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Abstract: Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in
polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very
difficult to use a single feature that can allow classification of dark objects in polarimetric SAR
images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination
of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a
preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue
Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image
discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN).
The regions of interest are selected as the training and testing samples for CNN on the three kinds of
polarimetric feature images. The proposed method is applied to a training data set of 5400 samples,
including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness
of the method is demonstrated through the analysis of some experimental results. The classification
accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed
method not only can accurately identify the dark spots on SAR images but also verify the ability of
the proposed algorithm to classify unstructured features.

Keywords: Synthetic Aperture Radar (SAR); pattern recognition; oil slicks; lookalikes; feature fusion;
Convolutional Neural Network (CNN)

1. Introduction

Marine oil slicks occur during the extraction and transportation of crude oil. The development
of marine transportation and ocean development technologies has increased the possibility of oil
accidents. The high frequency of oil slicks at sea has not only caused a serious waste of energy but
also seriously damaged the marine ecology and environment. In order to prevent oil slick disasters,
it is essential to detect the location of oil slicks. Synthetic Aperture Radar (SAR) sensors can be operated
day and night under all weather conditions and produce high-resolution images [1].

In recent years, the application of SAR in oil slicks monitoring has been improved thanks to
the use of launched polarimetric SAR missions, such as Radarsat-2, ALOS-2 and so on [2]. Damping
the Bragg scattering from the ocean surface is the basic underlying principle of SAR oil slick detection,
and they produce dark spots on SAR images [3]. However, several phenomena (e.g., plant oil, oil
emulsion, etc.) also produce dark regions in SAR images. These are called lookalikes and appear quite
similar to oil slicks. These lookalikes often become false positives in oil slick detection. Many studies
into discriminating oil slicks from lookalikes have been conducted with a wide variety of methods.
These can be mainly divided into the following two categories. The first is methods that use specific
classification features. Zheng Honglei et al. used polarimetric characteristic Single-bounce Eigenvalue
Relative Difference (SERD) for oil slick detection and found that SERD can distinguish plant oil from
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crude oil relatively well [1,4–8]. Bing Duan et al. proposed a method based on cross-polarization
ratio of multi-polarimetric SAR images to distinguish mineral oil from plant oil [9,10]. Yongsheng
Yang et al. have used texture features to detect and classify oil slicks in SAR images [11–14]. Reliance on
a single feature to distinguish oil slicks from and lookalikes limits the accuracy of conventional oil slick
services based on single polarimetric SAR imagery [15]. The texture features of single polarimetric SAR
images cannot fully describe the physical characteristics of the sea surface targets, which may cause
misjudgment during the oil slick detection [1]. In consideration of the complementarity among features
to the classification performance, multi-feature fusion would be more suitable for discrimination
oil slicks from lookalikes. Multi-feature fusion is known as early fusion, and it captures all the
underlying statistical information about the problem [16]. It may be possible to use multiple features
simultaneously to reduce the false positive rate in quad-polarimetric SAR images.

The next goal is to improve the classification algorithm. Suman Singha et al. have presented a
new oil slick classification system using Artificial Neural Networks (ANN) in sequence for image
segmentation and feature classification [17–19]. Kruti Vyas et al. used hysteresis algorithms to
segment the dark spots and decision trees to classify oil spills from lookalikes [19–24]. ANN has
many advantages, such as high accuracy, strong ability of parallel distributed processing and good
descriptiveness of nonlinear relationship between input and output [17]. However, the number of
parameters in the input and hidden layers grows with the number of features used for classification
(multiple input parameters), hence making the network training a very challenging task [25].
Sometimes the increase in the number of parameters can draw out the ANN’s learning time, and
it may fail to achieve the purpose of learning [25]. In the decision tree, information gain tends
to be biased towards features which have greater values. The decision tree method can lead to
the emergence of overfitting problems, and it disregards the correlation between attributes of data
sets [25]. Convolutional Neural Network (CNN) is a deep learning method specially designed for
image classification and recognition [26–31]. It is designed to resemble multilayer neural networks.
CNN is good at recognizing two-dimensional shapes and learning structural features and it provides
a way to discern features from pixels automatically [32]. The short training time makes it easier to
use multilayer neural networks and improves the recognition accuracy. Its successful use in image
classification and recognition has shown that CNN produces satisfactory results in hand-written
recognition [32]. CNN is also used in image segmentation [33–37]. Adhish Prasoon et al. have used
CNN to perform the segmentation of knee joint cartilage in Magnetic Resonance Imaging (MRI). Its
accuracy is much greater than that of the traditional method, and the training time was shorter [38].

In this paper, an algorithm is presented for discriminating oil slicks from lookalikes in SAR
images. This algorithm is based on CNN and multi-feature fusion. The proposed algorithm is run
in the following steps: detection of dark spots in SAR images, extraction of features, analysis and
selection of features, selection of Regions Of Interest (ROI) in feature images, and classification of dark
spots into oil slicks or lookalikes. During feature extraction, 12 different kinds of features consisting of
4 polarimetric features and 8 texture features are extracted. During feature analysis and selection, three
features are used to produce the desired feature subset, which has good distinction. In the classification
step, CNN model was built and verified through three data. Training data set of 5400 samples serves
as the input to train the CNN, and the classification accuracy obtained using 900 samples of test
data is 91.33%. The ANN classification accuracy was only 80.33% for the same test data. In addition,
dark spots of all five experimental data were predicted by the established model of CNN to confirm
our result. The proposed algorithm can effectively apply CNN to the classification of oil slicks and
lookalikes in SAR images. The learning sample of CNN is the ROI selected on dark spots of the feature
images, which does not have any characteristic shape. The experiment verified that the proposed
algorithm is also good at learning non-structural features.

The rest of this paper is organized as follows. In Section 2, five quad-polarimetric SAR oil
slick scenes acquired by C-band Radarsat-2 polarimetric mode are introduced. In the third section,
the features of the dark spots are extracted and analyzed, and then an optimal feature subset based
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on feature fusion is constructed to identify the oil slicks and lookalikes. In the fourth section, we
describe the classification based on CNN, in which the learning process is based on the feature values.
The effectiveness of the algorithm is demonstrated through the analysis of some experimental results
and the results are compared to those produced using ANN. The conclusion and outlook are discussed
in the final section.

2. Image Data Sets

Five quad-polarimetric SAR oil slick scenes were acquired by C-band Radarsat-2 polarimetric
mode. The first three sets of data (No. 1~No. 3) are used for the establishment and validation of CNN
model, which contain training and test data. The last two data (No. 4 and No. 5) are mainly used for
the prediction of the established model CNN, which contain test data only. The polarimetric SAR data
are further described in Table 1.

Table 1. Information of polarimetric SAR sets.

Scene ID Location of
Image Center UTC Mode Incidence

Angles
Wind
Speed

No. 1 26◦49′ N/92◦01′ W 2010-05-08
12:01:25.48 Fine Quad 42.10◦ (average) ~6.5 m/s

No. 2 59◦59′ N/2◦25′ E 2011-06-08
05:59:34.78 Fine Quad 46.20◦ (average) 1.6–3.3 m/s

No. 3 60◦09′ N/2◦19′ E 2011-06-08
17:27:53.33 Fine Quad 34.62◦ (average) 1.6–3.3 m/s

No. 4 27◦54′ N/90◦55′ W 2011-8-24
12:05:27.55 Fine Quad 31.50◦(average) ~15 m/s

No. 5 18◦06′ N/109◦25′ E 2009-9-18
10:49:35.42 Fine Quad 32.56◦(average) ~10 m/s

2.1. Mexico Bay Area Data Set (No. 1)

The first experimental data is an area in the Mexico Bay. The scene was captured in 8 May 2010.
Explosion of the offshore drilling platform lead to the oil slick. The dark spots in the image have been
interpreted as crude oil [39]. The oil slick covers an area of 160 km; the width of the widest range is
72 km. The wind speed and wind direction were about 6.5 m/s and 167◦ [39]. Because the Gulf of
Mexico in May is the end of spring and the beginning of summer, the water temperature is about 20 ◦C.
The gray scale of the oil slick data in the Mexico Bay area and the location of the incident are shown
in Figure 1.

Sensors 2017, 17, 1837 3 of 20 

 

the classification based on CNN, in which the learning process is based on the feature values. The 
effectiveness of the algorithm is demonstrated through the analysis of some experimental results and 
the results are compared to those produced using ANN. The conclusion and outlook are discussed 
in the final section. 

2. Image Data Sets  

Five quad-polarimetric SAR oil slick scenes were acquired by C-band Radarsat-2 polarimetric 
mode. The first three sets of data (No. 1~No. 3) are used for the establishment and validation of CNN 
model, which contain training and test data. The last two data (No. 4 and No. 5) are mainly used for 
the prediction of the established model CNN, which contain test data only. The polarimetric SAR 
data are further described in Table 1. 

Table 1. Information of polarimetric SAR sets. 

Scene 
ID 

Location of Image 
Center UTC Mode Incidence 

Angles 
Wind 
Speed 

No. 1 26°49′ N/92°01′ W 
2010-05-08 
12:01:25.48 

Fine Quad 42.10° (average) ~6.5 m/s 

No. 2 59°59′ N/2°25′ E 
2011-06-08 
05:59:34.78 

Fine Quad 46.20° (average) 1.6–3.3 m/s 

No. 3 60°09′ N/2°19′ E 
2011-06-08 
17:27:53.33 

Fine Quad 34.62° (average) 1.6–3.3 m/s 

No. 4 27°54′ N/90°55′ W 
2011-8-24 

12:05:27.55 
Fine Quad 31.50°(average) ~15 m/s 

No. 5 18°06′ N/109°25′ E 
2009-9-18 

10:49:35.42 
Fine Quad 32.56°(average) ~10 m/s 

2.1. Mexico Bay Area Data Set (No. 1) 

The first experimental data is an area in the Mexico Bay. The scene was captured in 8 May 2010. 
Explosion of the offshore drilling platform lead to the oil slick. The dark spots in the image have been 
interpreted as crude oil [39]. The oil slick covers an area of 160 km; the width of the widest range is 
72 km. The wind speed and wind direction were about 6.5 m/s and 167° [39]. Because the Gulf of 
Mexico in May is the end of spring and the beginning of summer, the water temperature is about 
20 °C. The gray scale of the oil slick data in the Mexico Bay area and the location of the incident are 
shown in Figure 1. 

(a) (b) 

Figure 1. Radarsat-2 scene on 8 May 2010 in the Mexico Bay area. (a) The gray scale of the oil slick 
data in the Mexico Bay area; (b) The location of the incident. 

2.2. North Sea Area Data Set RSa and RSb (No. 2 and No. 3) 

An oil slick experiment performed on 8 June 2011 in the North Sea is shown in Figure 2. 
Specifically, the Norwegian Clean Seas Association for Operating Companies (NOFO, Sandnes, 
Norway) conducted this exercise to test equipment and procedures. Plant oil, oil emulsion, and crude 

Figure 1. Radarsat-2 scene on 8 May 2010 in the Mexico Bay area. (a) The gray scale of the oil slick data
in the Mexico Bay area; (b) The location of the incident.

2.2. North Sea Area Data Set RSa and RSb (No. 2 and No. 3)

An oil slick experiment performed on 8 June 2011 in the North Sea is shown in Figure 2. Specifically,
the Norwegian Clean Seas Association for Operating Companies (NOFO, Sandnes, Norway) conducted
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this exercise to test equipment and procedures. Plant oil, oil emulsion, and crude oil were released
during the exercise. Emulsions of Oseberg blend crude oil mixed with 5% IFO380 was released, and
the plant oil here was used to simulate natural monomolecular biogenic slicks, e.g., algae and bacteria,
which are often misinterpreted as oil spills in SAR imagery [15]. Oil emulsion and crude oil were
recovered and decomposed before SAR acquisitions. Table 2 describes the three oil releases. The left
slick in RSa is the plant oil released ~2 h before the acquisition, whereas the remaining part of the
emulsion, which was released ~18 h prior to the satellite pass, is seen on the right, see Figure 2a. These
slicks are also contained in RSb, with the plant oil slick (~13 h old) to the left, the emulsion (~29 h old)
in the middle, and the crude oil (~9 h old) to the right [15], see Figure 2b. The wind speed and wind
direction were about 3 m/s and about 150◦. The sea water temperature was in the range of 10 ◦C–17 ◦C.
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Table 2. Information of the three oil releases.

Plant Oil Emulsion Crude Oil

Date (release time) 8 June 2011 (04.10) 7 June 2011 (12.15) 8 June 2011 (08.23)
Volume 0.4 m3 20 m3 30 m3

Subject to Untouched slick Mechanical recovery (~1 m3 left on surface) Dispersion (on-going)

2.3. Mexico Bay Area Data Set (No. 4)

Radarsat-2 image of the Gulf of Mexico (No. 4) is acquired on 24 August 2011. Explosion of the
offshore drilling platform lead to the oil slick. The dark spots in the image have been interpreted as
crude oil [40]. On the website (http://www.remss.com/), the wind speed would be above 15 m/s.
The gray scale and the location of the incident are shown in Figure 3.
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2.4. South China Sea Area Data Set (No. 5)

The data was obtained in the South China Sea on 18 September 2009. The purpose of the
experiment in the South China Sea is to make a comparison between crude oils and organic excretions

http://www.remss.com/
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that often revealed as lookalikes [2]. The experimental data contain a small amount of crude oil and
plant oil, which were poured with fifteen-minute interval [2]. Plant oil was used to simulate a natural
monomolecular biogenic slick. The gray scale and the location of the incident are shown in Figure 4.
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3. Multi-Feature Discrimination Analysis

3.1. Dark Spots Detection

Dark spot detection is the first step in distinguishing oil slicks from lookalikes. In the SAR images,
oil slicks and lookalikes appear much darker than surrounding areas. Any region that is darker than
its surrounding area should be studied in further detail.

Quad-polarimetric SAR images are susceptible to noise. Pauli decomposition has the advantages
of anti-interference and general high adaptability [41]. The Pauli decomposition graph is clearer
than original quad-polarimetric SAR graph, and it benefits the detection of dark spots and
image post-processing.

Image preprocessing stages are as follows:

1. The original quad-polarimetric SAR data are decomposed by Pauli.
2. The obtained Pauli decomposition graph is filtered by Boxcar filtering.

3.2. Feature Extraction

Feature extraction is crucial to the classification of oil slicks and lookalikes. Geometrical (such as
area, perimeter, and perimeter to area ratio), textural, and polarimetric features are always considered
to distinguish oil slicks from lookalikes [1,17,42]. As the input of the proposed classifier, the features
discussed in this paper are pixel-based features, which can be selected from feature images one by
one. However, geometrical features are region-based features, which are based on adjacent pixel
distribution of images. Here, geometric features are not employed in the proposed classification
procedure. We extracted 12 features from the first three data sets, including 8 texture features and 4
polarimetric features. The extracted features of the dark spots are shown in Table 3.

Table 3. The extracted features.

Texture Features Polarimetric Features

Mean Scattering Entropy
Variance Alpha
Energy SERD

Contrast Pedestal Height (PH)
Correlation

Homogeneity
Dissimilarity

Second-Order Entropy
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3.2.1. Texture Features

The texture features describe the spatial distribution and spatial correlation of gray level.
In general, the texture information of oil slicks and lookalikes is different even with similar gray
level information. The texture of the oil slicks is continuous, smooth and delicate, while the texture
of the lookalikes is scattered, rough, and discontinuous [17]. In this paper, gray level co-occurrence
matrix was used to extract texture features.

Because the gray level co-occurrence matrix is a function of angle and offset, all of the texture
features calculated using gray level co-occurrence matrix are also functions of angle and offset [11].
For this reason, the choice of angle and offset is the key to texture feature computation. For different
images, the best texture features computed by angle and offset are different. The selection of angle and
offset used in this paper took place as follows:

• The texture features can be calculated from four angles (0◦, 45◦, 90◦ and 135◦) in SAR data
processing. Offset can be classified as one of three distances (1, 2, and 3).

• The experimental results showed that the 8 texture features of crude oil, plant oil, and oil emulsion
samples underwent little change in the 4 different angles.

• During calculation of these three offsets, the texture characteristics of the three kinds of dark spots
also changed little.

• In the experiment, the offset and angle of gray level co-occurrence matrix were set to 1◦ and 45◦

to extract the texture features.

3.2.2. Polarimetric Features

The polarimetric SAR data have polarimetric information, such as polarimetric matrix and
scattering vector, polarimetric data distribution, and target decomposition parameters [1]. Unlike
single polarimetric, quad-polarimetric SAR image contains not only intensity information but also
phase information. Quad-polarimetric SAR can effectively obtain the scattering characteristics of
the target and can more fully reflect the geometry and physical characteristics of the target [1].

In this paper, the polarization scattering entropy (entropy), scattering alpha (alpha), SERD, and
Pedestal Height (PH) of three kinds of dark spots (plant oil, emulsion, and crude oil) are extracted.
Decomposition of four features is based on an eigenvector decomposition of the (3 × 3) complex
coherency [T3] matrix. SERD is expressed as follows:

SERD =
λs − λ3nos

λs + λ3nos
(1)

where λinos are the eigenvalues of T3, The value of the scattering angle αi can be solved according to
the characteristic vector corresponding to the characteristic value λ1nos and the characteristic value
λ2nos. If α1 ≤ π

4 or α2 ≥ π
4 , λs = λ1nos; if α1 ≥ π

4 or α2 ≤ π
4 , λs = λ2nos. SERD is very sensitive to

surface roughness [1]. The value of SERD reflects the proportion of single scattering in the scattering
mechanism. The larger the SERD value, the greater the proportion of single scattering in the target
scattering mechanism [1]. The oil film suppresses the capillary ripple and short gravity waves on the
surface of the ocean. In the low-entropy scattering region, the scattering mechanism is dominated
by single scattering, and the SERD value is relatively large. In the high scattering area of the oil film,
the scattering mechanism on the surface of the ocean is complex, single scattering is not dominant,
and the SERD is smaller. PH is expressed as follows:

PH =
min(λ1, λ2, λ3)

max(λ1, λ2, λ3)
=

λ3

λ1
(2)

where λi (i = 1, 2, 3) are the eigenvalues of T3. PH is the ratio of the minimum and the maximum
eigenvalue, the eigenvalue is related to the optimal backscattering polarization. PH is a measure of



Sensors 2017, 17, 1837 7 of 20

the unpolarized component in the average echo [43]. In the area covered by oil slicks, the difference
between the minimum and the maximum eigenvalue is not high, and the PH is large.

3.2.3. Feature Analysis and Selection

In order to select the most suitable features, and hence yield the optimum feature subset to
discriminate oil slicks from lookalikes, candidate features were analyzed as follows [44]:

• 6 samples of each kind of dark spot on the 12 bands (8 texture feature bands and 4 polarimetric
feature bands) were selected.

• The average feature value of all pixels in each sample was calculated.
• The optimal feature subset was decided by analyzing and comparing 12 kinds of feature values of

three kinds of dark spots.

Figure 5 shows the maps of 12 features extracted for three kinds of dark spots, i.e., crude oil, plant
oil and oil emulsion. The experimental results show that three polarimetric characteristics (entropy,
alpha, and SERD) can distinguish oil slicks from lookalikes well. Correlation and second-order entropy
can distinguish plant oil from the other two kinds of dark spots, but crude oil and emulsified oil films
could not be differentiated. PH can distinguish crude oil from other two kinds of dark spots, but plant
oil and emulsified oil film could not be differentiated. Through this analysis, scattering entropy, alpha,
and SERD were selected for the optimal feature set.
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The three kinds of polarimetric feature images of the three data were obtained by decomposition 
and shown in Figure 6. Three ROIs in the same position can be obtained on the three feature images 
by selecting a ROI. Through K-fold Cross Validation (seeing Section 4.4.3 for more details), 6300 ROIs 
were chosen and divided into 5400 training sets and 900 test sets. The training data sets consist of 
1800 crude oil, 1800 plant oil and 1800 oil emulsion samples. Each training data set was equally 
divided into three groups for scattering entropy, alpha and SERD parameters. The distribution rules 
of the 900 test data sets are similar to that of training data sets. The size of each ROI was 28 × 28 
(seeing Section 4.4.1 for more details), the value of each pixel corresponded to the feature value of the 
three polarization features rather than the gray value. 

Figure 5. Plots of 12 features values extracted for three kinds of dark spot areas. (a) Mean; (b) Variance;
(c) Energy; (d) Contrast; (e) Correlation; (f) Homogeneity; (g) Dissimilarity; (h) Second-Order Entropy;
(i) Scattering Entropy; (j) Alpha; (k) SERD; (l) PH.

The three kinds of polarimetric feature images of the three data were obtained by decomposition
and shown in Figure 6. Three ROIs in the same position can be obtained on the three feature images by
selecting a ROI. Through K-fold Cross Validation (seeing Section 4.4.3 for more details), 6300 ROIs
were chosen and divided into 5400 training sets and 900 test sets. The training data sets consist of
1800 crude oil, 1800 plant oil and 1800 oil emulsion samples. Each training data set was equally divided
into three groups for scattering entropy, alpha and SERD parameters. The distribution rules of the
900 test data sets are similar to that of training data sets. The size of each ROI was 28 × 28 (seeing
Section 4.4.1 for more details), the value of each pixel corresponded to the feature value of the three
polarization features rather than the gray value.
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If the window size of Boxcar filter was set to 1, the process of data decomposition would avoid any 
need for additional filtering. Filtering can significantly improve the accuracy of supervised 
classification. The Boxcar filter is better than the refined Lee filter in improving classification accuracy 
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scattering alpha as an example, we found that the expansion of the filter window cause the edges 
become more blurred. The Edge Preserving Index (EPI) in Table 4 illustrated this point. Some of the 
sea areas become brighter, as shown in Figure 7, and the feature value of sea areas and dark spots 
became larger. The number of pixels with large feature values also increased with the expansion of 
the filter window, as shown in Figure 8. Because filtering improves the classification accuracy, we 
did not consider the case when the window size was set to 1, as shown in Figure 8 (without Boxcar 
filtering). This phenomenon may lead to misjudgment. The filtering time also increased significantly 
with window size, so we set the window size to 3. 

Figure 6. Three kinds of polarimetric feature images of the three data. (a) Entropy of Gulf of Mexico
oil slick data; (b) Entropy of the North Sea of Europe (RSa); (c) Entropy of the North Sea of Europe
(RSb); (d) Alpha of Gulf of Mexico oil slick data; (e) Alpha of the North Sea of Europe (RSa); (f) Alpha
of the North Sea of Europe (RSb); (g) SERD of Gulf of Mexico oil slick data; (h) SERD of the North Sea
of Europe (RSa); (i) SERD of the North Sea of Europe (RSb).

3.2.4. Parameter Analysis of Boxcar Filter

Data to be decomposed were run through an additional filtering procedure, a Boxcar filter.
A sliding window of N × N dimensions was used to compute the local estimate of the average matrix.
If the window size of Boxcar filter was set to 1, the process of data decomposition would avoid any need
for additional filtering. Filtering can significantly improve the accuracy of supervised classification.
The Boxcar filter is better than the refined Lee filter in improving classification accuracy [37]. The size
of the filter window also exerts an important influence on the classification accuracy.

In order to determine the size of the Boxcar filter window, we selected one area containing each
kind of dark spots (crude oil, plant oil, and oil emulsion) in three data sets; hence we set the boxcar
filter window size to 3 × 3, 5 × 5, and 7 × 7. The polarimetric features of selected regions on the three
polarimetric feature images were compared under the different window sizes. Taking the polarized
scattering alpha as an example, we found that the expansion of the filter window cause the edges
become more blurred. The Edge Preserving Index (EPI) in Table 4 illustrated this point. Some of the
sea areas become brighter, as shown in Figure 7, and the feature value of sea areas and dark spots
became larger. The number of pixels with large feature values also increased with the expansion of
the filter window, as shown in Figure 8. Because filtering improves the classification accuracy, we
did not consider the case when the window size was set to 1, as shown in Figure 8 (without Boxcar
filtering). This phenomenon may lead to misjudgment. The filtering time also increased significantly
with window size, so we set the window size to 3.
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oil); (b) Window size 5 × 5(Crude oil); (c) Window size 7 × 7 (Crude oil); (d) Window size 3 × 3
(Plant oil); (e) Window size 5 × 5 (Plant oil); (f) Window size 7 × 7 (Plant oil); (g) Window size 3 × 3
(Oil emulsion); (h) Window size 5 × 5 (Oil emulsion); (i) Window size 7 × 7 (Oil emulsion).
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4. Oil Slick Classification Based on CNN

4.1. Introduction to CNN

CNN is a feed-forward neural network, and it has excellent performance for image recognition [45].
CNN is a multilayer perception which is designed to recognize two-dimensional shapes [45]. The basic
structure of CNN consists of two layers: In the feature extraction layer, the input of each neuron
is connected to the Local Receptive Fields (LRF) of the previous layer; the other is the feature mapping
layer [45]. Each layer of the computing network is composed of a number of feature maps, and
each feature map covers a plane, and all neurons on that plane have equal weight. The LRF and
Weight-Sharing (WS) of the CNN structure can greatly reduce the number of parameters of the network
structure and accelerate training. The network structure is highly invariant to translation, scaling, and
inclination. The WS network structure of neural network reduces the complexity of network model
and reduces the amount of weight. This advantage is more obvious when the input of the network
is a multi-dimensional image, so the image can be directly used as the input of the network, and it
avoids any need for the complex feature extraction and data reconstruction processes required by the
traditional recognition algorithm [26–32,45]. CNN mainly includes alternating convolutional layer
and pool layer [45].

The input image is convoluted by trainable filters and an additive bias. After convolution, feature
maps are generated in the C1 layer, four pixels from each group on the feature map are then weighted
and added together, hence S2 layers were obtained using a sigmoid function. These images are then
filtered to find the C3 layer. S4 is produced by C3 through the same process by which S2 is produced by
C1. Finally, these pixel values are rasterized and connected into a vector as the input of the traditional
neural network to get the output [45].

The C layer is the feature extraction layer. The input of each neuron is connected to the LRF of
the previous layer, and then the local features are extracted. Once these local features are extracted,
the relationship between its position and that of other features is also determined. The S layer is
a feature mapping layer, and each layer of the network is composed of multiple feature maps. Each
feature is mapped into a plane, and the weights of all neurons on the plane are equal. The sigmoid
function serves as the activation function of the CNN, so feature mapping has the invariance of
the displacement [45].

The training process of CNN is divided into four steps:

1. A sample (X, YP) from the sample set is taken and X is entered into the net.
2. The actual output (Op) is calculated.
3. The difference between Op and the corresponding ideal output YP is calculated.
4. The weight matrix of the back propagation method is adjusted based on the minimum error.

In steps 1 and 2, the information is transferred from the input to the output layer through gradual
transformation. (The final results are obtained using the multiplication of the input and the weight
matrix of each layer.) The classification results are obtained using the trained network structure.

4.2. Classification of Oil Slicks and Lookalikes Based on CNN

The three polarimetric features in the previous section here serve as the basis for classification of
oil slicks and lookalikes. The learning process of the network is based on the gray value of all pixels of
the input image in original CNN. However, in this paper, the learning process of network is based
on feature values. Each input sample is selected from the feature images. A total of 6300 samples
were selected from the three kinds of feature images, including 2100 crude oil samples, 2100 plant oil
samples, and 2100 oil emulsion samples. The size of ROI (input sample) is 28 × 28, and the parameter
will be analyzed in Section 4.4.1. CNN is applied to a training data set of 5400 samples, including
1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. The structure and parameters are given
in Figure 9, according to the original version of CNN [32]. The CNN structure used in the experiment
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is shown in Figure 10. The classification accuracy determined by using the test data set of 900 samples
(equally divided among crude, plant and emulsion oil samples) is 91.33%. The result of classification
based on multi-features fusion is shown in Table 5, and the training performance is shown in Figure 11.
In order to obtain more reliable results statistically and avoid overfitting, a K-fold Cross Validation
(K-CV) was be implemented in detail (seeing Section 4.4.3).
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Table 5. The result of classification based on multi-features fusion with the input patch is 28 × 28 and
κ = 0.87.

Types Crude Oil (%) Plant oil (%) Oil Emulsion (%)

Crude oil 92.67 0 11.00
Plant oil 0 92.33 0

Oil emulsion 7.33 7.67 89.00
Total 100 100 100

Note: The accuracy (%) is 0–20% as slight, 21–40% as fair, 41–60% as moderate, 61–80% as substantial, and 81–100%
as perfect.
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4.3. Comparison of CNN to ANN

We performed another experiment in order to draw a comparison between the introduced
algorithm and ANN.

The input of CNN is sample images selected on the feature images, but the input of ANN is feature
vectors composed of three kinds of polarimetric features. Selecting a sample on the feature image
can produce three feature samples at the same position (entropy, alpha, and SERD feature samples),
so 5400 training samples in CNN correspond to the 1800 training samples in ANN, and 900 test samples
in CNN correspond to the 300 testing samples in ANN. Then, the mean value of all the feature sample
pixels is calculated as the feature value of the sample. In this way, we get three feature values for the
three kinds of feature samples in the same position, which can be composed to a feature vector and
taken as an input sample of ANN. So, the ANN training data set has 1800 samples (equally divided
among crude, plant and emulsion oil samples); the test data set has 300 samples (equally divided
among crude, plant and emulsion oil samples).

The network structure of ANN is shown in Figure 12. Input layer nodes X1–X3 represent
polarization scattering entropy (entropy), scattering alpha (alpha), and SERD. The output layer has
two nodes, the values can be either 0 or 1. The output representation is shown in Table 6.

Table 6. Output Representation.

Y1 Y2 Representation

1 0 Crude oil
0 1 Plant oil
1 1 Oil emulsion
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According to the general design principle, the transfer function of the hidden layer neuron
is logsig. The transfer function of the output layer neuron is purelin. According to the Kolmogorov
theorem, the formula of hidden layer node number set is l =

√
m + n + a, where “m” is the number

of input nodes, “n” is the number of output nodes, and “a” is the constant of 1–10 [46]. According to
the ANN structure in this paper, the number of nodes in the input layer is 3, and the number of nodes
in the output layer is 2, so the number of nodes in the hidden layer ranges from 4 to 13. There are three
kinds of ANN training function: traingdx, trainlm, and traingd. The experiment shows that training of
trainlm takes place over fitting, and the training of traingd takes place under fitting. For this reason,
traingdx was adopted as the training function, and the experiment showed that the network error
is the smallest when there were 10 nodes in hidden layer. Table 7 is the final network structure.

The results showed that 10 samples of oil emulsion were misidentified as crude oil, 15 samples
of oil emulsion were mistaken for plant oil, 17 samples of crude oil were mistaken for oil emulsion,
and 17 samples of plant oil were mistaken for oil emulsion. In this study, the classification accuracy
of ANN is 80.33% with 300 test data sets. The performance of the ANN network training is shown
in Figure 13. The results of classification based on ANN with multi-features fusion are shown in
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Table 8. LRF and WS are two major advantages of CNN. These two advantages reduce the number
of weights, simply the neural network structure, and the image can be directly input to the network.
Theexperimental results show that the recognition accuracy of the proposed algorithm is better than
that of ANN. The comparison of the proposed algorithm and the ANN method is shown in Table 9.
It is found that overfitting phenomena does exist when the training data set is insufficient, which will
be analyzed in Section 4.4.2.

Table 7. Final structure of ANN.

ANN Network Structure Parameter

Network structure Single hidden layer
Number of neurons in hidden layer 10

Training function Traingdx
Network error 0.4872
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Table 8. The result of classification based on ANN with multi-features fusion and κ = 0.7050.

Types Crude Oil (%) Plant Oil (%) Oil Emulsion (%)

Crude oil 83.00 0 10.00
Plant oil 0 83.00 15.00

Oil emulsion 17.00 17.00 75.00
Total 100 100 100

Note: The accuracy (%) is 0–20% as slight, 21–40% as fair, 41–60% as moderate, 61–80% as substantial, and 81–100%
as perfect.

Table 9. Comparison of the proposed algorithm and ANN.

Classification Method Classification Accuracy

The proposed algorithm 91.33%
ANN 80.33%

Since the proposed problem can be seen as a detection problem, i.e., discrimination between oils
slicks and lookalikes (plant oil and oil emulsion), the estimation of Receiver Operating Characteristics
(ROC) curves is used to evaluate and compare the classification effect of the introduced algorithm and
ANN. In order to guarantee the probability of oil slicks and lookalikes is equal, the proposed method
is applied to a training data set of 3600 samples, including 1800 oil slick and 1800 lookalike samples
(equally divided among plant oil and oil emulsion samples). The distribution rules of the 600 test
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data sets are similar to that of training data sets. According to the correspondence between the CNN
samples and the ANN samples (as introduced in Section 4.4), ANN training data set has 1200 samples
and test data set has 200 samples, and the distribution rules of the samples are similar to that of CNN.
The ROC curve of CNN and ANN are shown in Figure 14. Some results can be analyzed as follows:

• Area Under Curve (AUC) of CNN and ANN were over 90%, and the AUC of CNN is greater than
that of ANN. This indicates that both of them have good separability in distinguishing oil slicks
and lookalikes.

• The position of the Equal Error Rate (EER) of CNN is at False Positive Rate (FPR) = 0.09, and
the position of the EER of ANN is at FPR = 0.15. It can be seen that the CNN model is more
suitable for the distinction between oil slicks and lookalikes than ANN.
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4.4. Parameter Analysis

4.4.1. Size of ROI

The size of ROI (input sample) affects the classification of CNN. If the input patch is too small,
CNN will be unable to fully learn the features of the image. If it is too large, too heavy burden is placed
on the network, then training and testing become too time-consuming. Therefore, it is important
to determine the size of input patch for the classification of CNN. To this purpose, we performed
experiments to show the effect of different input sizes on the classification results considering input
samples of 20 × 20, 24 × 24, and 28 × 28, see Table 10. As shown, the consistency of the classification
increases with the increase of the input samples. We can see that the accuracy increases slowly after
the sample size of 24 × 24, which means the classification accuracy tends to remain stable. Larger
samples will increase the burden on the network and require longer testing and training periods.
For this reason, we set the size of the input patch to 28 × 28.

Table 10. Accuracy and kappa coefficients for the three feature image with different sizes of the input
image sample.

Size Accuracy (%) Kappa

20 × 20 86.89 0.8034
24 × 24 90.89 0.8633
28 × 28 91.33 0.8700
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4.4.2. Overfitting Analysis

Two experiments were implemented in order to test whether overfitting existed in the proposed
algorithm when the training data set is insufficient. Here, the probability of each kind of oil slicks and
lookalikes is equal. The first model was trained based on the first three data (No. 1~No. 3), including
5400 samples (1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples). The second trained model
was only based on the third data (No. 3), including 2700 samples (900 crude oil, 900 plant oil, and
900 oil emulsion samples). These two trained models were used to test the same test data, which
selected from the third data (No. 3), including 450 samples (150 crude oil, 150 plant oil, and 150 oil
emulsion samples). According to the correspondence between the CNN samples and the ANN samples
(as introduced in Section 4.4), ANN training data of the first and second model has 1800 samples and
900 samples respectively, test data has 150 samples, and the distribution rules of the samples are similar
to that of CNN. Classification accuracy of each kind of oil slicks and lookalikes based on the first and
second model are shown in Table 11. On Table 11, the classification accuracy of the second model is
higher than that of the first model. This proves overfitting phenomena does exist when the training
sample space is insufficient. It’s necessary for us to enlarge training sample size to avoid overfitting.

Table 11. Classification accuracy based on the first and second model.

Training Data Crude Oil Plant Oil Oil Emulsion

CNN ANN CNN ANN CNN ANN

No. 1~No. 3 96.00% 88% 97.33% 86% 96.67% 88%
No. 3 98.66% 92% 99.33% 88% 98.66% 90%

4.4.3. K-Fold Cross Validation

In order to obtain more reliable results statistically, K-CV has been implemented. K-CV can
effectively avoid overfitting and underfitting, and the final results are more persuasive [47]. Several
partitions of the data set should be tested in order to check the validity of the trained models. Thus,
the data set was divided into K groups randomly. Each subset of data set was used as a test set
respectively, the rest of the data set (K-1 groups) was used as the training set. Hence, the selection
of the K value is critical. The average and variance of classification accuracy was used to validate
the performance based on the K-CV. The results with the K = 3, 5, 7 and 9 are shown in Table 12.
We can see that the trained model is valid, and the classification constancy is improved by increasing
K. The average and variance of classification accuracy increase slowly after the K value of 7. Taking
into account both statistical stability and computational cost, the value of K is set to 7. In this paper,
6300 samples were divided into two parts: 5400 samples (training data) and 900 samples (test data).

Table 12. The average and variance of classification accuracy based on the K-CV.

K Average Variance

3 0.8717 0.0015
5 0.9079 0.0008
7 0.9308 0.0004
9 0.9356 0.0004

4.5. Classification Experiments and Analysis

The performances of the proposed approach are evaluated on the whole experimental SAR
dataset. Firstly, we used the previously trained CNN model to test the dark spots of the first three
sets (No. 1~No. 3) of data respectively, which contain both training and test data when established
CNN model. Then, the dark spots on the scene No. 4 and No. 5 (only used for the prediction) were
predicted to be oil slicks or lookalikes. Here, the proportions of each kind of oil slicks and lookalikes
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are equal prior probability. The classification accuracies are shown in Table 13. Moreover, analyses
were conducted as follow:

(1) The proposed method can distinguish oil slicks and lookalikes effectively, and its classification
accuracy is higher than that experienced with the ANN approach. These results are consistent
with the analysis ROC curve (as discussed in Section 4.3).

(2) The classification accuracy results in Table 13 show high variance. The first three data (No. 1~No. 3)
were used to build the CNN model, and their classification accuracy is higher. However, the
last two experimental data (No. 4, No. 5) were used only for prediction, which is not including
any training data, and their classification accuracy is much lower. If the provided data is more
sufficient then their classification accuracy would be much better than we expected. On the other
side, overfitting phenomenon does exist when the provided data set is insufficient. Therefore, it is
necessary to enlarge data set to avoid overfitting and make the CNN model to be more stabilized.

(3) The scene No. 4 and No. 1 are from the same sea area (Gulf of Mexico), but testing accuracy
of crude oil on the scene No. 4 is lower than that on the scene No. 1. This indicates that the
recognition rate of the proposed method will be affected by the sea water temperature and
wind speed. This is because the scene No. 4 was captured in August 2011, when the sea water
temperature of the Gulf of Mexico reaches its highest level (28 ◦C), while it is about 20 ◦C in May.
Moreover, the wind speed is greater than that of scene No. 1, see the ripples in scene No. 4.

(4) It can be seen from the classification result of scene No. 5 that sea water temperature, sea area
conditions, and climatic conditions will affect the classification accuracy of the proposed approach.
Training data from the Gulf of Mexico and North Sea, South China Sea is far from the two sea
areas, and the sea water temperature, environmental and climate conditions are differ from those
of the two sea areas.

Table 13. Classification accuracy.

Scene ID
Crude Oil Plant Oil Oil Emulsion

CNN ANN CNN ANN CNN ANN

No. 1 98.67% 92% - - - -
No. 2 - - 94.67% 84% 96.00% 86%
No. 3 96.00% 88% 97.33% 86% 96.67% 88%
No. 4 82.67% 72% - - - -
No. 5 71.33% 62% 72.66% 66% - -

5. Conclusions and Outlooks

The current study is to discriminate oil slicks from lookalikes in polarimetric SAR images based
on the use of multi-feature fusion and a proposed CNN approach. It allows exploiting the information
content of polarimetric features obtained from the decomposition of quad-polarimetric SAR images,
ensuring a high classification rate to distinguish oil from lookalike slicks. Effectively compared with
respect to a classical ANN approach, the proposed method is able to identify accurately the dark spots
on SAR images and hence to classify unstructured features related to different oil classes.

In consideration of the different contributions of each polarimetric feature to the classification
performance, a simple discrimination analysis was conducted to assess discrimination ability of
each feature. We have explored 12 features of oil slicks and lookalikes for the purpose of oil slick
discrimination, and find a preferred features subset includes entropy, alpha, and SERD in the C-band
polarimetric mode.

A solution for multi-feature fusion of the three polarimetric features is provided with the proposed
CNN model. In order to avoid overfitting and obtain more reliable results statistically, we extend
the training data set and a K-CV was be implemented. In the process of CNN model establishment,



Sensors 2017, 17, 1837 18 of 20

a training data set consists of 5400 samples, and the classification accuracy was 91.33% with a test data
set of 900 samples.

The effectiveness of the algorithm is demonstrated through the analysis of the five experimental
data. These data contain multi-temporal quad-polarimetric Radarsat-2 SAR information of oil
slicks and lookalikes (oil emulsion and plant oil). The plant oil in data set is used to simulate a
natural monomolecular biogenic slick. The results of the discrimination process on real SAR images
demonstrated that the proposed method is not only accurately identify dark spots on SAR images but
also classify unstructured features.

This study gives an important method to distinguish oil slicks from lookalikes, and it is effective
for oil slicks classification task. The result also shows if the difference of sea condition (such as climatic,
geographical, sea temperature and environmental conditions) between test and training data is too
large, classification accuracy would be a big decline. In order to reduce the effects of these factors on
future experiments, we will apply more oil slick data from different sea areas to build the CNN model,
and enhance the robustness of training structure of the proposed method. If the prior probabilities of
oil slicks and lookalikes are taken into account for classification decision, the classification accuracy
would be improved undoubtedly. However, there are many types of lookalikes, and only plant oil and
oil emulsion are discussed in this study. The five images used do not contain typical lookalikes caused
by low wind or biogenic materials, which are also regarded as major challenges in oil slicks detection.
It is very difficult to obtain the priori probabilities of all oil slicks and lookalikes accurately. Therefore,
the method of equal probability sampling is adopted in this paper. With the abundance of data sets,
prior probability should be used to estimate classification results.

In our study multi-feature fusion, which is also known as early fusion, is implemented and a single
complex classifier (CNN) is used. Fusion at different stages of classification procedures is a booming
research field that has shown capabilities for improvement of classification results. Late fusion of
scores of several classifiers will also be adapted to the proposed problem as a future research work.
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