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In pharmaceutical research, high-content screening is an integral part of

lead candidate development. Measuring drug response in vitro by examin-

ing over 40 parameters, including biomarkers, signaling molecules, cell

morphological changes, proliferation indices, and toxicity in a single sam-

ple, could significantly enhance discovery of new therapeutics. As a proof

of concept, we present here a workflow for multidimensional Imaging Mass

CytometryTM (IMCTM) and data processing with open source computational

tools. CellProfiler was used to identify single cells through establishing cel-

lular boundaries, followed by histoCATTM (histology topography cytometry

analysis toolbox) for extracting single-cell quantitative information visual-

ized as t-SNE plots and heatmaps. Human breast cancer-derived cell lines

SKBR3, HCC1143, and MCF-7 were screened for expression of cellular

markers to generate digital images with a resolution comparable to conven-

tional fluorescence microscopy. Predicted pharmacodynamic effects were

measured in MCF-7 cells dosed with three target-specific compounds:

growth stimulatory EGF, microtubule depolymerization agent nocodazole,

and genotoxic chemotherapeutic drug etoposide. We show strong pairwise

correlation between nuclear markers pHistone3S28, Ki-67, and p4E-BP1T37/T46

in classified mitotic cells and anticorrelation with cell surface markers. Our

study demonstrates that IMC data expand the number of measured parame-

ters in single cells and brings higher-dimension analysis to the field of cell-

based screening in early lead compound discovery.

Discovery of new treatments in oncology research

relies extensively on the use of human-derived cell cul-

ture models [1]. High-content cell-based screens are

widely applied in pharmaceutical drug development to

prioritize lead molecules for animal testing [2]. These

assays rely on the use of primary and cancer cell lines

and mostly monitor cytotoxicity and proliferation.

With the advent of sophisticated genomics and pro-

teomics technologies for soluble proteins and mass

cytometry for single cells, it is becoming possible to

increase the multidimensionality of in vitro screens.

Databases of genotypic and phenotypic profiles [3–5]

across cancer drug panels have provided a comparative

analysis between in vitro studies and clinical therapeu-

tic responses in vivo [6]. One of these datasets devel-

oped and shared by the National Cancer Institute 60

(NCI-60) in the late 1980s was the first in vitro discov-

ery screening tool for pharmacologic compounds
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inducing growth inhibition across 60 cancer cell lines

[7]. Over the years, several concerns were raised

regarding the use of in vitro established human tumor-

derived cell lines for drug testing. Concerns included

genetic instability and dedifferentiation. However, the

study of genetic mutations arising in immortalized cells

remained a field of interest in drug discovery, provid-

ing knowledge on the dysregulation of cellular signal-

ing pathways and the effects small-molecule inhibitors

have on human tumor cell lines [8].

High-content imaging of cancer cell lines in response

to drug treatment is a standard assay applied in pre-

clinical studies for identification of different mecha-

nisms of drug action [9–12]. The main criterion in

every morphophenotypic screen for early drug discov-

ery is the selection of biomarkers and detection modal-

ities (antibodies, chemical and enzymatic probes,

reporter detection tags). In the field of fluorescent cel-

lular imaging microscopy, biomarker analysis in single

cells is limited to 4–6 due to the overlapping spectra of

fluorescent dyes [13]. Repetitive rounds of staining

using the same biological sample are required to

achieve multiplexing [14]. New imaging technologies

are needed to significantly increase multiplicity in a

single sample preparation experiment and perform

replicate analyses [15]. High-content imaging assays

applied to screening drug perturbations in heteroge-

neous cancer cell models could uncover additional

modes of drug action and biomarkers for clinical trials

[16].

Imaging Mass Cytometry is an emerging and trans-

formative technique in the field of digital histopathol-

ogy applied to complex tissue sections [17–19]. The

HyperionTM Imaging System (Fluidigm�, Toronto,

Canada) can measure up to 40 parameters simultane-

ously in formalin-fixed, paraffin-embedded (FFPE),

and frozen human tissue sections with subcellular reso-

lution [20]. Sample preparation is very similar to stan-

dard immunohistochemical protocols [17], where the

tissue section on a slide is first deparaffinized and trea-

ted with an antigen retrieval buffer for antigen epitope

exposure in the case of FFPE, then stained once with

a mixture of isotopically pure metal-labeled antibodies

specific to structural and cell type biomarkers. After

drying and inserting the slide into the ablation cham-

ber, regions of interest (ROIs) are chosen and recorded

by a camera integrated with the Hyperion Tissue Ima-

ger (Fluidigm�). These ROIs are then ablated in 1-lm
steps as the slide moves under the laser. Each laser

pulse vaporizes a 1-lm2 area of the tissue and gener-

ates a plume of particles. The resulting particles are

carried by a stream of helium/argon mixture into a

CyTOF� instrument, an inductively coupled plasma

time-of-flight mass cytometer, described elsewhere [18].

Data are stored as raw binary files of ion counts for

each mass channel (parameter) per pixel. These files

can be converted into a stack of single-parameter

matrices (grayscale images), which are used to create

merged multiparametric pseudocolor images and per-

form quantitative pixel- or segmentation-based analy-

sis. Bodenmiller et al. are developing multivariate

computational tools to visualize and analyze multi-

plexed images of human tissue sections generated by

IMC [21]. However, there is no single software pack-

age or analysis workflow that could currently be

applied to answer specific biological questions.

In this proof-of-principle study, we set out to

develop a comprehensive workflow for IMC data anal-

ysis based on recent advances in imaging algorithmic

methods to visualize and measure multiple biomarkers

in model cell lines cultured in chamber slides (Fig. 1).

Several human breast cancer-derived cell lines,

SKBR3, HCC1143, and MCF-7, were screened for

expression of surface and intracellular markers. Pre-

dicted pharmacodynamic effects were studied in MCF-

7 cells dosed with three target-specific compounds:

growth stimulatory epidermal growth factor (EGF),

microtubule depolymerization agent nocodazole, and

genotoxic chemotherapeutic drug etoposide [22,23].

Our method analysis workflow demonstrates the high

multiplexing capability of IMC for in vitro research

and offers quantitation of multiple biomarkers at sub-

cellular resolution. Future improvements of the tech-

nology toward a higher acquisition speed of multiple

samples will expand IMC applications as an imaging

platform for in vitro cell-based drug profiling.

Materials and methods

Cell culture

SKBR3 (HTB-30TM), HCC1143 (CRL-2321TM), and MCF-7

(HTB-22TM) were purchased, tested for mycoplasma con-

tamination, and authenticated with short tandem repeat

DNA profiling by American Tissue Culture Collection

(ATCC�, Manassas, VA, USA). Cells were cultured within

15 passages in their corresponding growth media supple-

mented with 10% bovine serum (HyCloneTM Cosmic CalfTM

Serum, Logan, UT, USA; Cat. No. SH30087.04) and peni-

cillin/streptomycin (Thermo Fisher Scientific, Waltham,

MA, USA; Cat. No. 15140-122): McCoy’s 5a (ATCC 30-

2007TM) for SKBR3, RPMI-1640 (ATCC 30-2001TM) for

HCC1143, and DMEM (ATCC 30-2002TM) for MCF-7 with

0.01 mg�mL�1 insulin (Sigma-Aldrich�, St. Louis, MO,

USA; Cat. No. I9278). Cells at 70–80% monolayer conflu-

ency were washed with Versene (Thermo Fisher Scientific;

Cat. No. 15040-066), detached with trypsin/EDTA 0.25%
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(Thermo Fisher Scientific Cat. No. 25200-056), collected,

and counted. For each cell line, chamber slides (BioCoatTM,

Corning�, New York, NY, USA Collagen I 8-Well Culture

Slide, Corning� Cat. No. 354630) were used to seed cells at

a concentration of 0.1e6�mL�1 in 0.5 mL per chamber and

grown in 37 °C, 5% CO2, 100% humidity for 48 h prior to

drug compound addition. Each breast cancer cell line was

seeded using individual chamber slides to avoid any cell

cross-contamination, and each IMC experiment was carried

out independently. In chronological order, seeding of

HCC1143 was the first sample preparation, then we run the

second experiment using SKBR3, and last we used MCF-7

for the drug-treated cells in vitro study.

In vitro drug treatment

All chemical compounds were dissolved and aliquoted at

the supplier’s recommended concentrations for long-term

storage in 100% DMSO (Sigma-Aldrich Cat. No. 276855).

Final concentrations for each compound were selected from

previously published data [24–26] by premixing the required

initial drug stock volume with full growth media and then

transferring 0.5 mL volume to corresponding cell chambers

(Table S1): 10 lM of etoposide (Cell Signaling Technol-

ogy�, Danvers, MA, USA; Cat. No. 2200S); 0.5 lM of

nocodazole (Sigma-Aldrich Cat. No. M1404); 10 ng�mL�1

of human EGF (Sigma-Aldrich Cat. No. E9644); 2%

DMSO in growth media. One chamber was left with fresh

growth media as nontreated control. Cells were exposed to

compounds for 48 h at 37 °C, 5% CO2, and 100% humid-

ity. Preparation of additional eight chamber sample slides

to replicate our experiment for IMC analysis was not

required due to the known in vitro predicted effect of the

drugs we tested on this cell line.

Immunocytochemistry and antibody validation

Immunostaining of live cells was performed in chamber

slides. Following drug treatment, fresh media in all cham-

bers was supplemented with Cell-IDTM Intercalator-103Rh

(Fluidigm Cat. No. 201103A) at 1 : 500 for 15 min at

37 °C, 5% CO2 for dead cell identification. The chamber

slides were washed with DPBS (Thermo Fisher Scientific

Cat. No. 14190-144) at room temperature (RT) for 5 min.

Surface metal-labeled antibody cocktail (Table S2) was

made in 0.5% BSA/DPBS from antibody stocks at a dilu-

tion of 1 : 100 for each. Cell monolayers were stained with

250 lL antibody mix for 120 min, RT. Following a wash-

ing step, cells were fixed with 250 lL freshly made 1.6%

formaldehyde (Thermo Fisher Scientific Cat. No. 28906) in

DPBS for 15 min at RT. After fixative removal, cells were

permeabilized with fresh 0.3% Saponin/DPBS (Sigma-

Aldrich Cat. No. S7900-25G) for 30 min at RT and then

blocked with 1% BSA/DPBS for 1 h at 37 °C. After block-

ing, cells were incubated overnight at 4 °C in 250 lL
freshly prepared cocktail of metal-labeled antibodies target-

ing intracellular markers (Table S3) diluted 1 : 50 in 0.3%

Saponin/DBPS. The following day cells were washed once

with 0.5% BSA and stained with 250 lL of nuclear Cell-

ID Intercalator-Ir for 30 min (1 : 1000), RT. After the last

wash, each chamber was filled with 250 lL deionized water

for 5 min for salt removal. Chambers were detached from

slides and left to dry at RT until IMC analysis. The com-

mercial antibodies of our panels have been previously

Fig. 1. Image-based IMC data analysis workflow with open source software.
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validated by immunocytochemistry applied to immunofluo-

rescence analysis of adherent cells. A similar sample prepa-

ration method was applied to the validation of these

antibodies labeled with metals regarding their antigen speci-

ficity detected by IMC. The selection of titers tested for

surface markers (1 : 100) and intracellular markers (1 : 50)

refers to rigorous quality control antibody validation func-

tional assays using single-cell suspension Mass Cytometry,

which has the same single isotopic detection modalities of

antigens as IMC. The list of antibodies used for each breast

cancer cell line experiment is cross-referenced in Tables S2

and S3. A total number of 14 antibodies were tested on

HCC1143 cells, 20 markers for SKBR3 and 25 for MCF-7.

The markers from each panel were selected based on their

specificity to surface membrane, cytoplasmic and nuclear

components of single cells, their previous applications in

the context of breast cancer cell line studies, and their com-

mercial availability. Expanding a panel to 37 markers

requires additional custom labeling of target-specific mono-

clonal antibodies with nonused metal isotopes.

Data acquisition by IMC

Samples were analyzed with the Hyperion Imaging System

(Fluidigm). The dried slide was loaded into the imaging mod-

ule, where an optical previewing of the ROIs was recorded

for laser ablation. Areas of dimension 1000 9 1000 lm were

acquired for HCC1143 and 1400 9 1400 lm for SKBR3 cell

lines experiments. Replicate ROIs of 1500 9 1500 lm size

were collected for MCF-7 exposed to chemical compounds,

and a single ROI was ablated for nontreated control and

DMSO-treated cells. Each ROI sample acquisition took 4.5 h

at an ablation frequency of 200 Hz. The resulting data

files were stored in MCD binary format. Multicolor images

were generated with open source IMAGEJ 1.51 software [27].

Zoom-in regions for each multicolor image were made by

selecting and cropping areas of dimension 400 9 400 lm
from the original picture without any change of the pixel size.

The resolution of each IMC image shown is 1 lm for

1 pixel.

Image analysis software tools

For each recorded ROI, stacks of 16-bit and 32-bit single-

channel TIFF files were exported from MCD binary files

using MCDTM Viewer 1.0 (Fluidigm). Cell-based morpho-

logical segmentation was carried out with two image pro-

cessing pipelines for 16-bit or 32-bit TIFF files and

CELLPROFILER 2.2.0 (CP, Broad Institute, Cambridge, MA,

USA), a widely adopted software in the open source image

analysis community which has been continually improved

since its availability in 2005 to read and analyze cell images

using advanced algorithms [28]. The 16-bit TIFF unstacked

image format was used as input data in CELLPROFILER to

run a segmentation pipeline with a set of sequential mod-

ules to generate and save an unsigned 16-bit integer single-

cell mask TIFF image. Inputs of 16-bit TIFF images with

their corresponding segmentation mask were uploaded in

histoCAT to open a session data analysis. Due to the high

number of 29 single isotopic channel TIFF images for each

replicate and drug treatment condition, histoCAT analysis

was generated faster with a 16-bit format instead of a 32-

bit image format which is bigger in size. The 32-bit TIFF

unstacked images were loaded in CELLPROFILER to run a seg-

mentation and mean intensity multiparametric measure-

ment analysis of individual cells. The resulting outputs

were exported and saved as SQLite single-cell object mea-

surements database files directly compatible with CELLPRO-

FILER ANALYST for downstream computational analysis [29].

Spatial distribution maps, dimensionality reduction, and

unsupervised clustering for 16-bit single images were per-

formed using the histoCAT 1.73 open source toolbox [21].

Supervised analysis by support vector machine-learning

classification on 32-bit datasets was processed with CELLPRO-

FILER ANALYST 2.2.1 [30]. Hierarchical clustering and corre-

lation heat maps of classified cell populations were

prepared using the web-based tool Morpheus (GenePattern,

Broad Institute) [31]. Clustering and visualization of differ-

ent types of markers in classified populations of cells across

all controls and drug treatments were performed with the

free software environment R 3.5.3, the packages pheatmap

1.0.12, igraph 1.2.4 and edgebundleR 0.1.4 [32].

Statistical analysis

Data from nontreated control, DMSO-only, and drug-trea-

ted cells were analyzed using a nonparametric Mann–Whit-

ney test with a two-tailed P value for every channel

independently. Statistical significance was defined as

P < 0.05. All statistical analysis was performed with GRAPH-

PAD
TM

PRISM
� 7.04 software [33].

Results

Multiparametric characterization of breast cancer

cell lines by IMC

Imaging Mass Cytometry analysis revealed heterogene-

ity in the expression of surface, intracellular, and

nuclear markers in human breast cancer cell lines cul-

tured in chamber slides. As an example, we selected

the SKBR3 cell line, which is characterized by an inva-

sive phenotype and increased proliferation in vitro and

is used as a model to delineate mechanisms of resis-

tance to ErbB2-targeted clinical therapies [34,35]. As

seen in Fig. 2, the culture consists of mostly small-

and medium-size rounded epithelial cells and occa-

sional large multinucleated cells. Most cells show high

1655FEBS Open Bio 9 (2019) 1652–1669 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

A. Bouzekri et al. Multidimensional drug profiling by Imaging Mass Cytometry



levels of the cytoskeletal marker pan-keratin. Human

epidermal growth factor receptor 2 (HER2) and

EGFR are seen at the surface membrane, while tumor

suppressor and transcription factor p53 are localized

in the nuclei. Presence of lysosomal organelles is out-

lined in the cytoplasm with an antibody targeting the

lysosome-associated membrane protein 2 (LAMP-2),

known as CD107b. Image resolution is similar to fluo-

rescence microscopy. Ductal breast carcinoma-derived

triple-negative HCC1143 cell line was used to demon-

strate mesenchymal morphology (Fig. 3) with high

vimentin detection in the cytoplasm, nuclear localiza-

tion of p53, and cytoplasmic distribution of the basal-

like breast cancer marker cytokeratin 5 [36,37]. The

proliferation marker Ki-67 identifies cells in the active

state of the cell cycle. Combination of multiple mark-

ers in an in vitro cell profiling assay allows more pre-

cise analysis of cellular states of differentiation and

invasiveness characteristic for breast cancer tumors.

In vitro drug effect profiling by IMC

To evaluate how IMC may be translated into future

applications in the field of cell-based drug profiling, we

initiated a limited drug treatment study using one

model breast cancer cell line. The phenotypic and

functional responses of wild-type p53-expressing

MCF-7 cells to etoposide, nocodazole, or EGF com-

pounds were investigated. In preclinical in vitro drug

discovery, this model is considered to be reproducible,

fast, and inexpensive despite the lack of clinical corre-

lation to drug response in vivo due to breast tumor

heterogeneity [38]. To identify how these chemical

compounds induce cytostatic and cytotoxic effects on

this noninvasive luminal breast cancer cell line, we

generated multiplexed pseudocolor images of affected

cellular compartments (Fig. 4). For example, nuclear

size and proliferative activity of each cell were ana-

lyzed using the nuclear intercalator-Ir stain (Cell-ID

Intercalator-Ir), cell cycle-S phase marker (Cell-ID

Fig. 2. Imaging Mass Cytometry images of cellular and nuclear markers expressed by SKBR3 with zoom-in area. Cell-ID: nuclei labeled with

Ir-intercalator. Zoom-in images are rendered with multiple combinations of protein markers detected in different cellular compartments.

Scale bar = 100 lm.
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IdU), proliferation marker Ki-67, cell cycle regulatory

proteins cyclin B1 and D3, and estrogen receptor

alpha (ERa). Antibody against pH2A.XS139 was used

as a nuclear marker for DNA double-strand breaks

and pHistone3S28 for mitotic cells. Cytoskeletal mark-

ers pan-keratin and cytokeratin 19 were used to follow

changes in morphology and cell size. Drug response of

MCF-7 morphology, adhesion, and cell-to-cell interac-

tion were visualized with surface membrane proteins,

such as the membrane-bound mucin marker MUC-1

overexpressed in breast carcinoma [39], cell adhesion

molecule EpCAM, integrin CD29, tetraspanin CD81,

the low-expressed epidermal growth factor receptor

EGFR, regulators of integrin-mediated cell adhesion

CD98 and CD47 [40], and E-cadherin as epithelial

interaction protein (Table S2).

Long-term exposure of MCF-7 cells to EGF induced

significant morphological changes and an increase in

cell size. Lineage shift from a classic epithelial cobble-

stone monolayer to a more invasive mesenchymal type

was observed. The presence of large spindle-shaped

cells that seemed to lose contact with other cells and

migrate into empty spaces may be related to an

increase in cell motility (Fig. 4A). Activation of the

EGFR signal transduction pathway by EGF is known

to play a role in cellular motility and size increase in

the tumor aggressiveness [41].

Screening of MCF-7 cells treated with etoposide,

nocodazole, or EGF shows multivariate phenotypic

response profiles compared to nontreated and DMSO-

treated controls (Fig. S1).

Treatment of MCF-7 cells with the antineoplas-

tic agent nocodazole resulted in an increase in the

population of pHistone3S28-positive cells with a

mitotic index threefold higher compared to

DMSO-treated or nontreated control (Table S4).

Another cytostatic phenotype was observed after

prolonged drug exposure: subpopulations of cyclin

D3-positive and tetraploid cells exiting mitosis

without cytokinesis as a result of microtubule dis-

ruption by nocodazole (Fig. 4B). Presence of cyclin

D3-positive and tetraploid cells in the G1/S

Fig. 3. Imaging Mass Cytometry images of cellular and nuclear markers expressed by HCC1143 with zoom-in areas (two ROI). Cell-ID:

nuclei labeled with Ir-intercalator. Each zoom-in composite image is rendered with a selection of different markers. Scale bar = 100 lm.
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interphase confirms nocodazole effect on MCF-7

cell cycle [24].

Incubation of MCF-7 with the anticancer agent eto-

poside shows inhibition of cell proliferation, elevated

numbers of cells positive for nuclear pH2A.XS139 pro-

tein, and compaction of the monolayer compared to

EGF- or nocodazole-treated samples (Fig. 4C). Expo-

sure of tumor-derived cell lines to this inhibitor

induces the formation of a stable covalent topoiso-

merase II-cleaved DNA complex, which causes

multiple breaks in double-stranded DNA. Etoposide

treatment of MCF-7 activates phosphorylation of

H2A.X, which is required for checkpoint-mediated cell

cycle arrest, promotes DNA repair, and maintains

genomic stability. Thus, pH2A.XS139 is a sensitive

biomarker for measuring levels of drug-induced dou-

ble-stranded DNA breaks in cancer cells [42].

High-dimensional phenotype analysis of in vitro

drug response

Multivariate phenotypic responses of MCF-7 cells fol-

lowing chemical perturbations were quantified with a

set of available software tools. Unfortunately, there is

no single software package for this type of analysis.

Therefore, we employed a workflow that includes a

wide variety of tools designed for cellular imaging.

Hopefully, this work will underscore the need for soft-

ware specifically developed for analysis of multipara-

metric data acquired by IMC.

Fig. 4. Multiplexed IMC images of MCF-7 cells treated with different compounds. (A) EGF, (B) nocodazole, (C) etoposide. Composite

images of 1500 9 1500 lm size (scale bar = 160 lm) with 400 9 400 lm zoom-in areas (scale bar = 100 lm). Columns images

correspond to the same combination of proteins detected per drug treatment (row).
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First, we used CELLPROFILER 2.2.0 (CP) to identify

single cells through establishing nuclear and cellular

boundaries [43]. Accuracy and robustness of cell seg-

mentation were assessed by using Cell-ID Intercalator-

Ir to identify cell nuclei and pan-keratin for cytoplasm

(Fig. 5A, Figs S2A and S3). The segmentation masks

were generated for each ROI and then exported for

further downstream analysis of changes in MCF-7 cel-

lular phenotypes in response to drug treatment.

Second, to visualize and analyze data we used the

open source platform histoCAT, which enables highly

multiplexed, quantitative, and detailed analysis of cell

phenotypes, microenvironment interactions, and tissue

architecture [21]. The workflow of histoCAT consists

of overlaying the segmentation masks previously gen-

erated by CP to extract single-cell level information.

To evaluate the diversity of phenotypic profiles col-

lected from drug-treated MCF-7 cells, we then selected

and generated Z-score normalized mean intensities of

pHistone3S28 and pH2AXS139 as drug-sensitive protein

markers. Spatial heat maps of both channels were dis-

played for various drug-treated MCF-7 ROIs using a

99th percentile cutoff (Fig. 5B,C, Fig. S2B). This

quantitative and visual approach allows us to compare

at the same scale the spatial distribution of these

parameters between ROIs. For example, pH2A.XS139

nuclear expression level in etoposide-treated MCF-7

cells is higher than in nocodazole or EGF-treated cells

on average. Mitotic cell marker pHistone3S28 expression

level in nocodazole-treated MCF-7 is twofold higher

than that identified for other drugs. Related single-cell

Z-score mean intensity values for nuclear markers

(pHistone3S28, pH2A.XS139, Ki-67, p4EBP1T37/T46, p53,

cyclin D3), surface markers (CD98, CD81, CD29,

CD49e, CD47), and cell size parameters (area, perime-

ter, major and minor axis lengths) were exported from

each drug treatment dataset to assess statistically signifi-

cant changes of protein expression levels and cellular

morphology (Fig. 5D and Fig. S4). We can see differ-

ences between both controls and drug-treated samples

in the expression of nuclear markers, with a coincrease

of pH2A.XS139 and Ki-67 levels, and phosphorylation

of the translation repression protein 4E-BP1 under eto-

poside treatment. This suggests the presence of a non-

quiescent population of MCF-7 undergoing DNA

repair and maintaining high proliferative activity. For

A B C D

Fig. 5. Image processing by cell-based segmentation and spatial parametric distribution across ROIs of drug-treated MCF-7 cells. (A) Cell

and nuclear masks overlaid on color IMC images. Scale bar = 100 lm. Zoom-in areas of selected parameters visualized by Z-score

normalized color heat maps for (B) pHistone3S28 (C) pH2A.XS139. Scale bar = 10 lm. (D) Z-score mean intensity levels of nuclear markers

(top), surface markers (middle), and cellular size parameters (bottom) for control and drug treatment conditions. Data are presented as

mean � SEM. ****P < 0.0001 (unpaired t-test).
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nocodazole and EGF treatments, low Ki-67 levels may

be related to the disruption of cell cycle and lineage

shift induced in response to respective compound [44].

EGF treatment shows increased cell size and expression

of adhesion surface markers compared to other condi-

tions. These quantitative results are in agreement with

multicolor images of treated cells.

Finally, the heterogeneity of MCF-7 cell phenotypes

was analyzed using the t-distributed stochastic neigh-

bor embedding (t-SNE) algorithm, a data dimensional-

ity reduction method based on the similarity of

selected markers or cell types [45]. We processed repli-

cates of ROI for each compound using Z-score-

normalized protein markers and cell size parameters to

generate two-dimensional t-SNE plots. This visualiza-

tion tool shows signal distribution of phosphoproteins,

size parameters, and nuclear and cell surface mem-

brane markers over the different ROIs (Fig. 6A and

Fig. S5). For example, the population of mitotic cells

was grouped in a single region on the map with high

expression levels of p4EBP1T37/T46, pHistone3S28, and

Ki-67. The high level of pH2A.XS139 was detected in

the region of etoposide-treated cells and correlates

with the strong Ir-intercalator signal due to com-

paction of cellular DNA in response to the drug. Area

plot reveals the presence of larger size cells in EGF

and nocodazole treatments, in line with EGF-induced

lineage shift and cytokinesis inhibition by nocodazole

(Fig. 6B).

Classification of drug-treated MCF-7 phenotypic

changes by support vector machine learning

Here, we applied the support vector machine-learning

classification ruler termed Fast Gentle Boosting for

accurate IMC dataset multiparametric analysis of

nuclear states of compound-treated MCF-7 cells [29].

This classifier was integrated into CELLPROFILER ANALYST

(CPA) and trained [30] to identify five different nuclear

classes of MCF-7 cells: pHistone3S28-positive mitotic

cells, pH2A.XS139 for cells undergoing DNA repair, p53

as tumor suppressor activation, cyclin D3 for G1/S

transition in interphase, and Ki-67 for proliferating

cells. A composite image of all nuclear markers is

shown in Fig. 7A. These single-cellular objects were

then scored and classified for a supervised analysis of

every protein marker and cell size parameter per speci-

fied nuclear subpopulation. Accuracy of image classifi-

cation on each dataset of MCF-7 drug compound was

evaluated by cross-validation between the true labeled

cells as classification training set and the image full

scoring as predicted label set for each nuclear class.

Classification reports were displayed as confusion

matrices where each value corresponds to average

cross-validation metrics between the trained (true label)

and scored (predicted label) single-cell objects for each

nuclear class on a performance scale from 0 to 1

(Fig. 7B and Fig. S6). As shown, classification of each

nuclear class per drug compound dataset shows rela-

tively good performance between 0.5 and 1.

Raw mean intensity values of protein expression for

each of the five nuclear markers were exported per

classified MCF-7 population and compared to evaluate

statistical significance (Fig. 7C and Fig. S7). Bar charts

show various levels of protein markers among the five

predicted classes of nuclear states, with higher protein

detection in the corresponding class, except for the Ki-

67 proliferative marker, which shows stronger detec-

tion in pHistone3S28 mitotic cells.

Multiparametric MCF-7 drug compound data prela-

beled by nuclear classification were reprocessed using

hierarchical clustering similarity heat maps. First, we

computed pairwise similarities for each class of cells

per drug exposure with Pearson correlation coefficient

between each measured parameter. This method is

applicable to non-normalized data and can be used

when data measurements vary between samples. Simi-

larity Pearson correlation heat maps were computed

using the browser-based tool Morpheus [31]. The core

interface in Morpheus is a graphical color heat map

representing protein marker and size parameter mea-

surements applied to each single-cell object. Determi-

nation of the Pearson correlation coefficient between

each measured parameter generates a reorganized heat

map of multiparametric similarity relationships for

each classified MCF-7 drug dataset [46]. Using these

hierarchical similarity clustering heat maps, we com-

pared the grouping pattern of mitotic pHistone3S28-

positive cells across the multiple ROIs of compound-

treated MCF-7 (Fig. 8 and Fig. S8). Naturally occur-

ring isotopes of iridium, 191Ir and 193Ir, are present in

the nuclear staining reagent Cell-ID Intercalator-Ir

and are grouped consistently across all heat maps. The

two cytoskeleton biomarkers pan-keratin and cytoker-

atin 19 strongly correlate as well, since anti-pan-ker-

atin and anti-CK19 antibodies identify cytokeratin

isoforms highly expressed in MCF-7. Size parameters

including perimeter, area, and axis length of each

mitotic cell are grouped together after hierarchical

clustering across all drug treatments.

Cell surface protein markers (CD29, CD98, CD81,

CD47, EpCAM, and CD49e) generated a cluster with

high correlation and redundancy in the pHistone3S28

mitotic cell subclass. However, EGF treatment influ-

enced expression of these markers, and some level of

dissimilarity occurred between the surface membrane
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cluster and two integrin-mediated regulators, CD98

and CD47. This is consistent with the fact that MCF-7

cells switch to a more mesenchymal phenotype after

EGF treatment and higher motility, with a

concomitant increase in the expression level of some

adhesion proteins.

The intracellular and nuclear biomarkers pHis-

tone3S28, p4EBP1T37/T46, and Ki-67 for mitotic cells

A B

Fig. 6. Unsupervised cluster identification by t-SNE of control and compound-treated MCF-7. (A) Combined colored t-SNE maps of individual

cells (EGF, green; etoposide, black; nocodazole, purple), DMSO (red), and nontreated control (blue). (B) t-SNE maps colored according to the

expression level of nuclear markers and cell size (area).

Fig. 7. Support vector machine-learning classification and multiparametric hierarchical similarity clustering of drug-treated MCF-7. (A) 6-plex

color image of nocodazole-treated cells generated by CPA Image Viewer. Scale bar = 160 lm. (B) Normalized confusion matrix of six

different cell nuclear phenotypes. (C) Protein expression levels of nuclear markers used for cell classification of MCF-7 treated with

nocodazole. Graphs represent the non-normalized mean intensity (�SD) of nuclear proteins within each assigned category. P < 0.05 and

P < 0.0001 (unpaired t-test) are included.
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cluster together in all conditions, showing a specific

phenotypic profile. By looking at the correlation

between the mitotic marker pHistone3S28 and other

markers, we see that p53, cyclin B1, and cleaved poly

(ADP-ribose) (cPARP) show variations in their corre-

lation similarities depending on the drug treatment.

p53 and cPARP exhibit close relationships with other

nuclear markers, since both bind to nuclear DNA to

be functional. Cyclin B1 shows strong correlation with

pHistone3S28 in cells from nontreated control and

EGF-treated ROIs. This correlation is less pronounced

in the case of etoposide and nocodazole.

The clustering of different types of markers in the

class of pHistone3S28 mitotic cells was measured by

comparing the similarity level of each target-specific

cluster across all controls and drug treatments. First,

we reprocessed cell surface membrane CD markers for

each treatment as a new hierarchical similarity heat-

map by using Pearson correlation as distance metric

and complete linkage method (Fig. 9A). As expected,

each individual cluster is aligned and identified around

the matrix diagonal component. Both nontreated and

DMSO controls group of protein markers show close

similarities to each other, and low or negative correla-

tion with drug-treated markers. We used a hierarchical

visualization edge bundle circle plot diagram to high-

light the positive intra- and intersimilarities across

surface membrane protein parameters (Fig. 9B). Visu-

alization of the high pairwise correlations within each

cluster is shown as edge connecting nodes, and bun-

dled lines correspond to close inter-relationships

between both control conditions. Drug-treated clusters

of proteins show poor or no interdependency. A simi-

lar visual workflow was applied to the multivariate

analysis by pairwise Pearson correlation of specific

nuclear markers and cytoplasmic markers types

(Fig. S9).

Discussion

The goal of this study was to demonstrate a multidi-

mensional IMC workflow and quantitative data pro-

cessing using open source computational tools for

in vitro drug response research. The multiplexed mea-

surements acquired from a single image may provide a

more informative and reliable screening of drug leads

for further clinical development [47]. In this work, phe-

notypic features of tumor-derived cell lines such as

SKBR3, HCC1143, and MCF-7, which recapitulate dif-

ferent subtypes found in breast tumors, were character-

ized. The wild-type p53-expressing MCF-7 epithelial

cell line, a model of luminal breast adenocarcinoma,

was selected for in vitro drug treatment and exposed

for 48 h to three classes of bioactive compounds: EGF,

Fig. 8. Hierarchical clustering heat maps of Pearson coefficients of multiple parameters for drug-treated pHistone3S28-positive cells. Clusters

of cells are highlighted according to cells size parameters (black), CD surface markers (blue), Cell-ID Intercalator-Ir isotopes (green), pan-

keratin and CK19 markers (orange), and nuclear markers (yellow).
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nocodazole, and etoposide. The cells were stained with

a mixture of metal-tagged antibodies against cell mem-

brane, cytoplasmic, and nuclei markers and subjected

to IMC. The panel of metal tag antibodies used in our

study was designed to minimize any potential spill over

cross-interference between neighbor isotopic mass chan-

nels [48,49]. When analyzing our IMC data, we did not

encounter strong and significant channel contamination

from one metal-labeled antibody to another. The col-

lected data allowed us to develop a workflow for cellu-

lar imaging analysis, which relies on established

computational methods [50]. Multiplexed images of cell

compartments give a detailed and broad visualization

of biomarker localization and cell size parameter

changes. Cell-based morphological segmentation of

generated digital images is a prerequisite to identify

and export multiple features of interest at single-cell

resolution. Exploratory downstream analysis was per-

formed with the histoCAT platform to generate, nor-

malize, measure, and compare multiple images

according to their multidimensional content in the form

of spatial distribution heat maps, dimensionality reduc-

tion, and unsupervised clustering. In this report, we

also describe cell classification by machine learning to

prelabel cells before measuring their multivariate simi-

larities. Prior knowledge of different cellular states is

important for the calculation of distance and similarity

metrics between each marker in the evaluation of the

heterogeneity of cells and the effects of different

compounds on cancer cells [22]. In the example of

pHistone3S28-positive mitotic cells, we generated a

multivariate high-dimensional heat map that allows a

comparative study of mechanisms of action of multiple

drugs. Additional nuclear classes such as pH2A.XS139,

p53, cyclin D3, and Ki-67 were analyzed using similar

multiparametric clustering approaches (data not

shown). The strategy could enable new ways to per-

form deep proteomic drug screening on different mod-

els for translational medicine and preclinical trials

[51,52].

Other in vitro assays using stem cells, or cocultures

of different cell types, could be studied by IMC as an

additional approach to designing high-content analysis

to investigate cell-to-cell interactions and signaling. A

recent targeted therapy against cancer oncogenes

described a cytotoxic small-molecule compound that

activated the steroid receptor signaling pathways and

led to cell stress and death [53]. IMC may assist

researchers to better understand perturbations in this

and other pathways through high-dimensional analy-

sis. Three-dimensional tumor spheroids grown in vitro

are more representative of the complexity of cancer

A B

Fig. 9. Comparative analysis of multiparametric pairwise correlations between surface membrane markers expressed by MCF-7

pHistone3S28-positive mitotic cells across controls and drug treatments. (A) Hierarchical similarity heatmap of CD98, CD29, EpCAM, CD81,

CD47, and CD49e protein markers. Individual clusters are highlighted around the diagonal component for each condition (nontreated, blue;

DMSO, red; EGF, green; etoposide, black; nocodazole, purple). (B) Hierarchical edge bundle visual graph showing connecting edges

between parametric nodes. Bundled lines between nodes correspond to positive pairwise correlations with a cutoff value > 0.3. The

bundled interconnections show similarities of surface membrane phenotyping profiles between nontreated and DMSO controls.
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tissue than two-dimensional cell cultures and can be

analyzed by IMC through the preparation of sections

of FFPE pelleted spheroids [54]. We summarized in

Table 1 several advantages and challenges during

preparation on slide, staining procedure, acquisition

by IMC, and software data analysis for three different

models of sample. IMC was useful in the biodistribu-

tion study of the platinum-containing anticancer drug

cisplatin in pancreatic adenocarcinoma xenograft

model and could be applied to the emerging metal-

containing chemotherapies and photodynamic thera-

pies, which are considered as alternative approaches to

classic compounds [55,56]. Therefore, the goal for IMC

in preclinical profiling of metallodrugs will be to

efficiently and effectively identify cellular responses of

in vitro tumor-derived cell lines for lead optimization in

target-based drug discovery [57]. A comparison of IMC

performance metrics to other high-content imaging sys-

tem technologies in the field of single-cell analysis is

shown in Table 2.

In conclusion, we demonstrate a comprehensive

image analysis workflow for cell-based IMC data anal-

ysis of surface and intracellular markers in drug-treated

cells. The correlation coefficient for pairs of multiple

parameters and the similar distances among a collec-

tion of treatment profiles facilitate downstream analysis

and allow for direct data visualization. Image-based

cell profiling studies compute statistical estimates of the

Table 1. Key similarities and differences of biological samples processing used for IMC

Sample type Tissue sections (Frozen and FFPE)

Cell smear on microscopic

slide (Liquid biopsy)

Adherent cell lines grown in

chamber slides

Sample quality

and integrity criteria

Thin thickness of the cut

tissue slice (5 lm)

Effectiveness of tissue fixation for

FFPE (temperature, fixing

chemicals, pH, time)

Storage conditions for tissue

preservation (temperature,

humidity, light exposure)

Cell monolayer smear on

slide by surface tension

Fixation method

Low-temperature

storage conditions

Preidentification of cells by

immunofluorescence

staining and scanning

High cell viability and

proliferation rate

Adherence efficiency of

growing cells to the surface

of the slide

Optimal seeding density on

slide and growth conditions

per cell line tested

Sample staining

critical steps

Optimization of dewaxing and

hydration procedures for FFPE tissue

Removal of tissue freezing

matrix for frozen tissue

Antigen retrieval and blocking conditions

Metal isotope labeling of validated

antibody clones for tissue staining

Titration range testing of metal tag

antibodies and DNA metallo-

intercalators

Use of hydrophobic circle

barrier around cells in specific

regions for liquid staining on slide

Blocking conditions

Preparation of metal tag

antibodies liquid cocktail

Washing and drying of the

sample slide before acquisition

Metal tag antibodies panel

specific to surface membrane,

cytoplasm, and nucleus of

adherent cells

Chamber well liquid volume

measurements for cell

staining procedure

Fixation and permeabilization

conditions

Removal of chamber wells

from the slide

Sample acquisition

by IMC

Simultaneous acquisition of all markers

Whole ablation of tissue regions

No autofluorescence

Plotting of two-dimensional

coordinates of cells preidentified

by immunofluorescence

Laser ablation of areas with

good cellular density

and morphology

Regions of interest with intact

cells

Ablation of areas with even

cell monolayers rather than

densely packed

overlapping cells

Data analysis

challenges

Pathology expertise required for

IMC imaging data visualization

Annotation of structural and cellular

regions

Segmentation of individual and distinct

cells within tissue samples requires

nuclei and membrane markers

Single-cell segmentation

of small-sized cells

Identification of nuclei

with DNA metal intercalator

Use of membrane stain for

detection of cellular boundaries

Classification of cellular

subpopulations

Single-cell morphological

segmentation analysis

Nuclei segmentation with

DNA metal intercalator

Whole-cell detection using

cytoplasmic marker

Classification of different

cell states

Multiplexing biological

applications

Immuno-oncology

Solid tumor oncology

Quantitative pathology

Identification of circulating

tumor metastatic cells

Hematology

Immunology

Drug discovery

Cell lines authentication

and characterization

Single-cell systems biology
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likelihood of equivalence between two drug-induced

profiles. Similarity measurements quantify proximity

between profiles, since they detect deviations from one

sample to another regardless of the absolute magni-

tude. This procedure is useful in finding relations and

groups of samples that share common properties in

high-content screening. Predicted pharmacodynamic

effects were visualized and quantified in MCF-7 cells

dosed with three target-specific compounds. Strong

pairwise correlation between nuclear markers pHis-

tone3S28, Ki-67, and p4E-BP1T37/T46 in mitotic cells

and anticorrelation with cell surface markers CD29,

CD98, CD81, CD47, and EpCAM was demonstrated.
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Fig. S1. IMC multiplex image of MCF-7 non-treated

and DMSO-treated control cells. Zoom-in colored area

of 4-plex non-treated (A) and DMSO-treated control

(B) with different combinations of biomarkers,

400 9 400 lm cropped size. Scale bar = 100 lm.

Fig. S2. Cell segmentation and single-marker distribu-

tion of MCF-7 non-treated and DMSO-treated con-

trols. (A) CellProfiler overlays of nucleus and cell

segmentation masks on color composite images (scale

bar = 100 lm). (B) Spatial distribution heat map

zoom-in areas of pHistone3S28, Ki-67, pH2A.XS139

and cell area (scale bar = 10 lm).

Fig. S3. Segmentation accuracy of nuclei and cytoplas-

mic contours of identified MCF-7 cells drug-treated

using binary image overlap. The identified nucleus and

cytoplasm from each cell as object is converted to a

binary format called test ‘image’ and overlaid to the

binary converted tiff image used for segmentation

(DNA-Ir for nuclei identification and pan-keratin for

cell identification) as ‘ground truth’. Both binary images

are overlapped to calculate statistics of the closeness

from the test image to its ground truth. Performance

segmentation statistics parameters is ranging on a scale

from 0 to 1, where 1 means perfect overlap and 0 no

overlap. Nuclei segmentation shows high precision

(number of true positive pixels/(number of true positive

pixels + number of false positive pixels) close to 1 over

the different images. For cell segmentation the precision

is slightly lower but still higher than 0.5 value.

Fig. S4. Comparison of average Z-score expression

level of p53, cyclin D3, CD47, CD49e and Cell-ID

Intercalator-Ir between each control and drug treat-

ment condition. Data are presented as mean � SEM.

****P < 0.0001 (unpaired t-test).
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Fig. S5. Unsupervised cluster identification by t-SNE

of control and compound-treated MCF-7. (a) Com-

bined colored t-SNE maps of individual cells (EGF,

green; etoposide, black; nocodazole, purple), DMSO

(red) and non-treated control (blue). (b) t-SNE maps

colored according to the expression level of nuclear

markers and cell size (Area).

Fig. S6. Fast Gentle Boosting classification matrices of

stitched replicates of MCF-7 ROIs per control and

drug compound.

Fig. S7. Comparative expression levels of protein

markers Ki-67, cyclin D3, pH2A.XS139, p53 and pHis-

tone3S28 (rows) per nuclear class and drug treatment

condition (column) of MCF-7 cells. Bar charts repre-

sent non-normalized mean intensity (+SD) of each

nuclear marker to its related class. P < 0.05 and

P < 0.0001 (unpaired t-test) are included.

Fig. S8. Heat maps of Pearson correlation coefficients

of multiple parameters for non-treated and DMSO-

treated controls ROIs on mitotic pHistone3S28 cells.

Cluster highlighting of cell size parameters (black),

surface markers (blue), Cell-ID iridium isotopes

(green), pan-keratin and CK19 (orange) and nucleus

markers (yellow).

Fig. S9. Graphical representations of Pearson correla-

tion coefficients for nuclei markers (A) and

cytoplasmic markers (B) across all controls and drug

treatments in the classified population of mitotic pHis-

tone3S28 MCF-7 cells. Hierarchical similarities heat-

maps show all pairwise correlations values between

each protein, with diagonal components highlighted as

multiparametric clusters identified for each condition

(Non-treated, blue; DMSO, red; EGF, green; etopo-

side, black; nocodazole, purple). Intra and inter-rela-

tionships between these clusters are shown as

Hierarchical edgebundle visual graphs. Bundled lines

connecting parametric protein nodes correspond to

positive correlation values higher than 0.3.

Table S1. List of chemical compounds used for MCF-

7 cell treatment, 48 h exposure.

Table S2. Metal-labeled antibody panel for cell surface

markers.

Table S3. Metal-labeled antibody panel for intracellu-

lar markers.

Table S4. Mitotic index of compound-treated MCF-7

generated by support vector machine classification with

Fast Gentle Boosting ruler. Population of pHistone3S28 of

all ROIs replicates per drug treatment and control were

counted and divided by the total number of cells detected

to determine the mitotic index of each condition.
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