To compare the toroidal para-
metrizations, we aligned the axes of the toroidal coordinates (Extended
Data Fig. 5b). First, we compared, for each cell, the distance between
the centres of mass of the toroidal rate maps in OF and WW (Fig. 2e, f,
Extended Data Fig. 6Ba). This distance was substantially shorter
(mean t s.e.m. of mean distances for all modules: 31.5 + 6.3 degrees)
than that of control data in which the order of the rate mapsin one
environment was shuffled (135.8 + 1.7 degrees; maximum possible
distance v2-180 = 254.6 degrees; data versus shuffled: P< 0.001 in all
modules). Second, we calculated the pairwise Pearson correlations
of binned toroidal rate maps across the two environments (Fig. 2g,
Extended DataFig. 6Ba). Consistent with the centre-of-mass compari-
son, the correlations between OF and WW were higher in observed data
(mean £ s.e.m. of mean r values for all modules: 0.79 + 0.07) than in
shuffled data (r=0.01+ 0.01; P < 0.001 for all modules). Very similar
results were obtained when applying the toroidal parametrization
from the same environment (either OF or WW) to activity from both
environments (Fig. 2f, g, 16.0 + 3.4 degrees; r=0.95+ 0.02; P<0.001
for allmodules and both mappings). Together, these findings suggest
that physical spaceis mapped onto the same internal low-dimensional
manifold irrespective of the specific environment.

Toroidal topology persists during sleep

If population activity is mapped onto the same toroidal manifold inde-
pendently of sensory inputs, the toroidal topology should also be main-
tained during sleep. To test this idea, the rats rested in a high-walled,
opaque box placed in the centre of the OF or WW track. Periods of
rapid-eye-movement (REM) sleep and slow-wave sleep (SWS) were
identified on the basis of the low-frequency rhythmic content of the
aggregated multi-unit activity in combination with prolonged behav-
ioural immobility (Extended Data Fig. 9).

Persistent cohomology analysis of the sleep population activity sug-
gested toroidal topology in five of the six grid modules during REM and
four out of six modules during SWS (modules R2, R3, Q1and Q2 for both
sleepstagesandmoduleR1onlyinREM;Fig.3a, Extended DataFig.6Ac,d).
In the remaining module (S1), there were no long-lived bars in dimen-
sions1or2(Extended DataFig. 6Ac, d), indicating an absence of toroidal
structure during sleep, perhaps because of an insufficient number of
cellsinthis module (72 cells; Extended DataFig. 4e). The barcode results
were supported by the toroidal mapping, which revealed sharply tuned
firing fieldsonthe REM and SWStori (99.3 +1.6% and 99.1 + 1.8%, respec-
tively, of the grid cellsin each module had higher information content
thanshuffled data,andin 95.3 + 7.2% and 98.6 + 2.4% of cells the toroidal
tuning explained the activity better than a null model that assumes a
constant firing rate; Fig. 3b, Extended Data Figs. 6C,10, Supplementary
Information). In addition, the spatial arrangements of toroidal firing
locations of different cells were maintained between wake, REM and
SWSstates (Fig. 3c, Extended Data Fig. 6Bb, ¢). For between-condition
pairs of rate maps, the mean distance (+s.e.m.) between the peak firing
locations (OF versus REM 31.5 +15.4 degrees, OF versus SWS29.8 + 14.3
degrees) was well below the distribution of shuffled distances (Fig. 3d,
Extended Data Fig. 6Bb, c; 135.8 + 2.3 degrees in both REM and SWS,
P<0.001forall5and 4 modules, respectively). Similarly, the mean cor-
relations of pairs of toroidal rate maps (REM versus OF r= 0.80 + 0.15,
SWSversus OF r=0.83 + 0.12) were substantially larger than in shuffled
versions of the data (Fig. 3e, Extended Data Fig. 6Bb, c; r=0.01+ 0.01
inbothREM and SWS, P< 0.001 for all 5and 4 modules, respectively).
Thus, the toroidal structure is maintained in both sleep conditions,
despite the lack of external spatial inputs.

Classes of grid cells

We next investigated why toroidal structure was not visible during REM
inmodule S1and during SWS in modules R1and S1 (Fig. 4a, Extended
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Data Fig. 6Ad). Previous studies of medial entorhinal spiking activ-
ity have described cell populations with distinct burst-firing and
theta-modulation characteristics®¢; therefore, we asked whether a
lack of toroidal structure was due to heterogeneity in the composition
ofthe module. We quantified each cell’stemporal modulation charac-
teristics using the spike train temporal autocorrelogram from the OF
session, and by applying clustering to the matrix of autocorrelograms
we obtained three cell classes (Fig. 4b). Each class was distributed across
multiple modules (Fig. 4d). Within each modaule, cells from the three
classes showed overlapping grid spacing and orientation properties
(Extended DataFig. 8a). We named the classes ‘bursty’ (B), ‘non-bursty’
(N) and ‘theta-modulated’ (T), following the most prominent autocor-
relogram feature of each class (Fig. 4e). We also examined the spike
waveforms of the cells, and found that each class showed a character-
istic spike width (Fig. 4f, g), suggesting that they differin morphology
or biophysical properties.

Thefiring rates of the cells during SWS exhibited marked correlation
structure within—but not between—classes (Extended Data Fig. 8b).
Eventhough our classification strategy was not influenced by the cells’
directional tuning, class T contained 80% of all conjunctive grid cells
andonly 11% of all pure grid cells, supporting the idea that conjunctive
grid cellsare adistinct population. Accordingly,inmodulesR1and S1,
which contained the largest numbers of T cells, pairwise correlations of
Tcells’spike trains were more strongly related to head-direction tuning
than to toroidal tuning (Extended Data Fig. 8c). When we subdivided
module R1into the three classes (Fig. 4b), we found that during SWS
toroidal topology was detectable only in B cells (Fig. 4c). By decoding
toroidal position from B cells, we were able to recover the selectivity
of each cell with respect to toroidal position in module R1 (Fig. 4h).
The toroidal tuning locations were preserved between OF and SWS
ineach cell class in R1 (Extended Data Fig. 8d, B: distance of 26.4 + 6.1
degrees and correlation of r=0.85+0.02, T: 43.6 + 3.9 degrees and
r=0.74+0.02,N:29.9 + 3.5degreesand r = 0.80 + 0.02; mean values of
shuffled versions of each classwerebetween135.4 + 5.2and136.4 + 6.2
degrees, andbetweenr=0.00 + 0.07 and r = 0.02 + 0.03; comparison
between observed and shuffled P < 0.001 for all 3 classes and both
measures). However, in R1as well as all other modules, toroidal spatial
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n=659 or188 cells, respectively). h, Example cells from each class (one row of
plots per cell). Plots from left to right: OF firing rate map; head-direction (HD)
tuning curve (black) compared to occupancy of head directions (light grey);
temporal autocorrelogram; toroidal firing rate maps for OF, REM and SWS.
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information and explained deviance were highest for B cells and lower
forNand T cellsin OF, REM and SWS (Extended Data Fig. 8e) (informa-
tion content: P <107, H > 255; Kruskal-Wallis test; <107, Z> 6.4; Dunn
test with Bonferroni correction; explained deviance: P<1072°, H> 96;
Kruskal-Wallis test; P <1072, Z> 7.4; Dunn test with Bonferroni correc-
tion, for OF, REM and SWS). Collectively, these results show that the
B cell population (containing the majority of our grid cells) represents
the torus most robustly across behavioural conditions. The weaker
toroidalrepresentationin T cells may partly be an effect of the higher
dimensionality of the code carried by conjunctive grid x direction cells.
Indeed, running cohomology analysison T cells from modules S1and
R1 (which contained the most T cells) revealed a circular feature that
corresponded to the animal’s head direction (Extended Data Fig. 8f, g).

Discussion

Our findings, from many hundreds of simultaneously recorded grid
cells, show that populationactivity ingrid cellsinvariably spans amani-
fold with toroidal topology, with movement on the torus matching the
animal’s trajectory inthe environment. The toroidal representation was
most stably encoded by the bursting subclass of grid cells. Toroidal
topology was not simply inherited from the encoded variable, as 2D
spaceisnotcharacterized by toroidal topology, as opposed to pitchand
azimuth of head orientation, which in bats together span a torus and
thus naturally map onto atoroidal neural code. Using cohomological
decoding, we were able to demonstrate, in each environment and in
bothsleep and awake states, that the toroidal coordinates of individual
grid cellsinindividual grid modules were maintained, independently
of external sensory inputs or environment-induced deformations of
hexagonal symmetry in the rate maps® . The uniform and consistent
toroidal structure of the manifold suggests that distortions in grid pat-
terns occur in the mapping between physical space and the toroidal
grid code rather thanin the grid code itself.

The invariance of the toroidal manifold across environments and
brainstatesisinformative about the mechanisms thatunderlie grid-cell
activity. Although toroidal topology can be generated by both CAN'31°
and feedforward™ mechanisms, the persistence of an invariant toroidal
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manifold under conditions that give rise to changes in the correlation
structure of place-cell activity in the hippocampus®” is predicted only
by CAN models. While the findings do not exclude co-existing feedfor-
ward mechanisms'>*%, they point to intrinsic network connectivity as the
mechanism that underlies the rigid toroidal dynamics of the grid-cell
system. What kind of network architecture keeps the activity onatoroidal
manifold—whether it is geometrically organized*®° or acquired from
random connectivity by synaptic weight adjustments through learn-

ing* *—remains to be determined, as does the mode of connectivity
22,23

with other CANs in the entorhinal-hippocampal system
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Methods

Rats

The data were collected from three experimentally naive male Long
Evansrats (RatsQ,RandS,300-500 gat time ofimplantation). The rats
were group-housed with three to eight of their male littermates before
surgery and were singly housed in large Plexiglas cages (45 x 44 x30 cm)
thereafter. They were kept onal2-hlight-12-h dark schedule, with strict
control of humidity and temperature. All procedures were performedin
accordance with the Norwegian Animal Welfare Act and the European
Convention for the Protection of Vertebrate Animals used for Experi-
mental and Other Scientific Purposes. Protocols were approved by the
Norwegian Food Safety Authority (FOTS ID 18011 and 18013).

Electrode implantation and surgery

Therats were implanted with Neuropixels silicon probes®* targeting
the MEC-parasubiculum (PaS) region. Two rats were implanted bilat-
erally with prototype Neuropixels ‘phase 3A’ single-shank probes and
with one probe targeting MEC-PaS in each hemisphere; the third rat
was implanted with a prototype Neuropixels 2.0 multi-shank probe
in the left hemisphere. Probes were inserted at an angle of 25° from
posterior to anterior in the sagittal plane. Implantation coordinates
were AP 0.05-0.3 mm anterior to the sinus and 4.2-4.7 mm lateral to
the midline. The probes wereinserted to adepth of4,200-6,000 pm.
The implant was secured with dental cement. The detailed implanta-
tion procedure has been described elsewhere®*. After surgery, the rats
were lefttorecover for approximately 3 hbefore beginning recording.
Postoperative analgesia (meloxicam and buprenorphine) was admin-
istered during the surgical recovery period.

Recording procedures
The details of the Neuropixels hardware system and the procedures for
freely moving recordings have been described previously. Inbrief, elec-
trophysiological signals were amplified with a gain of 500 (for phase 3A
probes) or 80 (for 2.0 probes), low-pass-filtered at 300 Hz (phase 3A)
or 0.5Hz(2.0), high-pass-filtered at 10 kHz, and then digitized at 30 kHz
(all steps performed by the probe’s on-board circuitry). The digitized
signals were multiplexed by an implant-mounted ‘headstage’ circuit
board and were transmitted along alightweight 5-m tether cable, made
using either micro-coaxial (phase 3A) or twisted pair (2.0) wiring.
Three-dimensional motion capture (OptiTrack Flex 13 cameras and
Motive recording software) was used to track the rat’s head position
and orientation, by attaching a set of five retroreflective markers to
implant during recordings. The 3D marker positions were projected
onto the horizontal plane toyield the rat’s 2D position and head direc-
tion. An Arduino microcontroller was used to generate digital pulses,
which were sent to the Neuropixels acquisition system (viadirect TTL
input) and the OptiTrack system (viainfra-red LEDs), to permit precise
temporal alignment of the recorded data streams.

Behavioural procedures

Datawere obtained from four recording sessions performed within the
first 72 h after recovery fromsurgery. Therecordings were performed
while therats engaged in three behavioural paradigms, eachina differ-
entarenawithinthe same room. Abundant distal visual and sonic cues
were available to the rat. On each day of recording, the rat remained
continuously connected to the recording apparatus across the various
behavioural sessions that were performed. Occasionally it was neces-
sary to remove twists that had accumulated in the Neuropixels tether
cable. In such cases, the ongoing behavioural task was paused while
the experimenter gently turned the rat to remove the twists. During
pre-surgical training, the rats were food-restricted, maintaining their
weight ata minimum of 90% of their free-feeding body weight. Food was
generally removed 12-18 h before each training session. Food restric-
tion was not used at the time of recording.

Open-field foraging task

Rats foraged for randomly scattered food crumbs (corn puffs)ina
square open-field (OF) arenaof size 1.5 x 1.5 m, with black flooring and
enclosed by walls of height 50 cm. Alarge white cue card was affixed to
one of the arena walls (height same as the wall; width 41 cm; horizontal
placement at the middle of the wall). At the time of the surgery, each
rat was highly familiar with the environment and task (10-20 training
sessions lasting at least 20 min each).

Wagon-wheel track foraging task

The wagon-wheel (WW) track task was designed to function as a1D
version of the 2D OF foraging task. The track’s geometry comprised an
elevated circular track with two perpendicular cross-linking arms span-
ningthecircle’sdiameter. The trackwas10 cmwide and wasbounded on
both sides by al-cm-highlip. Eachsection of the track was fitted witha
reward point, placed halfway between the two nearest junctions, in the
centre of the section. Each reward point consisted of an elevated well
that could be remotely filled with chocolate milk via attached tubing.
Toencourage foraging behaviour, apseudorandom subset of the wells
(between one and four of the eight wells) was filled at agiven time, and
the rat was allowed to explore the full maze freely and continuously.
Wells were refilled as necessary when the rat consumed rewards. Each
rat was trained to high performance on the foraging task before the
surgery (collecting at least 30 rewards within a 30-minute session).
Training to this level of performance took 5-10 half-hour sessions.

Natural sleep

Forsleep sessions, the rat was placedinablack acrylic ‘sleep box’ with
a40 x 40-cm square base and 80-cm-high walls. The black coating of
walls was transparent toinfrared, which allowed the 3D motion capture
totrack theratthroughthe walls. The bottom of the sleep box was lined
with towels, and the rat had free access to water. During recording ses-
sions in the sleep box, the main room light was switched on and pink
noise was played through the computer speakers to attenuate disturb-
ingbackground sounds. Sleep sessions typically lasted 2-3 h, but were
aborted prematurely ifthe rat seemed highly alert and unlikely to sleep.

Spike sorting and single-unit selection
Spike sorting was performed with KiloSort 2.5%. In brief, the algorithm
consists of three principal stages: (1) a raw-data alignment procedure
that detects and corrects for shifts in the vertical position of the Neu-
ropixels probe shank relative to the surrounding tissue; (2) aniterative
template-matching procedure that uses low-rank, variable-amplitude
waveform templates to extract and classify single-unit spikes; and (3) a
curation procedure which detects appropriate template merging and
splitting operations based on spike trainauto-and cross-correlograms.
Some customizations were made to the standard KiloSort 2.5 method to
improveits performance on recordings from the MEC-PaS region, where
there is a particularly high spatiotemporal overlap of spike waveforms
owing to the high density of cells. Therefore, the maximum number
of spikes extracted per batch in step 1above was increased, as was the
number of template-matchingiterationsinstep 2. Toimprove the sepa-
ration between cells with very similar-looking waveforms, the upper
limit on template similarity was raised from 0.9 t0 0.975in step 2and to
1.0 onstep 3, while supervising manually all merge and split operations
fromstep 3, using a custom-made GUI running in MATLAB. The manual
supervision ensured that Kilosort 2.5 did not automatically merge pairs
ofunitswithadipinthe cross-correlogram, whichinour datawas often
dueto out-of-phase spatial tuning. The merge and split operations were
repeated several times to ensure the best separation between single units.
Single units were discarded if more than 1% of their interspike interval
distribution consisted of intervals less than 2 ms. In additions, units
were excluded if they had a mean spike rate of less than 0.05 Hz or
greater than 10 Hz (calculated across the full recording duration).
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Single-unit spike waveforms

During spike sorting, Kilosort assigned each unit with a 2 ms spike
waveform template on each recording channel. To calculate a repre-
sentative single waveform for each unit, the peak-to-peak amplitude
of the template was calculated on every channel, and the templates
fromthethree highest-amplitude channels were averaged to generate
the representative spike waveform. To calculate spike width, a unit’s
representative waveform was finely interpolated (from 61to 1,000
points) using a cubic spline function. Spike width was defined as the
time difference between the waveform’s negative peak (to which the
waveform was aligned by Kilosort), and the following positive peak.

Spatial position and direction tuning

During awake foraging sessionsin the OF arena or wagon-wheel track,
only time epochs inwhich the rat was moving ataspeed above 2.5cms™
were used for spatial or toroidal analyses. To generate 2D rate maps
for the OF arena, position estimates were binned into a square grid of
3 x3-cmbins. The spike rate in each position bin was calculated as the
number of spikes recorded in the bin, divided by the time the rat spent
in the bin. To interpolate the values of unvisited bins, two auxiliary
matrices were used, M, and M,, setting visited bins equal to the value of
the original rate map in M, and to 1in M,, and setting unvisited bins to
zeroinboth. Oneiteration of theimage-processing ‘closing’ operation
was then performed (binary dilation followed by erosion, filling out a
subset of the non-visited bins) on M, using a disk-shaped structuring
element, first padding the matrix border by one bin. Both matrices
were then spatially smoothed with a Gaussian kernel of smoothing
width 2.75bins. Finally, the rate map was obtained by dividing M, by M,.
Rate-map spatial autocorrelograms and grid scores were calculated as
described previously®. The selectivity of each cell’s position tuning was
quantified by computing its spatial information content*?, measured
in bits per spike (see ‘Information content’).

Head-direction tuning curves were calculated by binning the
head-direction estimates into 6° bins. The spike rate in each angular
binwas calculated asthe number of spikes recorded in the bin divided
by thetimethattheratspentinthebin. Theresultant tuning curve was
smoothed with a Gaussian kernel with o =2 bins, with the ends of the
tuning curve wrapped together. The selectivity of head-direction tun-
ing was quantified using the mean vector length (MVL) of the tuning
curve. This was calculated according to:

X1 fexplia)]

MVL = -
2jaif
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where vector frepresents the tuning curve values (firing rates), vec-
tor a represents the corresponding angles, Mis the number of tuning
curvevalues, and|-| represents the absolute value of the enclosed term.

Grid module classification

A novel method was implemented to detect populations of cells cor-
responding to grid modules by finding clusters of cells that expressed
similar spatially periodic activity in the open field (Extended Data
Fig.2). Contrary to previous clustering-based methods for grid mod-
ules?, thisapproach makes no assumptions about the specific geometry
of the grid pattern, thus making it less susceptible to the detrimental
effects of geometric distortions such as ellipticity>*.

Foreach MEC-PaS cellinagivenrecording, acoarse-resolutionrate
map of the OF session was constructed, using agrid of 10 x10-cm bins,
with no smoothing across bins. The 2D autocorrelogram of this rate
map was calculated, and the central peak was removed by excluding
allbinslocatedless than 30 cm from the autocorrelogram centre. Bins
located more than100 cm from the autocorrelogram centre were also
excluded. The autocorrelograms for all cells were subsequently con-
verted into column vectors, z-standardized, then concatenated to form

amatrix with spatial bins as rows and cells as columns. The nonlinear
dimensionality reduction algorithm UMAP*#**was thenapplied to this
matrix, yielding atwo-dimensional point cloud in which each data point
represented the autocorrelogram of one cell (Extended Data Fig. 2a-d;
UMAP hyperparameters: 'metric'="'manhattan’, ‘n_neighbors’=5,
‘min_dist’=0.05, ‘init’="spectral’). In the resultant 2D point cloud, cells
with small absolute differences between their autocorrelogramvalues
were located near to one another. The point cloud was partitioned
into clusters using the DBSCAN clustering algorithm (MATLAB func-
tion ‘dbscan’, minimum 30 points per cluster, eta = 0.6-1.0). In every
recording, the largest cluster was mainly composed of cells that either
lacked strong spatial selectivity or were spatially selective but without
clear periodicity. All remaining clusters contained cells with high grid
scores, and with similar grid spacing and orientation (Extended Data
Fig. 2a-d); cluster membership was therefore used as the basis for
grid module classification. In onerecording (rat ‘R’ day1), two clusters
were identified that had similar average grid spacing and orientation
(labelled as ‘R1a’and ‘R1b’ in Extended Data Fig. 2a-d), suggesting that
they represented the same grid module. R1b appeared to comprise
cellswith higher variability in the within-field firing rates of the spatial
rate maps, accompanied by more irregularities in the autocorrelo-
grams. These two clusters were merged together insubsequent analysis
(in which the resultant cluster is called ‘R1’).

A subset of the cells that were assigned to grid module clusters by
the above procedure were tuned to both location and head direction
(conjunctive grid x direction cells). These cells, which were defined as
having a head-direction tuning curve with mean vector length above
0.3, were discarded from further analysis.

Classification of sleep states

SWS and REM periods were identified on the basis of a combination
of behavioural and neural activity, following previously described
approaches®**¢ First, sleep periods were defined as periods of sus-
tained immobility (longer than 120 s with alocomotion speed of less
than1cms™and head angular speed of less than 6° s™). Qualifying
periods were then subclassified into SWS and REM on the basis of the
amplitude of delta- and theta-band rhythmic activity in the recorded
MEC-PaS cells. Spike times for each cell were binned at a resolution
of 10 ms and the resultant spike counts were binarized, such that ‘0’
indicated the absence of spikes and ‘1’ indicated one or more spikes.
Thebinarized spike counts were then summed across all cells (Extended
DataFig.9A). Therhythmicity of this aggregated firing rate with respect
to delta (1-4 Hz) and theta (5-10 Hz) frequency bands was quantified
by applying a zero-phase, fourth-order Butterworth band-pass filter,
then calculating the amplitude from the absolute value of the Hilbert
transform of the filtered signal, which was smoothed using a Gaussian
kernel with 0=>5 s and then standardized (‘z-scored’). The ratio of the
amplitudes of thetaand deltaactivity was hence calculated (theta/delta
ratio, ‘TDR’). Periods in which TDRremained above 5.0 for atleast 20 s
were classified as REM; periods in which TDR remained below 2.0 for
atleast 20 s were classified as SWS (Extended Data Fig. 9B).

Spectral analysis was performed on 10-ms-binned multi-unit activ-
ity using the multi-tapered Fourier transform, implemented by the
Chronux toolbox (http://chronux.org/, function ‘mtspectrumsegc’).
Non-overlapping 5-second windows were used, withafrequency band-
width of 0.5 Hz and the maximum number of tapers.

Visualization of toroidal manifold

For each module of grid cells, spike times of co-recorded cells in the
OF were binned for each cell at a resolution of 10 ms, and the binned
spike counts were convolved with a Gaussian filter witho =50 ms. Time
binsinwhich the rat’s speed was below 2.5 cm s were then discarded.
To account for variability of average firing rates across cells, the
smoothed firing rate of each cell was z-scored. For computational
reasons, the time bins were downsampled, taking every 25th time
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bin (equating to 250-ms intervals between selected samples). Col-
lectively, the downsampled firing rates of the full population of cells
formed a matrix with time bins in rows and cells in columns. PCA was
applied to this matrix (treating time bins as observations and cells
as variables), and the first six principal components were retained
(Extended Data Figs. 3Aa-c, 4a-d). UMAP** was then run on these
six principal components (with time bins as observations and princi-
pal components as variables). The hyperparameters for UMAP were:
‘n_dims’=3, ‘metric’="cosine’,‘n_neighbours’=5000, ‘min_dist'=0.8 and
‘init’="spectral’.

For visualizing the toroidal manifold during WW, smoothed firing
rates were first calculated by the same procedure described above
for OF. Subsequently, to allow comparison of the toroidal manifold
between OF and WW, the same PCA and UMAP transformations calcu-
lated for the OF datawere re-applied to the WW data, by supplying the
fitted OF UMAP transformation as the argument ‘template_file’ to the
‘run_umap’ function in the MATLAB implementation®.

Preprocessing of population activity

Eachtopological analysis was based on the activity of a single module
of grid cells, during a single experimental condition in one recording
session. Topological analysis of multi-module and conjunctive grid x
direction cell activity was not considered as we expect such data to
exhibit higher-dimensional topological structure requiring a higher
number of cells?. The experimental conditions were: open-field forag-
ing (OF), wagon-wheel track foraging (WW), slow-wave sleep (SWS),
and rapid eye-movement sleep (REM). Sleep epochs of the same type
were collected from across the recording and concatenated for analysis
purposes. Similarly, in one case (rat'S'), two WW task sessions were
concatenated to increase the sample size.

Intotal there were 27 combinations of module (Q1,Q2,R1,R2,R3,S1)
and experimental condition (OF day 1, OF day 2, WW, REM, SWS).

Preprocessing of spike trains began by computing delta functions
centred on the spike times (valued 1 at time of firing; O otherwise), and
convolving these temporally with a Gaussian kernel with o =50 ms
(OF, WW and REM) or 25 ms (SWS). Samples of the smoothed firing
rates of all cells (‘population activity vectors’) were then computed at
50-ms intervals. The awake states were further refined by excluding
vectors which originated from time periods when the rat’s speed was
below2.5cms™.

Computing the persistent cohomology of a point cloud is compu-
tationally expensive and may be sensitive to outliers (for example,
spurious points breaking the topology of the majority of points in the
point cloud). For this reason, it is common to preprocess the data by
downsampling and dimension-reducing the point cloud. The same
preprocessing procedure was used for all datasetsin the present study.

First, the data points were downsampled by keeping the 15,000 most
active population activity vectors (as measured by the mean popula-
tion firing rate). During SWS, this selection criterion had the conse-
quence of automatically discarding population activity vectors during
down-states, when neural activity is near-silent. As noise isinherently
more prevalent and cosine distances less reliable in high-dimensional
spaces (“the curse of dimensionality”)*®, dimensionality-reduction
and a normalization of distances were subsequently performed. The
reduced point cloud was z-scored and projected to its six first prin-
cipal components, thus reducing noise while keeping much of the
variance (see Extended Data Fig. 4a). This was supported by the lack
of grid structure and the clear drop in explained deviance after six
components (see Extended Data Fig. 4b, c). The explained deviance
was computed by fitting a GLM model to each component individu-
ally, using the spatial coordinates as covariate, suggesting that the
higher components are less spatially modulated and possibly better
described by other (unknown) covariates. Consistent with this, the
toroidal structure was most clearly detected in the barcodes when
comparing theratio of the lifetimes of the two most persistent H' bars

versus the third longest-lived H' bar for the barcodes obtained when
using different numbers of componentsin the analysis (see Extended
DataFig.4d). These analyses both indicated that dimensionality reduc-
tion was required to firmly demonstrate the toroidal topology in the
grid cells. The empirical findings are supported theoretically; see
‘Theoretical explanation of the six-dimensionality proposed by PCA’
in Supplementary Methods.

To further simplify the low-dimensional point cloud, a different
downsampling technique was introduced, based on a point-cloud den-
sity strategy motivated by a topological denoising technique intro-
duced previously* and a fuzzy topological representation used in
UMAP**°, Parts of the open-source implementation of the latter were
copiedinthiscomputation. This approach consisted of assigning, for
each point,aneighbourhood strength toits knearest neighbours, and
subsequently sampling points that represent the most tight-knit neigh-
bourhoodsof the point cloud in aniterative manner. First, we defined

m;’ij =exp —%’f , where d,-,,-j is the cosine distance between point x;
and its/-thnearest neighbour and o;is chosen to make Zf-zl mj; =log,k,
using k=1,500. The neighbourhood strength was then obtained by
symmetrizing: m; ;. = m,{ij +m ;- m,f,,-j -m; ;.. Finally, the point cloud
was reduced to 1,200 points by iteratively drawing the i-th point as:
max };c; m; ., where Idenotes the indices of the points not already
Xi . . . .
sampled. In other words, for each iteration, the sampled point is the
one with the strongest average membership of the neighbourhoods
of the remaining points.

To compute the persistent cohomology of the downsampled point
cloud, the neighbourhood strengths were first computed for the
reduced point cloud (using k = 800) and its negative logarithm was
taken, obtaining a distance matrix. This matrix was then given asinput
to the Ripserimplementation®* of persistent cohomology, returning
abarcode. In short, the barcode gave an estimate of the topology of
the fuzzy topological representation of the six principal components
of the grid-cell population activity. Thus, in essence, the first step of
UMAP was applied before describing the resulting representation with
persistent cohomology, instead of using it to project each point of
the point cloud to a representation of user-specified dimensionality
for visualization (Extended Data Fig. 3Ad, e). This gives a more direct
and stable quantification of the global data structure, without having
to choose an initialization® or optimize a lower-dimensional repre-
sentation.

Persistent cohomology

Persistent cohomology, a tool in topological data analysis, was used
to characterize the manifold assumed to underlie the data. This has
clear ties with persistent homology and the main result (the barcode) is
identical, thus the two terms are often used interchangeably. Persistent
cohomology was chosen because the computation is (to our knowl-
edge) faster and is required to obtain cocycle representatives, which
are necessary to perform decoding (see ‘Cohomological decoding’).
Persistent (co-)homology has previously been successfulinanalysing
neural data, describing the ring topology of head direction cell activ-
ity?? %, the spherical representation of population activity in primary
visual cortex, and the activity of place cells* %,

The general outline of the algorithm is as follows. Each point in the
cloudisreplaced by aball of infinitesimal radius, and the balls are gradu-
ally expanded in unison. Taking the union of balls at a given radius
resultsin aspace with holes of different dimensions. The range of radii
forwhich eachholeis detectedis tracked; thisis referred to as the ‘life-
time’ of the hole and is represented by the length of a bar. The totality
of bars s referred to as the barcode.

The software package Ripser**> was used for all computations of
persistent cohomology. Ripser computes the persistent cohomology
of “Vietoris-Rips complexes’ (which approximate the union of balls for
different radii), constructed based on the input distance matrix and a
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choice of coefficients (in our case, Z,,-coefficients), and outputs the
barcode and cocycle representatives for all bars. The prime 47 was chosen
as homology and cohomology coincide in this case and as it is unlikely
that this divides the torsion subgroup of the homology of the space.
Torsion may indicate, for example, orientability of a manifold and in
choosing 47 as our prime, we disregard all but 47-torsion. Testing with
other primes (for example, 43) gave similar results (data not shown)
and the Betti numbers stayed the same regardless of choice of prime.

To verify that the lifetimes of prominent bars in the barcodes were
beyond chance, shuffled distributions were generated for the persis-
tence lifetimes in each dimension. In each shuffling, the spike train of
each cell was shifted independently in time by rolling the firing rate
arrays arandom length between 0 and the length of the session. The
same preprocessing and persistence analysis were then performed on
the shifted spike trains as for the unshuffled data. This was performed
1,000 times, and each time abarcode was obtained. The barcodes were
concatenated for all shuffles and the maximum lifetime was found for
each dimension. This lifetime served as a significance criterion for
the bar lifetimes. It is noted, however, that this is a heuristic and that
statistics of barcodes are still not well established.

Cohomological decoding
Asthereare other spaces with similar barcodes asforatorus, theresults
identified by the barcode were further investigated, using the ‘coho-
mological decoding’ procedure introduced previously*® to calculate a
toroidal parametrization of the point clouds of population activity. This
assignsto each point corresponding positions oneach of the two circular
features identified by the 1D bars with the longest lifetime, resulting in
coordinates that further characterize the underlying shape of the data.
Cohomological decoding is motivated by the observation that the
1D cohomology (with integer coefficients) of a topological space Xis
equivalent to the set of homotopy-equivalent classes of continuous
maps from X to the circle (§)®; that is:

HYX;Z) =X, S".

This subsequently means that for each 1D bar existing at a given
radius, there exists a corresponding continuous map from the
Vietoris-Rips complex of that radius to the circle. Thus, we may first use
persistent cohomology to detect which elements represent meaningful
(long-lived) features of the data and choose a radius for which these
features exist. As the vertices of the Vietoris-Rips complex are points
in the point cloud, the circular values of the corresponding maps at
the vertices describe circular coordinates of the data.

Inthe present case, persistent cohomology was first applied to the
grid-cell population activity and X was identified as the Vietoris-Rips
complex for which the two longest-lived one-dimensional bars in the
barcode (representing each of the two circles of the torus) existed. To
define the desired toroidal coordinates on adomain that was as large
as possible, we chose the complex given at the scale of the birth plus
0.99 times the lifetime of the second longest-lived one-dimensional
barin the barcode?**®', Next, the cocycle representatives (given by the
persistent cohomology implementation of Ripser®*?) of each of the
chosen1D bars defined Z,,-values for each of the edges in the complex.
These edge values were then lifted to integer coefficients and subse-
quently smoothed by minimizing the sum over all edges (using the
scipy implementation ‘Ismr’). The values on the vertices (points) of each
edge followed fromthe edge values and gave the circular parametriza-
tions of the point cloud. The product of the two parametrizations thus
provided a mapping from the neural activity to the two-dimensional
torus—thatis, giving atoroidal coordinatization (decoding) of the data.

As persistent cohomology was computed for a reduced dataset of
1,200 points and therefore circular parametrizations were obtained
only for this point cloud, each parametrization was interpolated to
the population activity from the rest of the session(s). First, the 1,200

toroidal coordinates were weighted by the normalized (‘z-scored’) firing
rates of the cells at those time points, obtaining a distribution of the
coordinates foreachgrid cell. The decoded toroidal coordinates were
then computed by finding the mass centre of the summed distribu-
tions, weighted by the population activity vector to be decoded. These
activity vectors were calculated by first applying a Gaussian smoothing
kernel of 15-ms standard deviation to delta functions centred on spike
times, samplingat10-msintervals and thenz-scoring the activity of each
cellindependently. Time intervals that contained no spikes from any
cellwere subsequently excluded. When decoding was used to assess or
compare the tuning properties of single cells (for example, comparison
oftoroidal versus spatial description), the coordinates were computed
using the weighted sum of the distributions of the other cells; that is,
the contribution of the cell to be assessed or compared was removed.
When comparing preservation of toroidal tuning across two sessions,
coordinates were interpolated either using the toroidal parametri-
zation in each session independently (‘Separate’) or using the same
toroidal parametrization in both sessions (‘Common’).

Toroidal rate map visualization

For visualization, toroidal firing rate maps were calculated in the same
way as the physical space covariate (see ‘Spatial position and direc-
tion tuning’), first binning the toroidal surface into a square grid of
7.2° x 7.2° bins and computing the average spike rate in each position
bin. However, for toroidal maps, it was necessary to address the 60°
angle between the toroidal axes before smoothing. After binning the
toroidal coordinates, the rate map was ‘straightened’ by shifting the
bins along the x axis (‘horizontally’) the length of (y mod 2)/2 bins,
whereyisthe vertical enumeration of the given bin. Copies of the rate
map were then tiled in a three-by-three square (similar to Extended
DataFig. 5d), before applying the closing and smoothing operations as
for the spatial firing rate map. The single toroidal rate map was finally
recovered by cutting out the centre tile, rotating it 90° and defining
15° shear angles along both the x and the y axis to correct for the 60°
offset between them.

Comparison of spatial periodicity

Differences in grid periodicity between OF and WW environments
were quantified foragiven cell by comparing the grid scoresin the two
behavioural conditions. Two alternative methods were used to generate
the spatial autocorrelograms for this comparison: (1) comparing the
autocorrelograms for OF and WW directly; and (2) comparing autocor-
relograms for OF and WW after first equalizing the spatial coverage
between the two conditions.

For method (1), rate maps were calculated as specified in the above
section ‘Spatial position and direction tuning’, using the same grid
of 3 x 3-cm bins for both environments. This set of bins spanned the
entirety of the OF arena and covered most of the WW track apart from
some smallregions at the outer extrema, which were discarded for the
purpose of this analysis. For each of the two rate maps, the autocor-
relogram was computed and the grid score was calculated.

Method (2) was similar to method (1), except that the cell’s OF rate
map was converted into a ‘masked OF rate map, by removing all bins
that were unvisited by the rat in the WW session. This effectively equal-
ized the position coverage between the two conditions, and thus
allowed for amore valid comparison.

Toroidal versus spatial description

The explanatory significance of the toroidal description was evaluated
by comparing statistical measures of how well the toroidal coordinates
explained neural activity on the torus and in physical space. For a fair
comparison, it wasimportant to avoid overfitting, which might occur if
atoroidal parametrization of a point cloudis used to describe that same
set of data points. Two precautions were taken to avoid such overfit-
ting: first, the data were decoded using the toroidal parametrization



from a different condition (an OF session for a WW recordingand a
WW session for an OF recording), and second, the cell for which the
statistical measurement was made was omitted from the decoding.

The comparison of toroidal and environmental representations also
accounted for tracking error in the physical position estimate, which
mainly resulted from the approximately 4 cm vertical offset of the
tracking device above the rat’s head. This causes a discrepancy when
the angle a between the animal’s zenith and the axis of gravitation is
different from 0°, measured as 4 tan(a) cm. The mean discrepancy in
therecorded position datawas measured to1.5 cm. Toaccount for this
error of the position estimate, proportional Gaussian noise was added
to the toroidal coordinates, using a standard deviation of 1.5 cm/Q,
where Q denotes the grid spacing of the particular grid-cell module,
estimated from the mean period of the fitted cosine waves of the toroi-
dal coordinates in the open field (see ‘Toroidal alignment’).

Information content

Theinformation content (/) was calculated as previously described*, to
quantify and compare the amount of information carried by single-cell
activity about the location on the torus and physical space per spike.
Both covariates were binned in a M =15 x 15 grid of square bins. For
each bin j, the average firing rate f; (given in spikes per second), and
the occupancy ratio, p;, were computed. The information content for
each grid cell was then given as:

Ly f;
=F 2 ot ey

where f is the mean firing rate of the cell across the entire session.

Note that although the rate maps for physical space have multiple
firing fields, whereas the toroidal rate maps have single firing fields,
we expect the spatial information to be comparable, as the meas-
ure primarily depends on the ratio of bins with high firing activity.
This number should be comparable as the firing field size (in bins) will
be inversely related to the number of fields in the rate map, assum-
ing that the discretization of the map captures the relevant firing rate
variations. For example, given a similar binning of space, a larger OF
environment willinclude more fields, but the number of bins per field
will decrease correspondingly. The binning used should be sufficient
to resolve the smallest fields, as the same discretization was used in
classifying the grid cells in the recorded population.

Deviance explained

Deviance explained was computed to measure how well a Poisson GLM
model fitted to the spike count was at representing the data, using
either the toroidal coordinates or the tracked position as regressors.
Asimilar set-up was used to that of a previous study®?, with a smooth-
ness prior for the GLM to avoid overfitting.

Both the toroidal and spatial coordinates were binned into a15 x 15
grid of bins, and GLM design matrices were built with entries X;(¢) =1
if the covariate at time t fell in the i-th bin and X;(¢) = O otherwise.

The Poisson probability of recording k spikes in time bin ¢ is:

P(klu(t), B) = exp(-u(t)

NIGY
K

where u(t) = exp(Z,-/?l.Xi(t)) is the expected firing rate in time bin ¢.

The parameters  of the Poisson GLM were optimized for each covari-

ate by minimizing the cost function:
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where N is the set of neighbour pairs. The first term is the negative
log-likelihood of the spike count in the giventime bin, whereas the second

termputsapenalty onlarge differencesinneighbouring parameters, enforc-
ing smoothnessin the covariate response of the predicted spike count.

The parameters, B, were initialized to zero and then modified to
minimize the loss function by first running two iterations of gradient
descent, before optimizing using the ‘I-bfgs-b’-algorithm (as imple-
mented in the ‘scipy.optimize’-module) with ‘gtol’=1e-5 as the cut-off
threshold, and finally running two moreiterations of gradient descent.
Athree-fold cross validation procedure was used, repeatedly fitting the
model to two-thirds of the data and testing on the held-out last third.

The smoothness hyperparameter y was optimized a priori on each
grid-cell module based on the summed likelihood, testing y € (1, V10,
10,v1,000), and found to be either 1or v10 in all cases.

Similarly, after fitting a null model (using only the intercept term) and
the saturated model (perfectly fitting each spike count), the deviance
explained could be computed as:

I~ 11,
=Ty’

wherell,, Il and Il denote the cross-validated log likelihood of the fit-
ted model, the nullmodel and the saturated model, respectively. This
provides anormalized comparison describing the difference between
the fitted model and the idealized model.

Toroidal alignment

To infer a geometric interpretation of the tori, as characterized via
the cohomological decoding, and compare the toroidal parametriza-
tions across modules and conditions, two cosine waves of the form
cos(wt + k) were fitted to the OF mappings of the decoded circular
coordinates (Extended Data Fig. 5a), where tis the centre 100%-bins of
a540° x 540°-valued 150%bin grid rotated 6 degrees. The parameters
(w, k, 6) were optimized by minimizing the square difference between
the cosine waves and the cosine of the mean of the circular coordinates
in 100%bins of the physical environment (smoothed using a Gaussian
kernel with 1-bin standard deviation). Estimates were first obtained
by finding the minimum when testing all combinations in the follow-
ing intervals, each discretized in 10 steps: w € [1,6], ¢ € [0, 360) and
6€[0,180). The parameters of the cosine waves were further optimized
using the ‘slsqp’-minimization algorithm (as implemented in the ‘scipy.
optimize’-module using default hyperparameters). The period of each
cosine wave was computed as 1.5 m/w, giving a spatial scale estimate of
the grid-cellmodules.

Ascircular coordinates have arbitrary origin and orientation (that
is, clockwise or counterclockwise evolution) we needed to realign
the directions of the circular coordinates to compare these across
modules and sessions (see Extended Data Fig. 4b). The clockwise
orientation of each circular coordinate was first determined by not-
ing whether (wt + k) or 360° — (wt + k) best fit the spatial mapping of
the circular means of the toroidal coordinates, and subsequently
reoriented to obtain the same orientation for both coordinates.
The coordinate for which cos(0) was largest (intuitively, the ‘x axis’)
wasthen defined as the first coordinate (denoted ¢,, with parameters
(w,, ky, 6,)) and the other as the second coordinate (¢,). Although
(@1, @) fully describe the toroidal location, the hexagonal torus
allows for three axes, and the two axes obtained are thus oriented at
either 60° or 120° relative to each other (see Extended Data Fig. 5b).
The difference in directions was given by 8, - 6, and if this difference
was greater than 90°, ¢, was replaced with ¢, + 60° - ¢,. Finally, the
origin of the coordinates was aligned to a fixed reference, by subtract-
ing the mean angular difference between the decoded coordinates
and the corresponding coordinates obtained when using the toroidal
parametrization of the reference OF session.

For visualization (Extended Data Fig. 5), it was furthermore neces-
sary, in some cases, to rotate both vectors of the rhombi 30 degrees
depending on whether one of the axes was directed outside of the box.
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Preservation of toroidal tuning
Centre-to-centre distance and Pearson correlation were computed
between toroidal tuning maps of different sessions to measure the
degree of preservation between the toroidal descriptions.

First, the preferred toroidal firing location for each cell was com-
puted as the centre of mass of the toroidal firing distribution:

Y, sin6;y, Y; cos6;y,
2 ’ 2y, ’

T.=arctan 2(

where y; denotes the mean spike count of the given cell in the i-th bin
whosebinned toroidal coordinates are given by .. The distance between
mass centres found in two sessions ('S, and “S,”) was then defined as:

d=|larctan 2(sin(T 32— T51), cos(T32— T1),||

where||- ||, referstothe L,-norm.

Pearson correlation between two tuning maps was computed by
flattening the smoothed 2D rate maps to 1D arrays and calculating
the correlation coefficient, r, using the ‘pearsonr’-function given in
the ‘scipy.stats’-library.

Todetermine how much the preservation of the toroidal representa-
tions across two sessions (measured with Pearson correlation and peak
distance) differed fromarandom distribution, the indices of the cells
in one of the sessions were randomly re-ordered before computing
correlation and distance for the pair of conditions. This process was
repeated 1,000 times, and the Pvalue was calculated from the rank of
the original rvalue or distance with respect to the shuffled distribution.

Classification of grid cells

Temporal autocorrelograms were computed, for each cell, by calcu-
lating a histogram of the temporal lags between every spike and all
surrounding spikes within a200 ms window, using 1 ms bins. The his-
togram was then divided by the value of the zero-lag bin, which was
subsequently set to zero. The autocorrelogram was smoothed using a
gaussian kernel with smoothing window 4 ms. Considering the autocor-
relograms of allmodules during OF foraging (day 2 for R1-3) as a point
cloud, the cosine distances between all points were calculated, and
hence each point’s 80 nearest neighbours were found. This defined a
graphinwhicheach point described a vertex and the neighbour pairs
gaverise to edges. A density estimate was then calculated as the expo-
nential of the negative distances summed over each neighbour for each
point. The graph and the density estimate were given as the input to
the Gudhiimplementation® of TOMATo®*. TOMATo uses a hill-climbing
procedureto find modes of the density function and uses persistence
to determine stable clusters. In the present case, the algorithm finds
three long-lived clusters.

Minimum number of cells for torus detection

To address the question of how many cells are minimally needed to
expect to seetoroidal structure, random samples of n =10, 20, ..., 140
cells were taken from R2 (n =149 cells) during OF foraging, and the
same topological analysis was repeated as for the whole population.
The cells were resampled 1,000 times for each number of cells in the
subsample. To determine whether toroidal structure was detected,
a heuristic was introduced based on the circular parameterization
given by the two most persistent 1D bars in the barcode mapped onto
physical space. An estimate of the resulting planar representation of
the torus was obtained by fitting planar cosine waves to each mapping
(see ‘Toroidal alignment’). For the analysis to be determined ‘successful’
in detecting toroidal structure, we required: (i) the mean value of the
least-squares fitting (across bins of the mapping) to be less than 0.25;
(ii) the angle of the rhombus to be close to 60° (between 50° and 70°);
and (iii) the side lengths to be within 25% of each other.

Toroidal peak detection

The number of peaks per toroidal rate map was detected to assert the
number of grid cells whose toroidal rate map portrayed single fields.
First,1,000 points were sampled from the toroidal distribution given
by the mean activity of each cellin 150 x 150 bins of the stacked toroidal
surface (that s, as described in ‘Toroidal rate map visualization’, each
50 x 50-binned toroidal rate mapis first ‘straightened’ and subsequently
stackedin 3 x 3 to address the toroidal boundaries) and then spatially
smoothed using a Gaussian kernel with smoothingwidths 0,1, 2, ...,10
bins with mode set to ‘constant’in the ‘scipy.gaussian_filter’ function.
Next, the points were clustered by computing a density estimate, using
the Euclidean distance, and defining neighbours as points closer than
5bins. Cluster labels were iteratively assigned to each point and all its
neighbours in a downhill manner, instantiating a new cluster identity
if the point was not already labelled. Finally, the centroids for each
cluster were computed and counted as a peak depending on whether
its position fell within the centre 50 x 50 bins of the stacked rate maps.

Simulated CAN models

To confirmthe expected outcomes of topological analyses of grid cell
CAN models, grid cells were simulated using two different, noiseless
CAN models (Extended DataFig. 7).

First, a 56 x 44 grid cell network was simulated based on the CAN
model proposed previously®, but using solely lateral inhibition (for
details seeref.") in the connectivity matrix, W. The animal movement
was given as the first 1,000 s of the recorded trajectory of rat ‘R’ dur-
ing OF session, originally sampled at 10 ms, and interpolated to 2-ms
time steps. The speed, v(¢), and head direction (¢) of the animal was
calculated as the (unsmoothed) displacement in position for every
time step. The activity, s, was updated as:

Si=8;+ %( s+ (I+s;- W av(®)cos(8(0) - 6)),),

where (...), is the Heaviside function and @ is the population vector of
preferred head directions. The following parameters were used: /=1,
«=0.15,[=2,W,=-0.01,R=20and 1 =10, and let the activity pattern
stabilize by firstinitializing to random and performing 2,000 updates,
disregarding animal movement. For computational reasons, the activ-
ity was set to 0 if s; < 0.0001. The simulation was subsequently down-
sampled keeping only every 5th time frame.

Next, a 20 x 20 grid-cell network was simulated, for a synthetically
generated OF trajectory (‘random walk’), based on the twisted torus
model formulated in a previous study'®. The parameter values and the
code for computing both the grid cell network (choosing a single grid
scale by defining the parameter ‘grid_gain’ = 0.04) and the random
navigation (using 5,000 time steps) were given by the implementation
by Santos Pata®.

Idealized torus models

To compare the results of both the original and simulated grid cell
networks with point clouds where the topology is known, a priori,
to be toroidal, points were sampled from a square and a hexagonal
torus. First,a50 x 50 (angle) mesh grid (6,, 8,) was created inthe square
[0,2m)x[0,21) and slight Gaussian noise (e = 0.1.-N(0,1)) was added to
eachangle. The square torus was then constructed via the 4D Clifford
torus parametrization: (cos(6,), sin(6,), cos(8,), sin(6,)). The hexago-
nal torus was constructed using the 6D embedding: (cos(8,), sin(6,),
cos(a;0,+0,),sin(a;,0,+6,), cos(a,0,+6,),sin(a,0,+6,)), where a;=1/v3
anda,=-1/v3.

Histology and recording locations
Rats were given an overdose of sodium pentobarbital and were
perfused intracardially with saline followed by 4% formaldehyde.



The extracted brains were stored in formaldehyde and a cryostat was
used to cut 30-pum sagittal sections, which were then Nissl-stained
with cresyl violet. The probe shank traces were identified in photomi-
crographs, and amap of the probe shank was aligned to the histology
by using two reference points that had known locations in both refer-
ence frames: (1) the tip of the probe shank; and (2) the intersection of
the shank with the brain surface. In all cases, the shank traces were
near-parallel to the cutting plane, therefore it was deemed sufficient to
performaflat 2D alignmentinasingle section where most of the shank
trace was visible. The aligned shank map was then used to calculate the
anatomical locations of individual electrodes (Extended Data Fig. 1).

Data analysis and statistics
Data analyses were performed with custom-written scripts in Python
and MATLAB. Open-source Python packages used were: umap (version
0.3.10), ripser (0.4.1), numba (0.48.0), scipy (1.4.1), numpy (1.18.1),
scikit-learn (0.22.1), matplotlib (3.1.3), h5py (2.10.0) and gudhi
(3.4.1.postl). Samples included all available cells that matched the
classification criteriafor the relevant cell type. Power analysis was not
used to determine sample sizes. The study did notinvolve any experi-
mental subject groups; therefore, random allocation and experimenter
blinding did not apply and were not performed. All statistical tests
were one-sided.

The most intensive computations were performed on resources
provided by the NTNU IDUN/EPIC computing cluster®.

Additional discussion

The demonstration that populations of grid cells operate onatoroidal
manifold, which is preserved across environments and behavioural
states, confirms acentral prediction of CAN models. The present obser-
vations provide the first—to our knowledge—population-level visualiza-
tion of atwo-dimensional CAN manifold, though there isaccumulating
evidence for one-dimensional CANs inanumber of neural systems. The
most powerful support for the latter has been obtained in fruit flies,
in which CAN-like dynamics can be visualized in a ring of serially con-
nected orientation-tuned cells of the central complex®” . In mammals,
analysis of datafrom dozens of simultaneously recorded head direction
cellshasshown that populationactivity in these cells faithfully traverses
aconceptual ring”?*, in accordance with ring-attractor models” .
Dynamics along low-dimensional manifolds with line, ring, or sheet
topologies is also thought to underlie a wide range of other mamma-
lianbrain functions that operate on continuous scales, spanning from
visual orientation tuning™ to neural operations underlying place-cell
formation’7? as well as motor control’, decision making and action
selection™ 7, and certain forms of memory>’7-%°_ The present analyses
provide a visualization of 2D CAN dynamics in pure grid cells within a
module and, together with the previous work, point to a widespread
implementation of CAN dynamics in the brain. The existence of CAN
structure to constrain activity to low-dimensional manifolds does not
preclude additional mechanisms for pattern formation, however. Grid
cell patterns may emerge also by feedforward mechanisms'>3881-8¢,
Such mechanisms may operate in parallel with recurrent networks®”
and may even be the primary mechanism for grid-like firing at early
stages of development, before the full maturation of recurrent con-
nectivity%°,

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Dataavailability

The datasets generated during the current study are available at https://
figshare.com/articles/dataset/Toroidal_topology_of population_activ-
ity_in_grid_cells/16764508. Source data are provided with this paper.

Code availability

Codeforreproducing the analysesinthis articleis available at https://
figshare.com/articles/dataset/Toroidal_topology of population_activ-
ity_in_grid_cells/16764508.
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Extended DataFig.1|Nissl-stained sagittal brainsections showing
recordinglocations forrats Q, RandS. Red arrows indicate the dorsoventral
range of the probe’s active recording sites (corresponding to the yellow stripe
intheinset).Stippledlinesindicate borders between brainregions (MEC,
medial entorhinal cortex; PaS, parasubiculum, PrS, presubiculum; PoR,
postrhinal cortex). Layers are indicated for MEC (MECII, MECIII). Animal name,
hemisphere (L, left; R, right) and shank number (for Rat'S’) areindicated in text
above each section. Insets show, for eachsection, the number of grid cells
recorded ateach depthonthe probe shank (histogram bin sizes 100 pum for
Rats'Q'and'R’, 75 umforRat'S'; total numbers of cells are givenin Extended
DataFig.2g).Only theimplanted portion of the probe shank is shown. Counts

Rat S (L, shank 2)

Rat S (L, shank 1)

Rat S (L, shank 3)

Count

Rat S (L, shank 4)

5 10 5 10
Count Count

are colour-coded according to module identity. Module R1is subdivided into
the two UMAP clusters R1aand R1b (as shown in Extended Data Fig. 2), shown
here as two stacked histograms. The yellow stripe on the probe shank indicates
therange of activerecordingsites. The indicated locations of units are subject
to measurementerror, because the anatomical registration of probe shanks
canonly be approximately estimated, and furthermore because units may be
detected onelectrodes up to 50 pmaway®'. Note that several modules spanned
across hemispheres (see Extended Data Fig. 2g). The cell counts shown for Rat
'R'are from Recording Day 1. The same set of recording sites was used for both
recording sessions, and therefore the anatomical distributions of recorded
cellswere similar between the two sessions.
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Extended DataFig.2|Grid moduleidentification and properties.

a-d, Clustering of grid modules (a, Rat'Q’; b, Rat 'R’,day 1; ¢, Rat 'R',day 2; d, Rat
'S"). For all experiments, coarse spatial autocorrelograms were first calculated
fromall cells’ OF firing rate maps (n cells as shownin g). UMAP was then used to
reduce the M-dimensional autocorrelograms (where M = 668 spatial bins)
toatwo-dimensional point cloud, where each point represented the
autocorrelogramofasingle cell, and distances between points represented the
similarity between autocorrelograms. Left scatterplotina-d: 2D pointcloud,
with points colour-coded according to cluster ID. Clusters were identified by
applying the density-based clustering algorithm DBSCAN to the 2D point
cloud.Ineveryrecording, thelargest cluster (in grey, labelled “main”)
comprised mainly non-grid cells, and the remaining smaller clusters (coloured)
represented different modules of grid cells. The black crosses (“noise”) are
identified as outlier data points. The well-isolated clusters formed by grid cells
supportthe notion that these cells are a distinct functional class, in contrast to
the claim that grid-like characteristics are expressed by MEC cells to different
extents®?. Right pair of scatterplots in a-d: Combinations of three grid
parameters (grid score, grid spacing and grid orientation) for co-recorded cells
fromeachrecording. Each dot corresponds to one autocorrelogram (one cell).
Dotsare coloured by cluster ID asina. e, Comparison of grid-cell spatial
periodicity inthe open-field arena (OF) and on the wagon-wheel track (WW).
Top:firing rate map and corresponding autocorrelogram for an example grid
cellin OF (left) and WW (right). For the purposes of this comparison, the same
positionbins were applied to both environments, resulting in cropping of the

outermost parts of WW. Colour coding asindicated by scale bar; peak rates 16.1
Hz (OF) and15.8 Hz (WW); range of autocorrelation values: —0.56 to 0.83 and
-0.58t00.71, respectively. Note the more irregular appearance of the
autocorrelogram for WW. Bottom: scatter plots showing grid scores of all grid
cellsin OF (xaxis) and WW (y axis). Colours refer to the module assignmentin
a.Note thebias for pointstoliein the lower-right quadrant, reflecting generally
highergrid scoresin OF thanin WW.f, As for e, but controlling for differencesin
behavioural coverage of OF and WW environments. It is possible that the lower
WW gridscoresinewere aproduct of sparser behavioural coverage of the WW
environment (animals visited only positions on the track). To control for this
possibility, we created “masked OF” (MOF) rate maps by removing spatial bins
fromthe original OF rate map which were not visited by the animalin WW. In all
modules, grid scoresin the “masked” OF condition were higher thanin WW
(gridscoremean+S.E.M.acrossall cells: OF: 0.677 £ 0.017, WW:0.360 + 0.017,
N=618cells, Pvalues for the 6 modules ranged from1.26 x10 t0 0.03,
Z-valuesranged from2.12to 7.71, Wilcoxon signed-rank test). Top row shows
thesame example cell asin e after leaving the same subset of position bins in OF
asin WW. Bottom row shows comparison of grid scores for MOF and WW. Asin
e, gridscoresare lower for WW, indicating that grid periodicity isreducedin
WW evenwhen differences in spatial coverage are accounted for. g, Table
showing total number of cells and number of pure grid cells and conjunctive
grid x direction cells. h, Number of cells (asin g) broken down onrecording
sessions, with session lengths in minutes indicated for open field (OF), wagon
wheel (WW), slow-wave sleep (SWS) and REM sleep.
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Extended DataFig. 3 | Preprocessing steps for visualization and detection
of toroidal topology. A, Flow diagram showing method for extracting
low-dimensional embeddings of neural activity. The animal foraged inan OF
arenawhile spikes from 149 grid cellsshown in Fig.1awere recorded (Aa; cells
areorderedarbitrarily). A5-second example behavioural trajectoryis
highlighted, with colour indicating elapsed time. The spike trains were binned
intime (Vbins) and then smoothed and normalized, yielding a matrix of
N-dimensional population activity vectors (Ab). After temporally
downsampling and z-scoring the neural activity, PCAwas applied to the
N-dimensional neural activity, yielding a six-dimensional linear embedding
(Ac). This preserved thegrid structureintheactivity (Extended DataFig.4b, ¢),
while mitigating drawbacks associated with high-dimensional spaces (the
“curse of dimensionality”)*®. The six principal components were then passed
through asecond, nonlinear, dimensionality reduction step by UMAP, which
generated athree-dimensional nonlinearembedding (Ae(i)) allowing the
toroidal structure to be visualized. UMAP consists of two steps: first, a fuzzy
topological graphrepresentationis constructed (i.e. a “Uniform Manifold
Approximation” - UMA) using a distance metric in the high-dimensional space
(Ad); second, to obtain the lower-dimensional projection (P), the coordinates
of corresponding points in fewer dimensions are optimized to have asimilar
fuzzy topological representation. In the persistence analysis, we applied
persistent cohomology to the fuzzy topological representation of the
high-dimensional point cloud (Ae(ii)) and subsequently used cohomological

decodingto obtain atwo-dimensional projection of the original N-dimensional
point cloud (Ae(iii); right, showing a 5-second snippet; left, embedded in 3D,
pointsare coloured by each angular coordinate, whose directionisindicated
byaredarrow). B, Cohomology can help differentiate topological spaces such
astheunion of three discs (upper left), acircle (upper right), asphere (lower
left) and a torus (lower right) by counting the number of topological holes () in
different dimensions. Adischasa 0D hole (aconnected component); acircle
additionally hasalD hole;a (hollow) sphereisaconnected componentand has
a2Dhole (acavity); atorusisaconnected componentwith two 1D holes
(illustrated with red circles) and one 2D hole (a cavity in the interior of the
torus). C, Persistent cohomology tracks the lifetime of topological holesin
spaces associated with point clouds. Top: The radius of balls centred at each
datapointinthe point cloudis continuously increased (left to right). The union
oftheballs formsaspace with possible holes. The lifetime of ahole during
expansionoftheradiusis defined as the radialinterval from when the hole first
appears untilitis filledin. Note the short lifetime of the hole marked with ared
circleand thelonglifetime of the hole indicated with ayellow circle. Second
and third row: The lifetime of each hole of dimension zero (H®) and one (H') in
theexampleinthetoprowisindicated by thelength of abar (ingreen)inthe
barcode diagram. Two 1D holes are detected: the first bar, corresponding to the
red holeinthetop row, isshortandregarded as noise, and the second,
corresponding to theyellow hole, is substantially longer and captures the
prominent topology of the point cloud.
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Extended DataFig. 4 | Analysis of principal components, number of cells
and number of toroidal peaks. a, Variance explained by the first 15 principal
components (PCs) after applying PCA to the n-dimensional neural activity,
shown for each module. Note that during OF, a particularly large amount of
variance is explained by the first 6 PCs, followed by asharp drop inthe 7" PC, in
allmodules. Adropinvariance explainedis alsoseen after the 6" PCinREM and
SWS. b, Thefirstsix PCs contain a grid-like representation at the population
level. Each panel shows the mean value of one PCas a function of the animal’s
positioninthe OF. PCvalueis colour-coded asindicated by the scale bar. The 8
first PCsarearranged in descending order of explained variance (columns,
fromlefttoright), and are shown for each module (in rows). Note the presence
of grid-like structure, which s particularly strong in the first six PCs,
irrespective of the grid spacing. These six grid-like PCs correspond to the set
with the highest explained varianceina.z-scored PC values are indicated by the
scale bar (see Supplementary Methods for theoretical explanation of the
six-dimensionality). ¢, Line plots showing the goodness-of-fit of a Gaussian
GLM modelbased on the positionin the spatial environment (OF) fitted to each
principal component (componentsasina). Thisis measured (asin Fig. 2d) as
the explained deviance of the model showing that the six first components are
better explained by space than the subsequent components for each module.

100

50
Number of cells Smoothing width

d, Line plots showing the lifetime of the two longest-lived H-bars (longest-lived
-“Ist”, black; second longest-lived - “2nd”, blue) divided by the lifetime of the
third longest-lived H-bar as a function of number of principal components kept
inthe persistence analysis of R1day 1 OF (n=93 cells). This heuristic measures
how clearly the two longest-lived H-bars (expected to be long for a torus)
separates from the third (expected to be short), thus indicating how clearly the
barcode displays toroidal topology. Thisis clearly the case when using 6
principal componentsin this dataset. e, The percentage of subsamples of R2
(resampled randomly 1,000 times per number of cells; total n =149 cells) for
which toroidal structure was detected in the parameterization given by the two
most persistent 1D barsin the barcode (asin Extended DataFig. 5). Note that
approximately 60 cells were needed for the probability of detecting toroidal
structure exceed 50%.f, Effect of varying spatial smoothing on the number of
peaksintoroidal rate maps. The y axis displays the percentage of single-peaked
(black) and multi-peaked (blue) toroidal rate maps of all grid cells (n=2,727
cells) pooled across modules and behaviour conditions. The vertical dashed
line marks the smoothing width used in Extended DataFig.10, and the
horizontal dashed line marks 100%. Note that cells with single peaks quickly
describe the majority of the pooled cells.
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Extended DataFig.5|Mapping of decoded circular coordinates onto the
openfield allows geometrical interpretation of toroidal structure. a, Top
row: Toroidal coordinates given by cohomological decoding from activity of
grid module R2 during OF foraging, mapped onto the recording box. Ineach
plot, colour indicates the mean value of the cosine of each of the two circular
coordinates. The mappings of both coordinates show 2D striped patterns, with
similar periods but distinct angles. Bottom row: A cosine wave s fitted to each
coordinate to obtain the direction of the toroidal axes. The period and angle of
the cosine wave in the plane may be represented by spatial vectors, vand

w, with correspondinglengthand orientation. Note the clear transversality of
thetwocircles, expressedinthe directions of the two vectors, further
confirming the toroidal identification of the data. b, The periods and angles of
the cosinewavesinareflect the scaleand orientation of the grid module.
Taking the origin of the vectorsinatobealike, we see that the vectorsspana
parallelogram with approximately equal side lengths (0.67mand 0.72m) and an
angle of 60 degrees, suggesting arhomboidal tile representing the toroidal
structure (top left). Whenrepeated across the environment, the tile depicts the
hexagonal grid pattern of the grid-cell module, confirming that the product of
thetwo decoded circles defines a hexagonal (“twisted”) torus. As the
orientation of the circular coordinatesis arbitrary, the directions of the axes
may be any of the following: reversely oriented (blue arrows), adifferent
60-degree pair of axes (green), or have arelative angle of 120 degrees (yellow).
¢,Rhombi of each module for each OF session (ncellsasin Extended Data Fig.2g),

0 cos(deg)

\
N
W=
W=

given by the cosine wave fitted to the toroidal coordinates (asinb). The toroidal
parametrizations were obtained independently in different behavioural
conditions (colour-coded), then used to decode the module’s activity during
OF foraging, and subsequently mapped as a function of therat’s positioninthe
environment (see f). Positions of downsampled spikes from example cells of
eachmodule areshowningreyscaletoillustrate grid scale and orientation. The
consistent angle and side lengths suggest the geometry of the rhombus is
retained across brain states and environments, witha constantscale
relationship between modules. d, Mean value of asingle neuronin rhomboidal
coordinates displays asingle bump (asin Fig. 2a), which, when repeated and
arranged to tesselate a2D surface, reveals agrid-like patternintheactivity of
thegrid cell, akin to its spatial firing. e, Table of side lengths and angles of the
cosine waves that form the rhombiin ¢, shown for each grid module and each
condition (ncells asin Extended Data Fig. 2g). f, Visualization of the
cohomological decoding of toroidal coordinates as a function of physical
space (one visualization for each grid module during each condition, with the
toroidal parametrizations aligned to the same axes before creating the rate
maps; ncellsasin Extended Data Fig. 2g). All barcodes which indicated toroidal
structure exhibited periodicstripesin the OF, with phase and orientation
corresponding to the two-dimensional periodicity of the grid pattern of the
respective module. SWS* refers to the decoding when considering only
“bursty” (B) cells of R1as given by the correlation clustering method described
inFig4b.
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Extended DataFig. 6 | Barcodes and toroidal tuning statistics for grid
modulesorrecordingsessions notincludedinFigs.2-4.Dataare shown for
sixgrid-cellmodules:R1,R3,Ql, Q2,S1andR2 (ncellsasin Extended DataFig.
2g). Toroidal structureis clearly present across environments and behavioural
states. Aa-Ad, Barcodediagrams (asinFigle, f) showing the results of the
persistent cohomology analysis on open-field (OF), wagon-wheel track (WW)
orsleep (REM or SWS) data. Ba-Bc, Preservation of toroidal field centres
between conditions: OF vs WW (1), OF vs REM (2) OF vs SWS (3). Top row ineach
panel: Distribution of grid cells’ receptive field centres on the inferred torus for
OF and WW as well assleep states, similar to Fig 2e. Each dot signifies the field
centreof anindividual grid cell. Grey lines connect field centres of the same cell
across conditions. Note the proximity of red-black pairs (after separate
alignment for the two recording sessions of each panel). Middle and bottom
rows: Cumulative distributions showing stability of grid cells’ toroidal tuning
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betweenbrainstates, asin Fig. 2f, g. Distributions show peak field distance
(middle) and Pearson correlation of pairs of toroidal rate maps (bottom).
LabellingasinFig.2e-g.C, Top: Histograms of the information content carried
by individual cells’ activity about position on the inferred torus during REM
(left) and SWS (right). Counts (fractions of the cell sample) are shown as a
function of information content (in bins of 0.28 bits/spike) for all grid modules
(colour-coded). The vertical dashed line (close to zero) shows mean
information content for shuffled distributions (n=1,000 shuffles). The
majority of cells have a higher information content. Bottom: Explained
deviance of a GLM model fitted to the spike count with toroidal coordinates
during REM (left) and SWS (right) as regressor. Distributions show counts
(fractions of the cell sample) as a function of explained deviance, in bins of
0.035, for allgrid modules. Values larger than O indicate that the fitted model
explains the databetter than anullmodel that assumes a constant firing rate.
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Extended DataFig.7|Barcodes and decoding of simulated firing activity
for two grid-cell CAN models (with no noise), and for two point clouds
randomly sampled on ahexagonal and asquare torus. a, Persistent
cohomology analysis of asimulated grid-cell network based onthe CAN model
from Couey et al (2013)" during OF foraging. Left: Colour-coded firing rates for
asingle time frame of the 56 x 44 grid cells, shown at their respective positions
ontheneuralsheet. Middle: Barcode of the simulated data. Arrows pointtoone
0D, two1D and one 2D bar with long lifetimes, indicating toroidal structure.
Right: Each coordinate of the toroidal parametrization of the two longest lived
1D featuresis mapped onto the spatial trajectory, colour-coded by its cosine
value (asin Extended DataFig. 5a, f). The resulting striped patterns of the two
maps are oriented approximately 60 degrees relative to each other, as
expected from a hexagonal torus network structure (see d). b, Analysis of a
randomsample of 100 grid cells (of atotal of 400 cells) of a simulated grid cell
network, using the twisted torus CAN model formulated by Guanellaet al
(2007)"°. Left: Firing rates of the cells in the network at asingle time frame. The
model generates asingle bump of activity based on both inhibitory and

excitatory, asymmetric connections representing a twisted torus. Barcode
(middle) and cohomological decoding of toroidal position (right) are shown as
ina. The barcode shows four prominentbars: one OD bar, two 1D bars and one
2D bar, similar to that of atorus. Note that the pair of stripes in toroidal
coordinates are oriented 60 degrees relative to each other. ¢, d, To verify the
expected barcodes and decoding of atorusand compare with both realand
synthetic grid cell data, we performed the same topological analysis on point
clouds sampled from two idealized toroidal parametrizations (n=2,500
points): a4D description of asquare torus (c) and a 6D embedding of a
hexagonal torus (d). Left: Representing the firing of a cell as a Gaussian
function centred at asingle toroidal coordinate on the toroidal sheet resultsin
asquare (c) and hexagonal (d) firing pattern, when arranged to tesselate a2D
surface. Middle: The expected barcode of atorus (one 0D, two 1D, and one 2D
bar clearly longer than the other bars) isseenin both cases. Right: each
sampled angleis coloured according to the decoded toroidal coordinates.
Note the differenceintherelative angle of the pair of stripes between the
square and the hexagonal torus.
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Extended DataFig. 8| Subpopulations of grid cells with different
temporalspikingstatistics have different degrees of toroidal selectivity.
a, Geometry of grid-cell pattern of all six modules with classes of grid cells (B,
bursty; T, theta-modulated; N, non-bursty; as defined in Fig. 4). Each plot shows
thelocations of theinnermost six peaks of the spatial autocorrelogram for
every grid cellinone module. Each dotindicates the position of one peak from
onecell (total of 6 dots per cell); dots are coloured by the cell’sclass. The grey
crosshairindicates the centre of the autocorrelogram. b, Correlation matrix
showing pairwise correlation of firing rates for all grid cells belonging to S1
(left; n=73 cells) and R1(right - same data as for autocorrelogram distance
matrixin Fig.4b; n=111cells). Correlationis colour-coded according to the
scale bar, with minimum and maximum defined as the 1stand 99th percentile,
respectively, of the pairwise correlation distribution for each module. Rows
and column (cells) are ordered accordingto class, as assigned by the clustering
analysisshowninFig. 4. Each cluster displays stronginner correlation structure
forboth modules during SWS. Cluster boundaries areindicated on the x axis of
the correlation matrix. ¢, Summary of pairwise correlations of SWS activity for
grid cellsinmodules R1and S1, shown according to cell class. In each matrix
plot, rows and columnsindicate cell classes, and each element represents all
pairs of grid cells from the classes corresponding to the row and column.
Matrix elements are colour-coded to represent (top) the median of the spike
train Pearson correlation rvalue across all cell pairs, (middle) Spearman rank
correlation between cell pairs’ grid (toroidal) phase offsets and their spike train
Pearson correlation rvalues, (bottom) same asmiddle, but for head-direction
phaseinstead of grid phase. Number of cell pairs were as follows: module R1,

S1T cells SWS

B-B2346,B-T 6348,B-N1932, T-T 4186, T-N 2576, N-N 378; module S1B-B 378, B-T
1680, B-N1456, T-T1770, T-N 3120, N-N1326. Note that, in agreement with the
topologicalanalyses, the correlation between cell pairs’ grid phases and their
spike-time correlations are weaker for theta-modulated cells than non-bursty
and particularly bursty cells. Thisdrop is explained by anincreasein the
correlation with head direction, suggesting, as expected in conjunctive cells,
thathead direction accounts for much of the variationin these cells, unlike the
other classes. Furthermore, the median spike correlation for pairs of
theta-modulated and non-bursty cells is higher than for bursty cells, indicating
astronger positive correlation bias, consistent with more global fluctuations
ofactivity inthese populations. d, Cumulative distributions showing distance
between toroidal field centres (upper) and Pearson correlation rvalues (lower)
for toroidal rate maps of grid cellsin each class asin Fig. 2f, g, but here
comparing awake behaviour in OF with SWS, ncells=523(B), 229(T) and 95(N)
cells for OF and 495(B), 169(T), 43(N) cells for REM and SWS. n=1,000 shuffles.
e, Cumulative distributions showing toroidal explained deviance (left) and
information content (right) for allgrid cellsin each class - bursty (B),
theta-modulated (T) and non-bursty (N) - and for each of three conditions - OF,
REMand SWS. Cells are from allmodules. ncellsasind. f, Barcode of T-class
grid cells from modules R1 (left; n=92 cells) and S1 (right; n= 60 cells) during
SWSreveals asingle prominent long-lived H' bar (indicated by black arrow).

g, Cohomological decoding of the longest-lived H' bar in each barcode in
frevealsstrong correlation with recorded head direction. Recorded head
direction (black) and decoded direction (blue) are shown as afunction of

time (total snippetlength10s).
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Extended DataFig. 9| Classification of sleep and wake statesbased on
behavioural and neural activity during rest sessions. A, Example traces of
MEC multi-unitactivity (upper; coloured lines), and rasters of spike times of
444 grid cells (lower; black dots) recorded fromrat 'R' during OF foraging, REM
sleep and slow-wave sleep (SWS). Cells are ranked from top to bottom by the
number of spikes fired during the example time window. Note the presence of
regular thetawaves (5-10 Hz) during OF and REM, and presence of slower, more
irregular fluctuations betweenactive "up-states” and silent “down-states”
during SWS. Middle: times of population activity vectors (calculated in10 ms
time bins) which were selected for persistent cohomology analysis, for each
module (R1-R3). Each dotindicates a vector which wasincluded in theinitial
downsampled set 0of15,000 vectors with the highest mean firing rate across
cellsinthe module. Vertical ticks indicate the subset of these vectors which
wereretained after using a density-based method toreduce the datatoa
representative point cloud. Note that during SWS, all of the selected
population activity vectors occurred during up-states. B, Classification of
sleep/wake states based onbehaviouraland neural activity during rest

sessions. Each of the three horizontal blocks shows arecording fromone
animal.Rat'R'day1did not contain arestsessionand is not shown on this
figure.Ba, Detection of REM and SWSsleep epochsintherestsession. The
plots show the time courses of the three variables used for detecting REM and
SWSepochs. Top panel of each block: animal locomotion speed; middle panel:
theanimal’s head angular speed; bottom panel: the ratio of the amplitude of
theta (5-10 Hz) and delta (1-4 Hz) frequency bands in the multi-unit spiking
activity (theta/deltaratio, TDR). Bb, Log-power spectra of MEC multi-unit
activity during each sleep/wake state. The lineand shaded areaindicate the
mean and 95%bootstrap confidenceintervals, calculated across time windows
(confidenceintervals are narrow). Note the pronounced peak corresponding to
the thetaband (5-10 Hz) during OF and REM, and the higher power in the delta
band (1-4 Hz) during SWS. B¢, Histograms showing distributions of firing rates
forallgrid cellsduring each sleep/wake state (number of grid cells: rat 'Q'159,
rat'R'428, rat'S'72). C, Table showing total time and median bout length of
recordedsleep for each animal.
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Extended DataFig.10|Tuningto coordinatesinspaceand ontheinferred
torusforallgrid cellsof module R2 (separated into pure and conjunctive
categories) onrecordingday 2. Plots show all152 cellsinmodule R2, asubset
of whichis showninFig.3b. Plots fromleft to right: OF firing rate map,

head-direction tuning curve (black) compared to occupancy of head directions
(light grey), temporal autocorrelogram, toroidal firing rate maps for OF, REM
and SWS. The full set of plots, for all remaining grid cells of all recordings, is
showninSupplementary Information.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a | Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O 00 000 0O 00
X X XXX X XX

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Samples included all available cells that matched the classification criteria for the relevant cell type.

Data exclusions  Cells with very low firing rates (below 0.05 Hz) were excluded because of their unsuitability for spike-train analysis. All non-grid cells were
excluded, because they were irrelevant for analyses of toroidal structure.

Replication For the six grid modules included in the study, in the results text we indicate for each result the number of modules in which the effect was
found. For each statistical test we state the sample size (n) in the manuscript.

Randomization  The study did not involve any experimental subject groups; therefore, random allocation did not apply and was not performed.

Blinding The study did not involve any experimental subject groups; therefore, experimenter blinding did not apply and was not performed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a 7 Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Long Evans rats, male, age 3-4 months (300-500 g)
Wild animals None
Field-collected samples  None

Ethics oversight Protocols approved by the Norwegian Food Safety Authority (FOTS ID 18011 and 18013) .

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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