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Abstract

Background: We propose a novel Markov Blanket-based repeated-fishing strategy (MBRFS) in attempt to increase
the power of existing Markov Blanket method (DASSO-MB) and maintain its advantages in omic data analysis.

Results: Both simulation and real data analysis were conducted to assess its performances by comparing with other
methods including x* test with Bonferroni and B-H adjustment, least absolute shrinkage and selection operator (LASSO)
and DASSO-MB. A serious of simulation studies showed that the true discovery rate (TDR) of proposed MBRFS was
always close to zero under null hypothesis (odds ratio =1 for each SNPs) with excellent stability in all three scenarios of
independent phenotype-related SNPs without linkage disequilibrium (LD) around them, correlated phenotype-related
SNPs without LD around them, and phenotype-related SNPs with strong LD around them. As expected, under different
odds ratio and minor allel frequency (MAFs), MBRFS always had the best performances in capturing the true
phenotype-related biomarkers with higher matthews correlation coefficience (MCC) for all three scenarios above.
More importantly, since proposed MBRFS using the repeated fishing strategy, it still captures more phenotype-related
SNPs with minor effects when non-significant phenotype-related SNPs emerged under x* test after Bonferroni multiple
correction. The various real omics data analysis, including GWAS data, DNA methylation data, gene expression data and
metabolites data, indicated that the proposed MBRFS always detected relatively reasonable biomarkers.

Conclusions: Our proposed MBRFS can exactly capture the true phenotype-related biomarkers with the reduction of
false negative rate when the phenotype-related biomarkers are independent or correlated, as well as the circumstance

that phenotype-related biomarkers are associated with non-phenotype-related ones.
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Background

High-throughput-omic platforms, such as SNPS arrays,
expression arrays and mass spectrometry, etc., have been
commonly used in large scale population level systems
biology or systems epidemiology study. These omic
techniques have provided us the feasibility to accumulate
a wealth of genetic, transcriptomic, proteomic and meta-
bolomics data to study health and disease in breadth and
depth at the human population level. Therefore, inte-
grating various omic-metrics and environmental factors
at population level will be crucial for developing effective
diagnostic techniques, new drugs and intervention
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measures for disease. Among these, one key task is to map
phenome (phenotype and various molecular phenotypes)
onto genome, including mapping phenotype onto genome
(GWAS), transcriptome onto genome (eQTL), prote-
ome onto genome (pQTL), metabolome onto genome
(mGWAS), metabolome onto epigenome (mEWAS),
epigenome onto genome (meQTL), and phenome onto
metabolome (MWAS) [1]. Nevertheless, how to hunt
the phenome-related biomarkers has posed great chal-
lenge in such big omics data.

Currently, two strategies, statistical hypothesis tests
and variable selection methods, can usually be adopted
to handle the above mentioned problems. For the
former, single marker-single phenotype hypothesis tests
(e.g. x* test and t test) with p values adjusted for multiple
comparisons by Bonferroni or B-H methods, have been
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customarily regarded as the universal criterion to claim
the significance of each marker [2]. Obviously, these ar-
bitrary correction methods inevitably increase the false
negatives, for instance, phenotype-related biomarkers
with p value larger than the Bonferroni cutoff of x* test
will never be identified as positive ones. Moreover, the
most commonly used Bonferroni adjustment will be less
powerful if the high correlation existed between markers
(e.g., linkage disequilibrium, LD, between SNPs), which can
be ubiquitously encountered in big omics data analysis.

The second strategy is an alternative strategy mainly
focusing on variable selection under machine learning
framework. Various models have been successfully used to
identify biomarkers in omics data, including bridge regres-
sion [3], least absolute shrinkage and selection operator
(LASSO) [4], smoothly clipped absolute deviation (SCAD)
[5], elastic net [6], adaptive lasso [7] and GWASelect [8].
However, few methods can be used to effectively distin-
guish the true phenotype-related biomarkers (e.g. SNPs)
from its high correlated non-phenotype-related biomarkers
(e.g. linkage disequilibrium with the phenotype-related
SNPs in GWAS). Actually, capturing the phenotype-
related biomarkers exactly will shorten the time required
for further function verification and results in potential
cost savings. One possible method to achieve this is to fully
utilize the conditional independence property between the
potential phenotype-related biomarkers and their related
ones in the framework of directed acyclic graph (DAG).
Theoretically, as a tool based on Markov independent
property, the Markov Blanket (MB) [9] aimed to search a
minimal biomarker set given which all other bio-
markers are probabilistically independent with the spe-
cific phenotype. Thus in practice, Markov Blanket
seems to be able to effectively hunt the true phenotype-
related biomarkers (e.g. SNPs) rather than their high
correlated non-phenotype-related biomarkers.

Recently, two MB-based approaches proposed by Bing
Han et al. had been used to detect gene-gene interaction
in GWAS. The authors claimed that their algorithms
outperformed other computational methods for detecting
gene-gene interaction. However, when their methods
(DASSO-MB [10] and FEPI-MB [11]) were applied to
detect the SNPs associated with Leprosy containing
490,000 SNPs in our case—control GWAS datasets (706
case and 514 controls), only few significant SNPs (2 for
DASSO-MB and 3 for FEPI-MB respectively) were
identified at nominal level of 0.05. Similarly, the au-
thors reported only 2 SNPs for both above methods in
analyzing the GWAS datasets of Age-related Macular
Degeneration (AMD) with 116,204 SNPs (96 cases and
50 controls). Hence it seems to be unreasonable to apply
DASSO-MB and FEPI-MB to interpret the genetic mech-
anism for multiple-factorial complex diseases, which
commonly caused by numerical SNPs distributing on the
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whole genome. In previous studies, even though quite a
few genetic variants have been successfully identified by
GWAS, they still accounted for a small proportion of
the total heritability for complex diseases. Therefore,
developing novel data analysis methods are highly de-
sirable to detect more phenotype (or disease)-related
biomarkers, meaning explaining more heritability. Fur-
ther insight into DASSO-MB [10] and FEPI-MB [11]
told us that they would lose power when numerous
phenotype-related SNPs existed on the whole genome
due to the drawbacks of the algorithm strategy, much
worse, both algorithms might not work when a phenotype-
related SNP located in a high LD block. This is because the
conditional independence test relied on G* statistic,
which needed to stratify the conditioned variables (e.g.
SNPs) already selected in Markov Blanket (MB). As
shown in Fig. 1b below, suppose ten SNPs under addi-
tive model are associated with disease in real world
genome, the number of stratification needed will reach
3% =19683 with totally 6 x 19683 = 118098 cells if we
expect to capture all the ten SNPs exactly. Then, the
sample size required for such enormous cells will be
formidable and unimaginable.

We, therefore, proposed a novel Markov Blanket-
based repeated-fishing strategy (MBRFS) for capturing
phenotype-related biomarkers in big omics data. Imagin-
ing the phenotype-related biomarkers (e.g. phenotype-
related SNPs) mixed in the high dimensional omics vari-
able pool (e.g. tag SNPs on the whole genome) with a
given proportion, the idea of our strategies stemmed from
which we can use the MB algorithm (i.e. fishing net) to
capture the phenotype-related SNPs (i.e. fish) repeat-
edly from omics variable pool. As the biomarker set
captured in MB (i.e. fishing net) each time were imme-
diately taken off from the MB (i.e. being emptied), the
next re-constructed MB always maintained a few new
phenotype-related biomarkers to make sure the empty
cells were not too many. Thus, the G statistic (i.e. like-
lihood ratio chi-square statistic) or other methods (e.g.
regression model) for testing conditional independence
property could always hold the relative high power
under given sample size. Taking the simplest omics data
of GWAS as an example, simulations were conducted
to assess its performances with true discovery rate
(TDR), false discovery rate (FDR) and matthews correl-
ation coefficience (MCC) [12] and compared with the
performances of commonly used statistical hypothesis
tests method (y* test with Bonferroni or B-H adjust-
ment), variable selection method (LASSO), as well as
existing MB-based methods (DASSO-MB). For case
study, various real omic data, including GWAS data for
Leprosy, DNA methylation & gene expression data for
breast cancer, and metabolomic data for schizophrenia
were analyzed.
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Methods

Markov Blanket-based repeated-fishing strategy (MBRFS)
The Markov Blanket of a target variable of Y, MB(Y),
was defined as a minimal set given which all other vari-
ables were independent with Y, i.e. all other variables are
probabilistically independent of the variable Y condi-
tioned on the MB of variable Y [9]. Figure la shows a
commonly used MB example of high density lipoprotein
(HDL), referred to given Phosphatidyl-ethanolamines,
RUFAs, Phosphatidyl-cholines, Coronary heart disease
and Blood coagulation properties, the HDL is condition-
ally independent of LIPC and Fitbrinogen A-a phosporyl.
Specifically, for the MB under GWAS data, from the
perspective of causality between genetic variation and
phenotype, we usually suppose phenotype (i.e. complex
diseases Y) never causes genetic variation (i.e. SNPs).
Thus, MB with 10 phenotype-related SNPs can be
expressed as Fig. 1b.

In previous studies, many MB algorithms had been
proposed, including KS algorithm [13], GS algorithm
[14], TAMB [15], MMMB [9] and HITON-MB [16],
DASSO-MB [10], FEPI-MB [11] etc. Among them,
DASSO-MB and its updated version of FEPI-MB had
lower false positive by adding a backward phase after

each step of selecting a variable in the forward phase.
However, as DASSO-MB attempted to make the size of
MB(Y) as small as possible, it would inevitably increase
false negative rate, especially, numerous phenotype-
related biomarkers existing in high dimensional omics
data, which is much common in omics study of complex
diseases. There are two types of phases in DASSO-MB
containing forward phase and backward phase. In each
loop of the forward phase, if one variable with a maximal
G2 score conditioned on MB(Y) is dependent on target
variable Y, it will be putted into MB(Y). This admission
operation is followed by a backward phase to remove false
positives SNPs by performing conditional independence
tests. If no more variable will be added into MB(Y) in the
forward phase, they will enter the final backward phase to
remove variables that do not belong to MB(Y). More de-
tails about DASSO-MB can be found in [10]. In this paper,
our proposed MBRFS not only holds the advantage of
DASSO-MB on reducing false positive rate, but decreases
the false negative rate by repeated-fishing strategy.

In order to increase the power of DASSO-MB and
maintain its advantages, we modified the algorithm in
three aspects. Firstly, from original high dimensional
omics variables, the initially screening procedure by
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single statistical test (e.g. x> test for categorical pheno- a) Initially screen the biomarkers at the nominal

type, etc.) at the nominal level 0.05 was performed be- level 0.05 from original high dimensional omics
fore MB search algorithm. This strategy not only variables by single marker statistical test

improved the computation speed, but detected the (e.g. x* test for categorical phenotype, etc.)
marginal association between biomarkers and pheno- to establish candidate variable pool.

type as many as possible for further conditional inde- b) Capture the first subset (i.e. m;, m,, ms, mg) of
pendent test in MB algorithm. Secondly, in order to phenotype-related biomarkers using the modified
reduce the number of empty cells of the hierarchical DASSO-MB algorithm. As shown in variable pool 1
contingency table in G? test when selecting a new bio- (VP;), m; was selected into the MB;(Y) with the
marker into MB, we relaxed the conditional independent minimal p value, then VP; was updated to be VP,.
criterion by just using one order combination of bio- Given VP, select the biomarker ms into MB;(Y)
markers already within MB as condition. For example, hence updated VP, to be VP3. Moreover, given VPs3,
supposing Vi, V,, V3 had been in MB(Y) , we selected the since m, was located in the high correlated region,
outside new variable V4 into MB(Y) if {V, L Y]V} n{V, L once it was captured into MB;(Y), other biomarkers
Y|Vojn{V4LY|V3). In the next step, the proposed in this region were removed under given criteria.
repeated-fishing strategy (MBRES) was further used to re- For example, if a SNP in high LD block was captured
solve problem of too many empty cells in hierarchical by MB algorithm, then other SNPs, which have
contingency table to maintain the power of G* test. > 0.05 with this captured SNP and within 20 SNPs
Figure 2 showed the framework of our proposed around it, were removed from candidate variable pool
MBRES algorithm. [8]. In addition, VP35 was updated toVP, while mg

® un-captured causal SNPs ® non-causal SNPs o captured causal 'SNP and nearby SNP with strong LD
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Fig. 2 Variable selection process of MBRFS. VP1-VP10 was the constantly updated variable pools, MB1(Y), MB2(Y), MB3(Y) maked up the final MB
set of MBRFS
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being selected into MB;(Y) when no other biomarkers
entered. Finally MB,(Y) was constructed with my, m,,
ms and mg, and VP, was updated to VPs.

¢) Repeat the process in step (b), we obtain MB,(Y)
with m3 m; and my, the variable pool was updated
to VPs.

d) MB;(Y) with m, and mg as well as VP;, can also be
obtained. For details, see stage 3 in Fig. 2.

e) The next MB(Y) was continuously constructed
from VP, until only two biomarkers were selected
in the blanket.

Under the framework of MBRFS, we developed several
MB algorithms by modifying DASSO-MB algorithm
which are suitable to be applied to different omics data
(Additional file 1: Figure S1). Suppose X = {x1, x5’ x3, ...,
%", ..., %,} denoted the p biomarkers in omics variable
pool, where superscript m indicated that the specific bio-
markers (e.g. x5, etc.) were related (or causal) to the
phenotype (Y). We defined the MB of target phenotype as
MB(Y) which was a minimal set subjected to V'L Y|MB(Y)
for all Ve X - MB(Y). As shown in Fig. 1b, MB(Y) is a set
of gray-filled nodes {SNP;, SNP,, SNP3, SNP,, SNP5, SNPg,
SNP,, SNPg}, and variables SNPy-SNP;5 are independent
of Y conditioned on MB(Y). In our proposed MBREFS, the
solution for conditional independent tests in MB algo-
rithms is given as follows:

a) For catagorical biomarkers and phenotype, G*

n O
statistic, G*> = 2 E O;In( = |, would be used, it
i=1 <E>

L

follows an asymptotical x* distribution with degree
of freedom

n
df = (Cat(A)-1) x (Cat(B)-1) x | [ Cat(C;), where
=1
Cat(X) was the number of categories of the variable
X and n was the number of variables in C.
b) For binary phenotype and quantitative biomarkers
(e.g. MWAS, etc.), the conditional independent
property was tested by logistic regression model, for
example, log it(P(Y|x%', x3)) = ap + Boxs’ + Baxs was
used to detect whether x3 was independent of ¥’
given x5" based on the significance of Ss.
For biomarkers with quantitative phenotype,
(e.g. mGWAS, mEWAS, pQTL, eQTL, and meQTL,
etc.), their dependent variables (Y) were continuous.
Therefore, ordinary linear regression model, e.g.
E(Y|x5, x3) = ag + Baxs’ + Bax3, was adopted in
conditional independent test.

~

C

Simulation
Since GWAS is well-known and simplest omics study, a
series of GWAS-based simulation were conducted to
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evaluate the performances of the proposed MBRFS, and
compared it with machine learning methods (i.e. LASSO)
[4], statistical Armitage trend y* test with Bonferroni [17]
& B-H adjustment [18], as well as existing DASSO-MB
[10] methods.

For whole genome data, considering various linkage
disequilibrium (LD) patterns and Minor allele frequency
(MAF) variation, 22 genome regions (each with 50
SNPs) were selected from 22 autosomal chromosomes
respectively. Then a further merged mimic genome re-
gion with 1100 SNPs was created for conducting our
simulation (Additional file 2: Figure S2). This simulated
region was the miniature of whole genome, and covered
the characteristics of the real world genome data. Soft-
ware gs2.0 [19] was used to generate the genotype data
with 100,000 individuals based on HapMap phase III
CEU data (http://hapmap.ncbi.nlm.nih.gov/). The geno-
type data was coded by the additive genetic model.

Four simulation scenarios were designed for assessing
the performances together with three commonly used
indexes: true discovery rate (TDR), false discovery rate
(FDR), and matthews correlation coefficience (MCC) [12]
under different combinations of LD patterns, sample size,
MAFs, effect size (OR), and degree of correlation between
phenotype-related SNPs. In particula, MCC was a
trade-off between false positive and false negative for
comprehensively assessing the performances of differ-
ent compared methods (see Additional file 3).

In simulation scenario 1, 8 independent phenotype-
related SNPs were generated by logistic model (for details,
see Additional file 4), then they were randomly inserted
into 8 different chromosomes respectively in the simu-
lated regions (Additional file 2: Figure S2). This idea stems
from the gain-of-function technique which is usually
taken to study the function of a gene [20, 21] so that it
gets rid of the influence of LD completely.

For scenario 2, since phenotype-related genes (or SNPs)
usually correlated within pathways or networks, a corre-
lated pattern of the 8 phenotype-related SNPs was created
by logistic model with correlation coefficient 0.1 between
them (see supplement 2). Then the generated SNPs were
also inserted into 8 different chromosomes respectively in
the simulated regions following the same procedure of
scenario 1 for evaluating the performances of our pro-
posed MBREFS under correlated phenotype-related SNPs
with no LD.

In scenario 3, 8 phenotype-related SNPs were ran-
domly selected within 8 different simulated regions from
different chromosomes respectively with various MAFs
and LD patterns. The association between phenotype and
selected SNPs was created by logistic model. Specifically,
both true positive cluster (TPC) and false positive cluster
(FPC) were defined in this scenario. Namely, if a captured
SNP was no more than 20 SNPs away from a true
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phenotype-related SNP and had > 0.05 with the same
phenotype-related SNP, then we also regarded it as a true
positive while for the situation of more than one SNP sat-
isfied above conditions, we treated them only as one TPC.
Simultaneously, the remaining captured SNPs were recog-
nized as false positives; similarly, if the false positive SNPs
were no more than 10 SNPs apart each other (i.e. within
100 kb in distance), they were counted as only one FPC,
this criteria had been widely used to define TPC and FPC
when the phenotype-related SNPs located in high LD re-
gions [12]. Finally, the TDR, FDR and MCC were further
calculated using TPC and FPC rather than individual SNPs.

For scenario 4, we selected three simulated regions
with high (most pair of SNPs with 7> 0.8), modest (with
0.2 <7 <0.8) and low LD (with *<0.3) structure, each
region contained 50 SNPs. We randomly chose one
phenotype-related SNPs with OR =1.5 in each simula-
tion region, and performed 1000 simulations to assess
the accuracy of compared methods using discovery rate
of each SNPs, including the phenotype-related SNPs and

every non-phenotype-related SNPs. For jth SNP, its dis-
the number of dis coveried SNP;
&L ! % 100%

covery rate was defined as
where j=1,2, -+, 50.

For data analysis in each simulation scenario, the
phenotype-related SNPs were retained in the generated
data rather than discarded. The number of replications
was set to be 1000 for each simulation scenario. All
simulation studies were conducted using software R
from CRAN (http://cran.r-project.org/).

Four simulation schemes in each simulation scenario
using logistic regression model with case—control design
were carried out respectively, including 1) to explore the
stability of each method (MBRFS, y* test with Bonferroni
and B-H adjustment, LASSO and DASSO-MB) under
null hypothesis, namely the OR values of 8 SNPs were
set to be 1 with MAFs = 0.3 under sample sizes N = 2000
(i.e. scheme 1); 2) to detect the TDR trend when effect size
increased, OR for the 8 phenotype-related SNPs were set
to be 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 and 1.8 successively,
given MAFs = 0.3 & sample sizes 2000 (i.e. scheme 2); 3)
various MAFs (from 0.05 to 0.5) were set, given OR =
1.3 & sample sizes 2000 (i.e. scheme 3); and 4) all 8
phenotype-related SNPs with non-significance by y” test
after Bonferroni multiple correction were set, under differ-
ent MAFs, OR and sample size. In this situation, we evalu-
ated the performances of our proposed MBRES in aspect
of reducing false negative, and compared it with LASSO,
DASSO-MB.

Application

The publically available GWAS data, DNA methylation,
gene expression and metabolomics data were analyzed
using above five methods simultaneously, so as to confirm
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the advantages of the proposed MBRFS in practice. Furen
Zhang et. al [22] reported a two-stage GWAS of Han
Chinese located in eastern China, 93 SNPs most strongly
associated with Leprosy were detected initially with 706
patients from Shandong Province and 1225 controls from
several other provinces. After external validation in three
independent samples with a total of 3254 patients and
5955 controls, 16 Leprosy-associated SNPs were finally
identified. To compare the performances of our proposed
MBRES with Bonferroni adjustment after ATT test, B-H
adjustment after ATT test, LASSO and DASSO-MB, the
original GWAS data of Leprosy with a total of 491,883
SNPs from 706 case and 514 controls were analyzed using
above compared five methods. Specifically, all of the sam-
ple (706 case and 514 controls) were only selected from
Shandong Province to avoid the population heterogeneity,
and to assess the performances of our proposed MBRFS
to capture the phenotype-related SNPs under relatively
smaller sample size. The DNA methylation and gene
expression data of two subtypes of breast cancer (20 In-
filtrating Ductal carcinoma patients and 22 Infiltrating
Lobular carcinoma patients) were downloaded from
http://cancergenome.nih.gov/. [23] The metabolomics
data of schizophrenia contains 1723 metabolites with
58 cases and 71 controls from Shandong province in
China. Logistic regression was used to test the conditional
independent property for above DNA methylation, gene
expression and metabolites data. By these various real data
analysis, we evaluated whether our proposed MBRFS
could be extended to the case with binary phenotype and
quantitative biomarkers. Patient consent we obtained was
written and it was informed. The study was approved
by the Medical Ethical Committee of Qilu Hospital,
Shandong University, China.

Results

Simulation studies

Table 1 showed the performances (overall TDR, FDR and
MCC) of five methods above applied to four schemes in
scenario 1, in which 8 independent phenotype-related
SNPs randomly insert into the 8 different simulated re-
gions respectively. In this scenario, we expected to exam-
ine the performances in the absence of the influence of
LD, though it hardly existed in real world. It indicated that
MBRES had highest overall TDR with acceptable FDR in
scheme 2 (i.e. the OR of 8 phenotype-related SNPs were
set from 1.1 to 1.8) and in scheme 3 (i.e. the MAFs of 8
phenotype-related SNPs were set from 0.05 to 0.5). In
scheme 4 (i.e. the OR and MAFs of 8 phenotype-related
SNPs were set identically to 1.2 and 0.3 respectively), it
showed that MBRES and LASSO had relative higher over-
all TDR, while LASSO emerged highest FDR though its
overall TDR seemed a little higher than the proposed
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Table 1 The overall TDR, FDR and MCC of three schemes of scenario 1 with 1000 cases and 1000 controls in each scheme

Methods Scheme 2 Scheme 3 Scheme 4

TDRoveral FDR MCC TDRoverall FDR MCC TDRoverall FDR MCC
Bonferroni 0.65 0.00 0.80 033 001 057 0.14 0.10 035
B-H 0.71 0.03 0.82 0.38 0.03 0.61 0.18 0.10 040
LASSO 052 0.00 0.72 0.75 0.17 0.78 0.76 044 0.65
DASSO-MB 052 0.01 0.72 043 0.11 0.65 024 0.28 041
MBRFS 0.80 0.14 0.83 0.78 0.16 0.81 0.58 0.20 0.68

Bonferroni and B-H is the multiply correction methods after y* tests
TDR true discovery rate

FDR false discovery rate

MCC matthews correlation coefficience

MBRES. Furthermore, MBRFS had highest MCC value in
all three schemes when using MCC for assessing their
performances.

Figure 3 illustrated the TDR of compared methods for
each phenotype-related SNP in scenario 1. Figure 3a
presented the TDR under null hypothesis (i.e. OR =1 for

each SNPs) in scheme 1. As expected, the TDR of each
method for each SNP was very close to zero. In scheme 2,
the TDR of each method increased as OR went up, while
the proposed MBRFS had the best performance (Fig. 3b).
Generally, similar trend was also observed as MAFs of the
phenotype-related SNPs gradually approximated to 0.5 in
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scheme 3 (Fig. 3c). Specifically, in scheme 4, both
LASSO and MBREFS had stronger ability to capture the
phenotype-related SNPs even with minor effect, which
had been commonly missed by y* test with Bonferroni
and B-H adjustment (Fig. 3d). It seemed that these two
methods were able to reduce the false negative rate,
however, LASSO had always kept higher FDR than
MBRES.

Table 2 showed the overall TDR and FDR of 5
methods in scenario 2 under the same three schemes as
in scenario 1. Through randomly inserting 8 correlated
phenotype-related SNPs into 8 different simulated re-
gions, we aimed to evaluate the performances of 5
methods mentioned above when phenotype-related
SNPs were correlated while no LD with other SNPs in
the same region. It indicated that MBRFS and y* test
with B-H adjustment had relatively higher overall TDR
with acceptable FDR in scheme 2 and in scheme 3.
While in scheme 4, it showed that MBRFS had the
highest overall TDR, though its FDR seemed to be a
little higher. Again, MBRFS had also highest MCC in
the scheme 3 and 4.

The TDR of 5 methods for each phenotype-related
SNP in scenario 2 was presented in Fig. 4. Of which,
Fig. 4a revealed that the TDR for each SNP of all
methods were quite close to zero except LASSO in
scheme 1. Similar phenomenon could be found in
scheme 2-3 (Fig. 4b-c) as that in scenario 1. Figure 4d
showed that MBRES always held highest TDR than other
methods in scheme 4.

What shown in Table 3 was the performances (overall
TDR, FDR and MCC) of the above five methods applied
to three schemes in scenario 3, in which the phenotype-
related SNPs usually had various LD structures with its
neighbor ones. In this scenario, we expected to examine
their performances in the real world. It indicated that
MBRFS had highest MCC (higher TDR and lower FDR)
in scheme 2 (i.e. the OR of 8 phenotype-related SNPs
were set from 1.1 to 1.8) and in scheme 3 (i.e. the
MAFs of 8 phenotype-related SNPs were set from 0.05
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to 0.5). In the scheme 4 (i.e. the OR and MAFs of 8
phenotype-related SNPs were set identically to 1.2 and
0.3 respectively), it showed that MBRFS and LASSO had
relative higher overall MCC, while LASSO emerged high-
est FDR though its overall TDR was little higher than the
proposed MBRFS. As emerged in above scenario 1 and 2,
MBRES still had highest MCC value in all three schemes.
In addition, under different sample sizes we further com-
pared the performances of five methods with fixed MAFs
(0.3) and OR from 1.1 to 1.8 successively for the 8
phenotype-related SNPs. It suggested that our proposed
MBRES always had higher overall TDR. It was worth to
note that the DASSO-MB did not work when sample size
was relatively larger (more than 2000 in our simulation)
due to its too many empty cells in conditional inde-
pendent G” test (Additional file 5: Figure S3).

Figure 5 illustrated the TDR of compared methods for
each phenotype-related SNP in scenario 3. What shown
in Fig. 5a were the TDR under null hypothesis (OR =1
for each SNPs) in scheme 1. As expected, the TDR of
each method for each SNP were very close to zero
except LASSO. In scheme 2, the TDR of each method
increased as OR values went up, while the proposed
MBRES had the best performances (Fig. 5b). Generally,
similar trend was also observed as MAFs of the
phenotype-related SNPs gradually approximated to 0.5
in scheme 3 (Fig. 5¢). Specifically, both LASSO and
MBRES had stronger ability to capture the phenotype-
related SNPs even with minor effect, which had been
commonly missed by x* test with Bonferroni and B-H
adjustment methods in scheme 4 (Fig. 5d). It seemed
that these two methods were able to reduce the false
negative rate, however, LASSO had always kept higher
FDR than MBRFS.

For simulation scenario 4, we found that our proposed
MBREFS could exactly identify the phenotype-related
SNPs in the low, modest and higher LD region, while
other methods, especially y* test with Bonferroni and B-
H adjustment, selected more non-phenotype-related
SNPs simultaneously (Fig. 6).

Table 2 The overall TDR, FDR and MCC of three schemes of scenario 2 with 1000 cases and 1000 controls in each scheme

Methods Scheme 2 Scheme 3 Scheme 4

TDRoyeral FDR MCC TDRoyeral FDR MCC TDRoveral FDR MCC
Bonferroni 0.90 0.00 0.94 0.75 0.01 0.86 0.57 0.01 0.75
B-H 0.94 0.02 0.95 0.84 0.04 0.89 0.74 0.03 0.84
LASSO 0.51 0.00 0.71 0.78 0.01 0.88 0.82 0.09 0.86
DASSO-MB 0.54 0.00 0.71 045 0.07 0.66 0.36 0.11 0.56
MBRFS 0.98 0.12 0.93 0.92 0.14 0.89 0.96 0.13 0.91

Bonferroni and B-H is the multiply correction methods after y* tests
TDR true discovery rate

FDR false discovery rate

MCC matthews correlation coefficience
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Additional file 6: Table S1 shows the 18 positive clusters
identified by our proposed method MBREFS for Leprosy
GWAS data. Specifically, a positive SNPs clusters were
defined as a set of SNPs meeting the following criteria:
a) SNP located in the region with no more than 20 SNPs

Table 3 The overall TDR, FDR and MCC of three schemes of
scenario 3 with 1000 cases and 1000 controls in each scheme

Methods Scheme 2 Scheme 3 Scheme 4

TDR FDR MCC TDR FDR MCC TDR FDR MCC
Bonferroni 062 004 077 011 020 030 012 017 031
B-H 078 032 073 021 037 036 022 017 043
LASSO 056 001 074 064 057 052 065 055 054
DASSO-MB 043 001 065 0.18 043 032 023 030 040
MBRFS 074 011 081 066 020 072 051 021 063

Bonferroni and B-H is the multiply correction methods after y* tests
TDR true discovery rate

FDR false discovery rate

MCC matthews correlation coefficience

away from the positive SNP detected by MBRES at the
nominal level 0.01; b) all the SNPs in this region had
7 >0.05 with the positive SNP and were statistically
significant in the initial screening at the nominal level
0.01. Under this criteria, among the 18 positive SNPs
clusters, 13 external validated SNPs in the two stage
GWAS of Leprosy [22] were re-identified as Leprosy re-
lated SNPs by our proposed MBREFS (see Additional files
6 and 7: Table S1 and Figure S5). As expected, 8 negative
SNPs under criteria of Bonferroni adjustment after ATT
test were still detected by our proposed MBREFS (see
Additional file 8: Figure S4). However, under the same
criteria of positive SNPs clusters, only 7 external vali-
dated SNPs were re-identified as positive SNPs by B-H
adjustment after ATT test, followed 5 by Bonferroni adjust-
ment after ATT test, 3 by LASSO and 1 by DASSO-MB
(see Additional files 6 and 7: Table S2 and Figure S5). With
regard to computation time for analyzing the Leprosy
GWAS data with a total of 491,883 SNPs using the same
multiprocessor and multithreading computational cluster,
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the DASSO-MB had the longest computational time
(2607 s), followed by MBRES (1978 s), LASSO (804 s),
Bonferroni adjustment after ATT test (301 s), and B-H ad-
justment after ATT test (302 s). This indicated that the
computer burden was acceptable for our proposed method
MBRES in the real-world omics data analysis, though it
took longer time than other three methods.

For DNA methylation and gene expression data on
breast cancer, the results by the MBRFS and its com-
pared methods were shown in Additional file 6: Table S3
and S4. This indicated that MBRFS detected relative rea-
sonable genes, including CCDC91 [24], SCN4B.1 [25],
C3orf10 [26] from DNA methylation data and NRXN1
[27], FAM71C [28], ZNF8 [29], FGL1 [30], ZNF438 [31],
PTP4A3 [32], INCENP [33], SCTR [34], CYorf15A [35]
from gene expression data, while other methods found
too many genes to explain reasonably. For the schizo-
phrenia metabolomics dataset, MBRFS identified three
verified metabolites, including carnitine, pphingosine,

stearamide [36], while LASSO method found fewer veri-
fied metabolites. The p value from logistic regression
with Bonferroni and B-H adjustment found four verified
metabolites, but they detected too many false positive
ones (Additional file 6: Table S5). Of note, DASSO-MB
method can only deal with catagorical biomarkers and
catagorical phenotype and thus limits its application in
above DNA methylation data, gene expression data, and
metabolomics data.

Discussion

In this paper, we proposed the novel Markov Blanket-
based repeated-fishing strategy (MBRFS) for capturing
phenotype-related biomarkers in big omics data. Simula-
tions studies indicated that MBRFS generally outperformed
other commonly used methods (y* test with Bonferroni
and B-H adjustment, LASSO and DASSO-MB) under all
three scenarios: independent phenotype-related SNPs with-
out LD around them (Table 1 and Fig. 3), correlated
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phenotype-related SNPs without LD around them (Table 2
and Fig. 4), and phenotype-related SNPs with strong LD
around them (Table 3 and Fig. 5). This indicated that
MBRES, as a phenotype-related diagrams model fully util-
izing conditional independent property, can efficiently cap-
ture the true phenotype-related biomarkers no matter
whether the phenotype-related biomarkers were independ-
ent or correlated, as well as whether the phenotype-related
biomarkers were associated with non-phenotype-related
ones. More importantly, our proposed MBRFS overcomes
the disadvantages of DASSO-MB and FEPI-MB, which
would lose their power when numerous phenotype-re-
lated SNPs existed on the whole genome and might not
work when a phenotype-related SNP located in a high
LD block.

In particular, the TDR of MBRES were always close to
zero under null hypothesis (OR =1 for each SNPs) in all
three scenarios (Figs. 3a, 4a and 5a). However, LASSO
deviated away from zero for each SNPs under scenario 2
and scenario 3 especially. This suggested that our pro-
posed MBRFS was more stable than other methods. Fur-
thermore, under different OR and MAFs, MBRFS almost
had the best performances under three scenarios of inde-
pendent phenotype-related SNPs without LD around
them (Table 1 and Fig. 3b-c), correlated phenotype-related
SNPs without LD around them (Table 2 and Fig. 4b-c),
and phenotype-related SNPs with strong LD around them
(Table 3 and Fig. 5b-c). As expected, when non-significant
phenotype-related SNPs emerged under y* test after
Bonferroni multiple correction, our proposed MBRES still
detected more phenotype-related SNPs with minor effect,
and it had better capability to reduce false negative rate
under all the three scenarios (Tables 1, 2 and 3; Figs. 3d,
4d and 5d).

In order to assess the accuracy of MBRFS for capturing
the true phenotype-related biomarkers when the cor-
relation existed between phenotype-related and non-
phenotype-related biomarkers, simulation scenario 4
with the low, modest and higher LD region (Fig. 6) were
performed. The results indicated that MBREFS could
exactly identify the true phenotype-related SNPs, while
other methods, especially y* test with Bonferroni and B-H
adjustment, selected more non-phenotype-related SNPs
simultaneously.

In the real data analysis, our proposed MBREFS pre-
sented the strongest ability to capture the phenotype-
related biomarkers. For Leprosy GWAS data with a
total of 491,883 SNPs [22], 13 external validated SNPs
were re-identified as Leprosy related SNPs by our pro-
posed MBRFS (see Additional files 6 and 7: Table S1
and Figure S5), and 8 negative SNPs under criteria of
Bonferroni adjustment after ATT test were still detected
(see Additional file 8: Figure S4). Nevertheless, under the
same criteria of positive SNPs clusters, only 7 external
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validated SNPs were re-identified as positive SNPs by B-H
adjustment after ATT test, 5 by Bonferroni adjustment
after ATT test, and 3 by LASSO and 1 by DASSO-MB
(see Additional files 6 and 7: Table S2 and Figure S5). For
DNA methylation and gene expression data, the proposed
MBREFS detected relatively reasonable genes, while
other methods found too many genes to be interpreted
(Additional file 6: Table S3 and S4). For metabolomics
dataset, MBRES identified more verified metabolites,
while LASSO method found fewer verified metabolites.
The p value from logistic regression with Bonferroni
and B-H adjustment found four verified metabolites,
but they detected too many false positive ones (Additional
file 6: Table S5). Of note, for DASSO-MB method, it can
only deal with catagorical biomarkers and catagorical
phenotype and thus limits its application in above DNA
methylation data, gene expression data and metabolomics.

The outstanding performances of our proposed
MBRES can mainly be attribute to increase the power
of DASSO-MB [11] and maintain its advantages by
modifying its algorithm in three aspects. Firstly, the
initially screening procedure by single statistical test
not only improves the compute speed, but detects the
marginal association between biomarkers and pheno-
type as many as possible for further conditional inde-
pendent test in MB algorithm. Secondly, the strategy
of the relaxed the conditional independent criterion,
reduces the empty cells of the hierarchical contingency
table in G’test when selecting a new biomarker into
MB. Thirdly, the proposed repeated-fishing strategy re-
solves problem of too many empty cells in hierarchical
contingency table to maintain the power of G* test (Fig. 2).
In addition, as our proposed MBRFS stems from causal
diagrams and depends on conditional independent test,
it has lower false positive rate than LASSO, which is
the common drawbacks in various machine leaning al-
gorithms [37, 38]. More importantly, owing to the pro-
posed MBRES using the repeated fishing strategy, it still
captures more phenotype-related SNPs with minor ef-
fect and has better capability to reduce false negative rate
when non-significant phenotype-related SNPs emerged
under y” test after Bonferroni multiple correction.

Conclusion

Our proposed MBREFS can exactly capture the true
phenotype-related biomarkers with the reduction of
false negative rate when the phenotype-related bio-
markers are independent or correlated, as well as the
circumstance that phenotype-related biomarkers are
associated with non-phenotype-related ones.
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