
Citation: Aribisala, J.O.; Sabiu, S.

Cheminformatics Identification of

Phenolics as Modulators of

Penicillin-Binding Protein 2a of

Staphylococcus aureus: A Structure–

Activity-Relationship-Based Study.

Pharmaceutics 2022, 14, 1818.

https://doi.org/10.3390/

pharmaceutics14091818

Academic Editor: Marios Spanakis

Received: 28 July 2022

Accepted: 26 August 2022

Published: 29 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

Cheminformatics Identification of Phenolics as Modulators of
Penicillin-Binding Protein 2a of Staphylococcus aureus:
A Structure–Activity-Relationship-Based Study
Jamiu Olaseni Aribisala and Saheed Sabiu *

Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology,
P.O. Box 1334, Durban 4000, South Africa
* Correspondence: sabius@dut.ac.za; Tel.: +27-31-373-5330

Abstract: The acquisition of penicillin-binding protein (PBP) 2a in resistant strains of Staphylococcus aureus
allows for the continuous production of cell walls even after the inactivation of intrinsic PBPs. Thus,
the discovery of novel therapeutics with enhanced modulatory activity on PBP2a is crucial, and plant
secondary metabolites, such as phenolics, have found relevance in this regard. In this study, using
computational techniques, phenolics were screened against the active site of PBP2a, and the ability of
the lead phenolics to modulate PBP2a’s active and allosteric sites was studied. The top-five phenolics
(leads) identified through structure–activity-based screening, pharmacokinetics and synthetic feasibility
evaluations were subjected to molecular dynamics simulations. Except for propan-2-one at the active
site, the leads had a higher binding free energy at both the active and allosteric sites of PBP2a than
amoxicillin. The leads, while promoting the thermodynamic stability of PBP2a, showed a more promising
affinity at the allosteric site than the active site, with silicristin (−25.61 kcal/mol) and epicatechin gallate
(−47.65 kcal/mol) having the best affinity at the active and allosteric sites, respectively. Interestingly, the
modulation of Tyr446, the active site gatekeeper residue in PBP2a, was noted to correlate with the affinity
of the leads at the allosteric site. Overall, these observations point to the leads’ ability to inhibit PBP2a,
either directly or through allosteric modulation with conventional drugs. Further confirmatory in vitro
studies on the leads are underway.

Keywords: phenolics; penicillin-binding protein; structure–activity-based virtual screening; allosteric;
molecular dynamic simulation

1. Introduction

Staphylococcus aureus is a Gram-positive bacterium that has remained a major public
health concern over the years, due to its resistance to major antibacterial therapies [1]. For
instance, Methicillin-resistant S. aureus (MRSA) is currently one of the most common global
causes of infective endocarditis, as well as skin and respiratory system infections [2,3]. In
many countries, strict policies are in place regarding the use of antibiotics, to keep the
organism vulnerable due to the limited treatment options that are available [1,4]. However,
even with limited usage, the number of strains of MRSA with reduced sensitivity or outright
resistance to currently available antibiotics, such as daptomycin, ceftaroline, vancomycin,
amoxicillin, linezolid, and cefotaxime have risen in recent times [2,4–7]. Thus, in addition
to raising public awareness about safe antibiotic usage, developing new therapeutics
with novel modes of action to circumvent and keep up with the increased rate of antibiotic
resistance remains a top priority for many antimicrobial drug development research groups.

The survival of bacteria is dependent on the integrity of their cell walls, which are
made up of peptidoglycan as the primary building unit [8,9]. Peptidoglycan consists of
a repeating unit of a disaccharide (N-acetyl glucosamine (NAG)–N-acetylmuramic acid
(NAM)) with the peptide stems on the NAM unit, and through crosslinking of peptide
stems of nearby peptidoglycan, a mature cell wall is formed [10,11]. The peptide stem
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differs in various organisms and in S. aureus, it is a five-chain peptide L-Ala-γ-D-Glu-L-
Lys(Gly)5-D-Ala-D-Ala with the lysine side chain being linked to pentaglycyl during cell
wall crosslinking [10]. The transglycosylase (synthesis of peptidoglycan backbone) and
transpeptidase (crosslinking of peptidoglycan) activities during cell wall production are
carried out by the penicillin-binding proteins (PBPs) [9]. Due to the essential role of PBPs
in cell wall synthesis, which is critical for bacterial survival, they act as an excellent target
for antibiotics, particularly the β-lactams [6,10].

Staphylococcus aureus possesses four inherent PBPs (PBP1, PBP2, PBP3, and PBP4) [11].
However, due to the acquisition of the mecA gene, a fifth PBP known as PBP2a is fre-
quently found in MRSA, conferring antibiotic resistance in the organism [12]. As a result,
MRSA can continue cell wall synthesis while other PBPs are inhibited by β-lactam antibi-
otics [12,13]. Penicillin-binding protein 2a from S. aureus is a high-molecular-weight class B
PBP identified solely in antibiotic-resistant strains of S. aureus. Penicillin-binding protein
2a’s transpeptidase active site, like that of other PBPs, contains the active site serine (S403)
at the N-terminus of the SXXK sequence motif [12,14,15]. Interestingly, the activity of this
protein is controlled by allosterism at a position, 60 Å away from the active site, where cell
wall crosslinking occurs [12,16]. As a result, previously inert β-lactam antibiotics may now
reach and inactivate this crucial protein, thereby inhibiting the organism [12,16]. Allosteric
modulation is mostly used to treat eukaryotic disorders rather than prokaryotic infec-
tions [12]. However, recent advances in the infectiveness of biochemical and computational
screening approaches, alongside protein structure characterization, point to the prospects
of allosteric activity regulation as a novel concept for antibiotic discovery [12–14,16]. Specif-
ically, by exploiting allosteric modulation of PBP2a of MRSA, promising compounds with
the capacity to exhibit direct antibacterial activity while also working in synergism with
existing conventional antibiotics have been identified [1,16]. Hence, in this study, the active
site of PBP2a was employed in screening compounds against MRSA, while the modulation
of the active site was studied via the binding of compounds to the PBP2a allosteric site.

Most currently accessible antibiotics were produced from microbial sources, while
plant-based antibiotics have been largely ignored, owing to their weaker activity rela-
tive to their microbial-derived counterparts [16]. However, with the increased interest
in plant-based antimicrobials in recent years, most especially the phenolic compounds,
numerous candidates demonstrating promising pharmacological properties have been
identified which can be further developed into therapeutics [16,17]. In bacteria, the effi-
ciency of β-lactam antibiotics has been attributed to their ability to penetrate the outer
cell membrane, resist inactivation by plasmid- or chromosomal-encoded β-lactamase, and
bind efficiently with mutated penicillin-binding proteins (e.g., PBP2a, a target that has
been implicated in the resistant strain of S. aureus) [9]. These characteristics have been
reported in phytonutrients, including phenolics [16,17]. Phenolics’ ability to effectively
bind and modulate bacterial druggable targets, such as β-lactamase, and consequently
inhibit various multidrug-resistant Gram-negative and Gram-positive bacteria has been
reported [16,17], while also enhancing cell membrane permeability for antimicrobial absorp-
tion [18]. In addition, being the most frequently occurring metabolite in plants, phenolics
offer other health and therapeutic benefits as antioxidants and against degenerative dis-
eases, such as cancer and diabetes [16,17,19–21]. These characteristics of phenolics point
to their prospective antibacterial capabilities for treatment or synergistic effects with con-
ventional antibiotics in the treatment of infections caused by multidrug-resistant S. aureus.
Thus, with over 10,000 phenolics isolated over the years and reported in the literature with
different pharmacological characteristics [22], we employed for the first time in this study,
structure–activity-relationship-based pharmacophore and molecular docking approaches
to screen phenolics with capabilities to inhibit the activities of PBP2a of S. aureus. The
most promising phenolics were further studied for their thermodynamic compatibility
with PBP2a and their ability to modulate the active site of PBP2a following binding at
the allosteric site (Figure 1). This was undertaken to identify prospective antibacterial
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candidates that can treat or act in synergy with conventional antibiotics in the treatment of
infections caused by MRSA.

Figure 1. Workflow of the strategy adopted.

2. Materials and Methods
2.1. Druggable Target Acquisition, Preparation, and Identification of Binding Sites

The X-ray crystal structure of PBP2a of S. aureus (3ZFZ) was obtained from the protein
data bank (PDB) (https://www.rcsb.org, accessed on 21 August 2021). The structure was
prepared via removal of water molecules and nonstandard amino acids in preparation for
molecular docking using the UCSF Chimera v1.15 software tool [23]. The x-y-z coordinates
and amino acid residues at the active (centre (X: 28.9; Y: 29.43; Z: 87.60); radius (14.9)] and
allosteric sites (centre (X: 11.34; Y: 33.75; Z: 22.74); radius (13.5)] of PBP2a were defined as
previously reported using Discovery Studio version 21.1.0 [24] and afterwards validated by
literature [16].

2.2. Structure-Based Pharmacophore Screening of Phenolic Compounds

With over 10,000 phenolic compounds currently accessible in the literature [22], a
preliminary computational screening was performed, where a library of phenolics against
PBP2a was built by utilizing the ZINCPharmer database (http://zincpharmer.csb.pitt.edu,
accessed on 21 August 2021). For the screening, the 3D structure of PBP2a from S. aureus
and a consensus phenolic pharmacophore (derived from 32 phenolics) produced from Phar-
maGist (https://bioinfo3d.cs.tau.ac.il/PharmaGist/php.php, accessed on 17 August 2021)
were used [25]. Characteristics, such as the presence of an aromatic ring, the creation of
hydrogen bonds, the charge of the ligand, and the hydrophobic contact between the ligand
and the receptor atoms, were utilised to identify 1550 phenolics that interacted with the
active site of PBP2a in S. aureus (Table S1).

2.3. Ligand Retrieval, Optimization, and Molecular Docking at the Active and Allosteric Site
of PBP2a

The docking strategy was used to screen down the constructed phenolics library at the
active site of PBP2a using Python Prescription (PyRx) v 0.9.5. (Figure 2). Before docking, the
library of phenolics and reference β-lactam antibiotics (amoxicillin, cefotaxime, aztreonam,

https://www.rcsb.org
http://zincpharmer.csb.pitt.edu
https://bioinfo3d.cs.tau.ac.il/PharmaGist/php.php
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and doripenem) [16] were optimised through the addition of Gasteiger charges using the
Open Babel program plug-in on PyRx [24]. Following that, docking of the prepared protein
(PBP2a) and optimised ligands (made up of the built library of phenolics and reference
β-lactam antibiotics) was performed using the AutoDock tool present on PyRx [22]. Dock-
ing at the active site of PBP2a was assured by selecting amino acid residues at the active
site whose grid box coordinates match the established x-y-z coordinates. Following the
selection of the top-twenty phenolics with the highest binding affinity at the active sites
of PBP2a using the reference β-lactam antibiotics as the benchmark, compound similarity,
pharmacokinetics friendliness, and synthetic feasibility evaluation were employed in se-
lecting the top five from the top-twenty phenolics. Afterward, the docking of the top-five
phenolics was done at the allosteric site of PBP2a (Figure 3). Here, the top-five phenolics
were individually retrieved from PubChem, prepared via charge addition using the UCSF
Chimera v 1.15 software program, and then docked at the allosteric site of PBP2a via
amino acid selections at the allosteric site (grid box coordinate coinciding with established
x-y-z coordinates) using the AutoDock tool present on PyRx. The docked complexes of
the top-five phenolics with the most-energy-minimised conformation (maximum binding
affinity) at both the active and allosteric sites were afterward retrieved in PDB format for
further molecular dynamic (MD) simulation.

Figure 2. Validation of docking technique and parameters via the redocking approach against the
co-crystal structure of PBP2a from S. aureus (3ZFZ). (a) the superimposition showed that the top-five
phenolics (chroman-4-one (green), epicatechin gallate (purple), epigallocatechin 4-benzylthioether
(brown), propan-2-one (pink), silicristin (black) and amoxicillin (blue)) could achieve the same
orientation with the native inhibitor (red) of 3ZFZ with a low RMSD value of <1. (b,c) showed the
superimposition of silicristin (phenolic with the highest docking score) and amoxicillin (antibiotic
with the highest docking score) with the native inhibitor of 3ZFZ, displaying the amino acid at
the active site (located 60 Å away from the allosteric site) and the active site gatekeeper residue
(Tyr 446) [16].
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Figure 3. (a) Superimposition at the allosteric site of the co-crystal structure of PBP2a from S. aureus
(3ZFZ), demonstrating the capability of the top-five phenolics (chroman-4-one (green), epicatechin
gallate (purple), epigallocatechin 4-benzylthioether (brown), propan-2-one (pink), silicristin (black)
and amoxicillin (blue)) to achieve the same orientation with the native inhibitor of 3ZFZ (red) with a
low RMSD value of <1. (b,c) showed the superimposition of epicatechin gallate (phenolic with the
highest docking score) and amoxicillin (antibiotic with the highest docking score) with the native
inhibitor of 3ZFZ, displaying the amino acid at the allosteric site of PBP2a of S. aureus (located 60 Å
away from the active site) [16].

However, as molecular docking methods often produce pseudo-positive binding
conformations as the most-energy-minimised pose, validation of docking studies is often re-
quired. One of the most common ways to evaluate the correctness of docking geometry is to
measure the root-mean-square deviation (RMSD) of the ligand from its reference position in
the answer complex after optimal superimposition [26]. A low RMSD value of <1 between
the docked ligand from its reference position in the answer complex suggests the same
binding orientation, which encouraged docking technique validation [27]. In this study,
validation of the docking pose was performed via the superimposition approach against
the experimental co-crystal structure of PBP2a from S. aureus (3ZFZ). The superimposition
showed that the top-five phenolics and amoxicillin achieved the same orientation with
the native inhibitor of 3ZFZ with a low RMSD value of <1, which validated the docking
scores observed in the study; these are presented in Figures 2 and 3 for the PBP2a active
and allosteric sites, respectively.

2.4. Top-Twenty Phenolics Pharmacokinetic Properties Prediction

The SwissADME web (http://swissadme.ch/index.php, accessed on 15 October 2021)
and Molinspiration (https://www.molinspiration.com/cgi-bin/properties, accessed on
15 October 2021) toolkits were used in this study for a robust prediction of hit phenolics’
physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry
friendliness, while the toxicological profiles were evaluated using the Protox II webserver
(https://tox-new.charite.de/protox_II/, accessed on 15 October 2021). Taken together
with the binding affinity of the top-twenty phenolic compounds, the results of these
investigations were utilised to narrow down the list to five compounds.

http://swissadme.ch/index.php
https://www.molinspiration.com/cgi-bin/properties
https://tox-new.charite.de/protox_II/


Pharmaceutics 2022, 14, 1818 6 of 25

2.5. Molecular Fingerprinting of the Top-Twenty Phenolics

Galaxy Europe (https://usegalaxy.eu./#, accessed on 15 July 2022) was used to molec-
ularly fingerprint the top-twenty compounds. In a nutshell, Galaxy Europe’s “molecule
to fingerprint” tool was used to convert the compounds’ smile format into “Open Babel
FP2 fingerprints.” The “Open Babel FP2 fingerprints” were then clustered using the finger-
printing algorithms “Taylor-Butina” and “NxN clustering”, with thresholds of 0.8 and 0.0,
respectively [22].

2.6. Molecular Dynamic (MD) Simulations of Top-Five Hit Phenolics

The MD simulation was performed as previously described [28]. To summarise, the
AMBER 18 package was utilised, and the simulation was run for 120 ns using the FF18SB
variation of the AMBER force field to characterise the operating systems. Similarly, the
ANTECHAMBER was employed to generate the atomic partial charges of the ligands by
applying general amber force field (GAFF) measurements and constrained electrostatic
potential (RESP). The Leap module’s hydrogen atoms, Na+ and Cl− counter ions were used
to neutralise the systems. The amino acid residues in each case were suitably numbered,
and the systems were suspended inside an orthorhombic box of TIP3P water molecules in
such a way that all atoms were within 8 Å of any box edge. The SHAKE method was used
to limit the hydrogen atom bonds in each simulated system. Each simulation had a step-size
of 2 fs, which corresponded to the isobaric–isothermal ensemble (NPT) with randomised
seeding, a temperature of 300 K, a constant pressure of 1 bar, and a Langevin thermostat
with a collision frequency of 1.0 ps and a pressure-coupling constant of 2 ps. Following
that, the 120 ns MDS findings were reviewed and classified as post-dynamic data.

2.7. Post-Dynamic Analysis

The post-dynamic analysis was performed by saving the systems’ coordinates and
trajectories throughout the simulation period and then evaluating them post-simulation
using the PTRAJ module of the AMBER 18 package. Exploiting the CPPTRAJ module of
the same package, the analysis of root-mean-square deviation (RMSD), root-mean-square
fluctuation (RMSF), the radius of gyration (ROG), and solvent-accessible surface area
(SASA) were carried out and their plots were generated using Origin v 6.0 [29]. Likewise,
using the Molecular Mechanics/GB Surface Area (MMGBSA) approach, the binding free
energy was estimated using an average among 100,000 snapshots taken from a 120 ns MD
simulation trajectory using the equation ∆Gbind = Gcomplex − (GReceptor + Gligand). The
PBP2a-ligand plots, which indicate molecular interactions between ligands and amino
acid residues at the PBP2a active site or allosteric site, were identified from the final
complexes obtained and visualised with Discovery Studio v 21.1.0 (Dassault Systemes
BIOVIA, San Diego, CA, USA) [30].

3. Results and Discussion
3.1. Ranking of Phenolics against the Active Site of PBP2a of S. aureus

Screening using the structure-based pharmacophore as employed in this study allowed
for hit-searching using distinct characteristics specific for phenolics and PBP2a [25]. Using
this method, over 10,000 phenolics currently accessible from the literature were narrowed
down to 1550 phenolics with capabilities to interact with the active site of PBP2a of S. aureus
(Figure S1). Following molecular docking, the top-twenty phenolics were identified from
the 1550 phenolics. Molecular docking is a structure–activity-based virtual screening
technique that enables compounds to be ranked based on their orientations and interactions
at the binding site of a protein, and the higher the negative value, the better the affinity
of the compound for the protein [28]. In this study, the top-twenty phenolics had higher
negative docking scores (−6.8 to −8.5) than all the conventional antibiotics (amoxicillin
(−6.2), cefotaxime (−6.0), aztreonam (−5.5), and doripenem (−5.8)) with ZINC03978446
(Isotheaflavin) having the highest negative docking score (Figure 4). This finding regarding
the top-twenty compounds could be an indication of their better potential affinity for the

https://usegalaxy.eu./#
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PBP2a active site relative to the standards, which also lent credence to the effectiveness
of the structure–activity-based pharmacophore strategy employed in this study. This
observation agrees with the report of Koes and Camacho [25], who demonstrated the
specificity and efficiency of structure–activity-based pharmacophores in screening hits for
a target.

Figure 4. Molecular fingerprinting of the top-twenty phenolics. Compounds of the same colour
and cluster were more similar than compounds of different colours and clusters. The top-twenty
compounds were structurally different from the antibiotics which had the same colour (Green).
Phenolics with similarity scores of zero and belonging to the same clusters were conformers, and
in selecting the top five (highlighted in red colour), the conformer with the highest binding affinity
that did not violate the Lipinski violation was selected among the top five. While avoiding the
top-five phenolics that were conformers of each another, one common moiety that the top-five-ranked
compounds had was resorcinol. Two (ZINC38337968 and ZINC03978503) of the top-five phenolics
had a pyrogallol structure and from the cluster chart, these two compounds appeared to be the most
similar among the top-five compounds. Only one (ZINC03978503) of the top-five phenolics had the
catechol group. The top-five compounds all had a synthetic score of less than five.

Due to the high failure rate at the preclinical and clinical phases of drug develop-
ment, the pharmacokinetics, drug-likeness, synthetic feasibility, and toxicity characteristics
of the top-twenty phenolics were evaluated in ranking the top-five phenolics. Since the
evaluation of the pharmacokinetics and medicinal chemistry of compounds via the in
silico tools used in this study can sometimes produce pseudo-positive results, different
online tools [SwissADME web and Molinspiration toolkits] equipped with models for
robust prediction were employed in the study to enable a comparison and validation of
the pharmacokinetics and medicinal chemistry information of the phenolics. This was per-
formed in order to have a high confidence level against false-positive results prior to further
in vitro and in vivo validations. Interestingly, all the top-five phenolics (ZINC34953149 (sili-
cristin), ZINC71621503 (propan-2-one), ZINC38337968 (epigallocatechin 4-benzylthioether),
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ZINC95486076 (Chroman-4-one), and ZINC03978503 (epicatechin gallate)) passed the Lip-
inski rule of five (Figure 4 and Table 1). Lipinski et al. [31] predicted that compounds with
less than two violations of the rule of five, which limit the molecular weight to <500 g/mol,
the hydrogen acceptor to ≤10, the hydrogen bond donor to ≤5, and the octanol coefficient
to <5, will be orally bioavailable. The top-five compounds fulfilling this rule show their
ability to be orally bioavailable to reach target sites and exert their pharmacological ef-
fects. The top-five phenolics were soluble in water, with a bioavailability score of 0.55 each,
similar to that of amoxicillin. Except for ZINC95486076 (Chroman-4-one), with a higher gas-
trointestinal tract absorption rate, the other top-rated phenolics had similar gastrointestinal
tract absorption traits similar to amoxicillin (Table 1 and Figure 4). All these observations
are a pointer to the drug-likeness properties of the top-five phenolics. Cytochrome P450
(CYP), being an important isoenzyme in drug metabolism, plays a key role in drug toxi-
city [32]. Only ZINC03978503 (epicatechin gallate) and amoxicillin were observed to be
non-inhibitors of all the CYPP450 isoenzymes (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and
CYP3A4), which predict their low capability to cause drug–drug interactions when used
with other drugs, as CYPP450 isoenzymes are responsible for metabolizing about 80%
of all medications used [32]. ZINC34953149 (silicristin), ZINC38337968 (epigallocatechin
4-benzylthioether), ZINC71621503 (propan-2-one), and ZINC95486076 (Chroman-4-one)
all inhibit CYP3A4, which proposes their likely capability to cause drug interaction with
other drugs being metabolised by this enzyme. Except for ZINC34953149 (silicristin) and
ZINC95486076 (Chroman-4-one), which were predicted to be active for immunotoxicity, the
other top-ranked phenolics and amoxicillin were predicted to be inactive for carcinogenicity,
hepatotoxicity, mutagenicity, cytotoxicity, and immunotoxicity (Table 1). Moreover, the
top-five phenolics belonged to drug toxicity classes (five and four) that are suitable for drug
development [6] with less than five synthetic feasibility scores, a limit for compounds that
will be less complex to synthesise [33], which hints that structural alterations can be made
on them for druggability improvement. Findings from this aspect of the study suggest the
medicinal and pharmacokinetics friendliness as well as the drug-likeness properties of the
top-five phenolics with their capability to be derivatised and synthesised for improved
druggability and reduced toxicity.

3.2. Thermodynamic Binding Free Energy of Top-Five Phenolics at the Active Site of PBP2a of
S. aureus

The binding free energy measures the difference in energy between a complex (ligand
and receptor) and its unbound receptor component and the higher the negative value,
the better the ligand’s affinity for the protein [34]. In this study, except for propan-2-one,
the top-ranked phenolics had higher binding free energy for the active site of PBP2a of
S. aureus than amoxicillin. Silicristin, epigallocatechin 4-benzylthioether, chroman-4-one,
and epicatechin gallate, when complexed with PBP2a at the active site had −25.61 kcal/mol,
−24.75 kcal/mol, −22.34 kcal/mol, and −23.11 kcal/mol, respectively, which were all
higher than the −21.54 kcal/mol observed with amoxicillin, with silicristin having the
highest binding free energy score (Table 2). This observation is suggestive of the better
potential of silicristin, epigallocatechin 4-benzylthioether, chroman-4-one, and epicatechin
gallate as inhibitors of PBP2a, with silicristin being the most promising among the top-five
phenolics. The top-five phenolics, particularly silicristin, showing better potential for
the PBP2a active site than amoxicillin after the 120 ns MD simulation corroborated the
molecular docking findings of this study, in which the top-five phenolics all had higher
docking scores than amoxicillin, with silicristin having the highest value as well. Generally,
findings from the thermodynamic binding free energy investigations of this study revealed
the advantage of the top-five phenolics over amoxicillin in the management/treatment of
infections caused by MRSA.
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Table 1. Binding affinity of the top-five phenolics against the active site of PBP2a and their ADMET properties.

Ligands
Zinc Code

Popular Name B A
(kcal/mol)

MW < 500
(g/mol) HB-A ≤ 10 HB-D ≤ 5 Log Po/w ≤ 5 RT-B ≤ 9 LV < 2 WS GI

-A BS pgp
Inhibitor of CYP 450s

H C IM M CY TC SACYP
1A2

CYP
2C19

CYP
2C9

CYP
2D6

CYP
3A4

Amoxicillin Amoxicillin −6.2 365.40 6 4 −0.39 5 N VS L 0.55 N N N N N N I I I I I 6 4.17

ZINC34953149 Silicristin −7.5 482.44 10 6 1.49 4 N S L 0.55 N N N N N Y I I A I I 4 4.88

ZINC71621503 Propan-2-one −7.1 458.46 7 6 3.3 6 N MS L 0.55 N N N Y N Y I I I I I 4 3.67

ZINC38337968 Epigallocatechin
4-benzylthioether −7.1 428.46 7 6 2.23 4 N MS L 0.55 N N N N N Y I I I I I 5 4.57

ZINC95486076 Chroman-4-one −7.0 356.37 6 3 3.09 3 N MS H 0.55 N Y N Y N Y I I A I I 4 3.83

ZINC03978503 Epicatechin gallate −6.8 442.37 10 7 1.3 4 N S L 0.55 N N N N N N I I I I I 4 4.16

Keywords: BA: Binding affinity; MW: Molecular weight; HB-A: Hydrogen bond acceptor; HB-D: Hydrogen bond donor; Log Po/w: Partition coefficient; RT-B: rotatable bond; WS: Water
solubility; GI- A: Gastrointestinal absorption; Pgp: Permeability glycoprotein substrate; CYP: Cytochrome; VS: very soluble; MS: Moderately soluble; S: Soluble; N: No; Y: Yes; L: low; I:
Inactive; A: Active; LV: Lipinski violations; BS: Bioavailability score; H: Hepatotoxicity; C: Carcinogenicity; IM: Immunotoxicity; M: Mutagenicity; CY: Cytotoxicity; LD: Lethal dose; TC:
Toxicity class; SA: Synthetic accessibility; and BA: binding affinity.
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Table 2. Energy components (kcal/mol) of the top-five phenolics against the active site of PBP2a of
S. aureus.

Systems ∆EvdW ∆Eelec ∆Ggas ∆Gsolv ∆Gbind

PBP2a + amoxicillin −22.30 ± 7.99 −74.82 ± 26.08 −97.12 ± 28.39 75.58 ± 23.67 −21.54 ± 6.59
PBP2a + silicristin −35.15 ± 8.08 −32.24 ± 12.41 −67.42 ± 15.90 41.80 ± 10.24 −25.61 ± 7.08
PBP2a + propan-2-one −23.27 ± 5.46 −35.71 ± 16.25 −58.99 ± 18.62 39.92 ± 12.55 −19.06 ± 7.26
PBP2a + epigallocatechin
4-benzylthioether −19.36 ± 4.64 −49.56 ± 13.09 −68.93 ± 11.38 44.18 ± 7.98 −24.75 ± 4.72

PBP2a + chroman-4-one −22.23 ± 4.56 −47.43 ± 10.23 −65.56 ± 12.34 −42.78 ± 23.34 −22.34 ± 5.23
PBP2a + epicatechin gallate −20.61 ± 4.45 −43.07 ± 16.16 −63.69 ± 16.86 40.58 ± 10.45 −23.11 ± 7.45

∆EvdW = van der Waals energy; ∆Gbind = total binding free energy; ∆Egas = gas phase free energy;
∆Eelec = electrostatic energy; and ∆Gsolv = solvation free energy.

3.3. Thermodynamic Stability, Compactness and Flexibility of the Top-Five Phenolics at the Active
Site of PBP2a of S. aureus

The thermodynamic stability of the top-five phenolics at the active site of PBP2a of
S. aureus was studied by evaluating the RMSD, ROG, SASA and intramolecular numbers of
hydrogen bonds and distances over a 120 ns simulation time. The RMSD trajectory depicts
the time-dependent departure of a complex’s structure from its unbound structure and the
lower the RMSD value, the closer the complex structure to the unbound structure which
depicts stability [34]. According to Ramirex and Caballero [35], an RMSD value of less than
3 Å is generally acceptable and considered good. In this study, during the first 10 ns of the
simulation, all the systems (unbound PBP2a and complexed PBP2a) were observed to be
equilibrating, a situation in which atoms of the macromolecules (PBP2a) and the surround-
ing solvent relaxed before the system reached a stationary state [36]. After equilibration,
each of the systems was observed to take a more diverse trajectory, an observation which im-
pacted the average RMSD observed after the 120 ns simulation period (Figure 5 and Table 3).
More specifically, at the active site, the unbound PBP2a and PBP2a + propan-2-one complex
deviated by 4.5 Å and 2.5 Å, respectively, immediately after equilibrating and maintained
such deviation with little swaying throughout the simulation (Figure 5). This observation
impacted the high average RMSD observed for unbound PBP2a and PBP2a + propan-2-one
complex throughout the remaining simulation periods, at 6.86 Å and 5.78 Å, respectively
(Table 3). These values are not within the good deviation limit of less than 3 Å and hence
suggest that the systems may not enjoy reasonable degrees of stability. On the other
hand, the PBP2a + silicristin complex maintained a more stable deviation within the 2 Å
and 3 Å range before 60 ns, however after this period, the PBP2a + silicristin complex
showed a greater deviation to 10 Å from 3 Å and maintained such deviation throughout
the simulation, which also contributed to the high average RMSD at 5.65 Å which may also
indicate less stability (Figure 5 and Table 3). Other systems, such as PBP2a + amoxicillin,
PBP2a + epigallocatechin 4-benzylthioether, PBP2a + chroman-4-one, and PBP2a + epicat-
echin gallate all fluctuated within a more stable deviation between 2 and 5 Å during the
entire simulation time and had lower average RMSD values of 4.07 Å, 3.49 Å, 3.26 Å, and
3.42 Å, respectively, with PBP2a + chroman-4-one having the lowest RMSD (Figure 5 and
Table 3). Although, the RMSD values of the simulated compounds were greater than 3 Å,
when compared to the unbound PBP2a system with an RMSD value of 6.86 Å, it could
be generally inferred that the binding of PBP2a with the top-five phenolics as well as
amoxicillin caused an improved thermodynamic structural stability, and hence indicated
their possible prospects as a PBP2a inhibitor. Relative to amoxicillin + PBP2a complex;
PBP2a + epigallocatechin 4-benzylthioether, PBP2a + chroman-4-one, and PBP2a + epicate-
chin gallate all had lower RMSD values which insinuated their advantage over amoxicillin
as PBP2a inhibitors and this observation agreed with the results of the thermodynamic
binding free energy investigations in this study, where epigallocatechin 4-benzylthioether,
chroman-4-one, and epicatechin gallate all had a higher binding free energy than amoxi-
cillin. This finding is consistent with the work of Alhadrami et al. [16], where flavonoids
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enhanced the stability of S. aureus PBP2a when bound at its active site relative to the
reference β-lactams investigated. Notably, silicristin having a higher RMSD value than
amoxicillin when complexed with PBP2a, suggestive of silicristin’s lesser thermodynamic
stability with PBP2a did not support the higher binding free energy observed for silicristin
relative to amoxicillin in this study, however, this observation could be attributed to the
sudden drop in stability (the increase in RMSD) after 60ns as observed from the RMSD
plot (Figure 5) and hence highlights the importance of a longer duration of simulation in
drug discovery.

Figure 5. Comparative root-mean-squared deviation (RMSD) plots of alpha-carbon, the top-five pheno-
lics, and amoxicillin against the active site of PBP2a of S. aureus over a 120 ns MD simulation period.

Table 3. Average RMSD, ROG, RMSF, SASA, and intramolecular-hydrogen-bond number and
distance values of the top-five phenolics following a 120 ns simulation at the active site of PBP2a of
S. aureus.

Systems RMSD (Å) RMSF(Å) ROG (Å) SASA (Å)
Number of
Intramolecular
H-Bond

Intramolecular
H-Bond
Distance (Å)

Unbound PBP2a 6.86 ± 1.18 2.71 ± 0.91 35.37 ± 0.45 26786.05 ± 473.91 339.24 ± 12.45 2.85 ± 0.06
PBP2a + Amoxicillin 4.07 ± 1.15 2.85 ± 1.24 37.57 ± 0.29 27484.50 ± 458.31 341.44 ± 13.23 2.85 ± 0.06
PBP2a + Silicristin 5.65 ± 2.34 2.26 ± 2.09 36.47 ± 1.15 27160.02 ± 545.40 346.00 ± 12.15 2.85 ± 0.05
PBP2a + Propan-2-one 5.78 ± 1.21 2.45 ± 1.13 35.34 ± 0.55 26303.34 ± 464.78 342.94 ± 12.13 2.85 ± 0.06
PBP2a + Epigallocatechin 4-benzylthioether 3.49 ± 0.42 2.27 ± 1.14 36.92 ± 0.32 27060.31 ± 531.98 344.00 ± 12.22 2.85 ± 0.06
PBP2a + Chroman-4-one 3.26 ± 1.16 2.49 ± 3.22 37.84 ± 0.46 27311.74 ± 408.97 345.47 ± 12.13 2.85 ± 0.05
PBP2a + Epicatechin gallate 3.42 ± 0.67 2.38 ± 1.14 37.19 ± 0.29 27187.53 ± 411.42 343.16 ± 12.12 2.85 ± 0.06

The ROG is another thermodynamic stability metric which measures the time-dependent
compactness of a complex during an MD simulation and the lesser the value the more compact
and stable the complex [16,29]. In this study, lesser fluctuations in compactness were observed
in PBP2a + amoxicillin, PBP2a + epigallocatechin 4-benzylthioether, PBP2a + chroman-4-one,
and PBP2a + epicatechin gallate complexes throughout the 120 ns simulation period (Figure 6).
This observation could mean that the binding of PBP2a with amoxicillin, epigallocatechin
4-benzylthioether, chroman-4-one, and epicatechin gallate had little impact in causing the
folding of PBP2a and this observation was evidenced by their respective average ROG values
(37.57 Å, 36.92 Å, 37.84 Å, and 37.19) which were higher than 35.37 Å and 35.34 Å observed
for the unbound PBP2a and PBP2a + propan-2-one that enhanced PBP2a folding just after
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10 ns of the simulation (Table 3). The binding of silicristin to PBP2a, on the other hand,
caused no folding of PBP2a until after 60 ns (Figure 6). Generally, the observations from the
ROG findings in this study were inversely proportional to that observed in the RMSD study,
which indicated that the higher thermodynamic stability observed in the binding of PBP2a
following binding of the top-five phenolics as well as amoxicillin relative to unbound PBP2a
is not directly due to the ability of the top-five phenolics and amoxicillin to cause PBP2a
folding. This observation is not in accordance with the study by Aribisala et al. [29] where
ROG findings of type 2A topoisomerases following binding with metabolites from C. cujete
correlated with the RMSD findings. However, a previous study by Baig et al. [37] reported
that ROG is the mass-weighted root-mean-square distance of a collection of atoms from their
common centre of mass, which indicates that the position of binding of ligands relative to the
centre of the mass may have impacts on ROG values. In this study, the point of interaction
(active site) of PBP2a is far from the centre of the mass and hence may have resulted in the
little impact noted in the folding of PBP2a following binding with the top-five phenolics
relative to the unbound PBP2a. Furthermore, characteristics, such as protein topology, size,
length, point of interactions, and amino-acid packing have also been shown to have impacts
on protein folding [38], and could be the likely reasons for the observations with ROG patterns
in this study.

Figure 6. Comparative radius of gyration (ROG) plots of alpha-carbon, the top-five phenolics, and
amoxicillin against the active site of PBP2a of S. aureus over a 120 ns MD simulation period.

Another important thermodynamic stability metric that analyses protein folding
and changes in surface area during a simulation is the SASA, with higher SASA val-
ues suggesting an increase in protein volume [39]. Similar to the ROG findings, a lesser
fluctuation in SASA in PBP2a + amoxicillin, PBP2a + epigallocatechin 4-benzylthioether,
PBP2a + chroman-4-one, and PBP2a + epicatechin gallate complexes plots was observed
throughout the 120 ns simulation period which points to the lesser impact of amoxi-
cillin, epigallocatechin 4-benzylthioether, chroman-4-one, and epicatechin gallate in re-
ducing the surface area of PBP2a (Figure 7 and Table 3). However, unbound PBP2a and
PBP2a + propan-2-one displayed a slight reduction in SASA value, which suggests a re-
duction in protein volume just after 10 ns and maintained such reduction with minor
swaying throughout the simulation period. These observations impacted their overall
average SASA values, as the unbound PBP2a (26786.05 Å) and PBP2a + propan-2-one
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(26,303.34 Å) both had lesser SASA values than the other investigated systems (Table 3 and
Figure 7). On the other hand, the binding of silicristin on PBP2a revealed a more stable
complex till 60 ns before instigating a reduction in SASA value, which specifies protein
folding. This observation further corroborates the RMSD and ROG findings of this study
on the importance of a longer duration of simulations in determining the compatibility of a
ligand–protein complex. Generally, the observations from the SASA findings of this study
were in agreement with the ROG findings that the higher stability observed in the binding
of PBP2a with the top-five phenolics as well as amoxicillin relative to unbound PBP2a may
not be due to their ability to cause PBP2a folding.

Figure 7. Comparative solvent-accessible surface area (SASA) plots of alpha-carbon, the top-five
phenolics, and amoxicillin against the active site of PBP2a of S. aureus over a 120 ns MD simulation period.

Intramolecular hydrogen bonds and distance are important in the stability of a protein
structure and hence can be assessed to understand the impact of ligand binding on the
stability of a protein during simulation [34,40]. Figure 8a displayed a stable fluctuation
in the pattern of the number of hydrogen bonds formed in PBP2a generally between 300
and 380 before and following bindings of the top-five phenolics and amoxicillin. This
observation signifies the non-disruption of the thermodynamic entropy of PBP2a following
bindings with the top-five phenolics and amoxicillin. Averagely, the top-five phenolics
and amoxicillin, when complexed with PBP2a, resulted in more intramolecular hydrogen
bonds (between 341 and 346) than unbound PBP2a at 339 (Table 3 and Figure 8a). This
observation suggests the occupancy of some intramolecular space by the ligands and
the increase in the intramolecular hydrogen bonds suggests the hydrogen bond interac-
tions between the top-five phenolics as well as amoxicillin with PBP2a. This observation
correlates with the RMSD findings of this study, which suggest the thermodynamic com-
patibility of the top-five phenolics and amoxicillin with PBP2a. The top-five phenolics
binding to PBP2a resulted in more intramolecular hydrogen bonds than PBP2a + amox-
icillin (341), with PBP2a + silicristin (346) having the highest intramolecular hydrogen
bonds. This observation signifies that the complexes formed by the top-five phenolics
and most especially by silicristin, formed more hydrogen bonds with PBP2a during the
120 ns simulation time which could have contributed to the higher binding free energy
observed with epigallocatechin 4-benzylthioether, chroman-4-one, epicatechin gallate, and
silicristin towards PBP2a relative to amoxicillin. Figure 8b displayed a continued reduction
in intramolecular-hydrogen-bond distance as the simulation progressed, which was similar
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in all the systems (unbound-PBP2a- and phenolics-PBP2a-complexed systems). All the
systems had an average intramolecular-hydrogen-bond distance of 2.85 Å (Table 3), which
suggests that the binding of PBP2a with the top-five phenolics and amoxicillin did not dis-
rupt the arrangement and the original geometry of PBP2a but rather caused more internal
pull between the atoms and residues of PBP2a as the simulation progressed. This further
corroborates the thermodynamic compatibility of the top-five phenolics and amoxicillin
with PBP2a observed in this study as established by the RMSD findings.

Figure 8. Time evolution of the number of intramolecular hydrogen bonds (a) and distance (b) formed
in PBP2a following the binding of amoxicillin and the top-five phenolics at the active site of PBP2a of
S. aureus during the 120 ns MD simulation period.

The thermodynamic flexibility of amino acid residues following the binding of the top-
five phenolics at the active site of PBP2a of S. aureus was studied through the measurement
of the RMSF value. The RMSF value takes into consideration the average fluctuation of
atoms and residues of a protein structure over a simulation time which can be related to
their ability to form intra- and intermolecular stable bonds and the lesser the fluctuation,
especially at the active site where ligand binding and catalysis takes place, the stronger the
bonds and the affinity of the ligand for the protein [39]. In this study, higher fluctuation in
residues between 1 and 100, 125 and 300, and 575 and 590, as well as a lesser fluctuation
between residues 300 and 575, and 590 and 645 were observed in all the systems with the
level of fluctuation varying from one system to the other, which consequently impacted
the average RMSF observed (Figure 9a and Table 3). Generally, binding of the top-five
phenolics (epigallocatechin 4-benzylthioether (2.27 Å), chroman-4-one (2.49 Å), epicatechin
gallate (2.38 Å) propan-2-one (2.45 Å), and silicristin (2.26 Å)) with PBP2a resulted in a lesser
average RMSF than the unbound PBP2a (2.71 Å) and PBP2a + amoxicillin (2.85 Å). This
observation suggests the lesser flexibility of PBP2a amino acid residues following binding
of the top-five phenolics, with silicristin binding of PBP2a being the most prominent,
revealing their stronger attraction and ability to promote PBP2a amino acid residue stability.
These findings are consistent with the observed thermodynamic binding free energy, where
silicristin had the most favourable affinity towards PBP2a. Interestingly, when the active
site gatekeeper residue (Tyr446), which has been demonstrated to obstruct drug access to
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PBP2a [12,16], was further evaluated to understand its flexibility during the simulation,
findings showed that Tyr446 had a reduced average RMSF compared with the average
RMSF of the whole PBP2a in all the systems (Table 4 and Figure 9b). This observation was
more prominent in the bound systems than the unbound system, suggestive of the active
involvement of Tyr446 in the binding of the top-five phenolics and amoxicillin. Specifically,
except for the PBP2a-epigallocatechin 4-benzylthioether complex (1.76 Å), the binding
of PBP2a with the top-five phenolics (propan-2-one (1.67 Å), chroman-4-one (1.53 Å),
epicatechin gallate (1.50 Å), and silicristin (1.49 Å)) resulted in a lesser Tyr446 fluctuation
than PBP2a + amoxicillin (1.72 Å) and unbound PBP2a (1.92 Å), with PBP2a + silicristin
having the lowest value (Table 4, Figure 9b). This observation further determines the affinity
of the top-five phenolics and most especially silicristin, with the active site gatekeeper
residue being suggestive of their advantage over amoxicillin as PBP2a inhibitors.

Figure 9. Comparative root-mean-square fluctuation (RMSF) plots of alpha-carbon, the top-five
phenolics, and amoxicillin against residues of PBP2a of S. aureus (a), and gatekeeper residue [Tyr446
(black arrow)] of PBP2a (b) when the top-five phenolics and amoxicillin were bound at the active site
of PBP2a over a 120 ns MD simulation period.

Table 4. PBP2a active site gatekeeper residue average fluctuation (Å) after 120 ns simulation of the
top-five phenolics at the active site.

PBP2a Active Site
Gatekeeper Residue Top-Five Phenolics

Silicristin Epigallocatechin
4-benzylthioether Epicatechin gallate Chroman-4-one Propan-2-one Amoxicillin Unbound PBP2a

Tyr446 1.55 1.76 1.49 1.53 1.67 1.72 1.92

3.4. Molecular Docking of Top-Five Phenolics at the Allosteric Site of PBP2a of S. aureus

The molecular docking at the allosteric site distal to the active site is based on the fact that
when properly occupied, it simultaneously opens the gatekeeper amino acid residue (Tyr446)
inside the active site and realigns the conformation of key residues to allow catalysis [41]. Dock-
ing at the allosteric site revealed that the top-five phenolics all had higher docking scores than
amoxicillin (Table 5). PBP2a + Silicristin, PBP2a + propan-2-one, PBP2a + epigallocatechin
4-benzylthioether, PBP2a + chroman-4-one, and PBP2a + epicatechin gallate had docking
scores of −8.4 kcal/mol, −8.3 kcal/mol, −8.1 kcal/mol, −8.0 kcal/mol, and −8.5 kcal/mol,
respectively, which were all higher than the −7.7 kcal/mol observed for the PBP2a-amoxicillin
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complex. This observation could be suggestive of the greater potential affinity of the com-
pounds for the allosteric site than amoxicillin. When compared with the observations at
the main active site, the top-five phenolics showed better affinities for the allosteric site
(8.0–8.5 kcal/mol) than the active site (6.8–7.5 kcal/mol) (Tables 1 and 5). However, since
molecular docking is only a preliminary indication of how a compound interacts with a
protein, further rigorous binding calculation at the allosteric site was carried out using the
Molecular Mechanics/GB Surface Area (MMGBSA) approach over a 120 ns simulation period.
In addition, in order to understand how simulation at the allosteric site affects the active site,
the binding free energies of the top-five phenolics at the allosteric site were correlated with the
fluctuation of the active site gatekeeper residue (Tyr446), and studied via RMSF evaluation.

Table 5. Molecular docking, binding free energy and RMSF values of the top-five phenolics at the
allosteric site of PBP2a of S. aureus.

Systems Binding Affinity (Kcal/mol) ∆Gbind (Kcal/mol) RMSF (Å)

Unbound PBP2a 2.71 ± 1.17
PBP2a + Amoxicillin −7.7 −14.36 ± 6.00 2.56 ± 1.32
PBP2a + Silicristin −8.4 −33.57 ± 5.38 2.45 ± 1.11
PBP2a + Propan-2-one −8.3 −28.55 ± 8.07 2.49 ± 1.14
PBP2a + Epigallocatechin 4-benzylthioether −8.1 −36.83 ± 8.04 3.48 ± 1.84
PBP2a + Chroman-4-one −8.0 −29.52 ± 4.20 2.55 ± 1.32
PBP2a + Epicatechin gallate −8.5 −47.65 ± 8.42 2.06 ± 0.95

∆Gbind = total binding free energy.

3.5. Thermodynamic Binding Free Energy Following 120 ns Simulation of the Top-Five Phenolics
at the Allosteric Site of PBP2a of S. aureus

The binding of the top-five phenolics (Silicristin (−33.57 kcal/mol), propan-2-one
(−28.55 kcal/mol), epigallocatechin 4-benzylthioether (−36.83 kcal/mol), chroman-4-one
(−29.52 kcal/mol), and epicatechin gallate (−47.65 kcal/mol)) with PBP2a resulted in a higher
binding free energy than the amoxicillin (−14 kcal/mol) complex at the allosteric site. This
observation, while corroborating the molecular docking scores at the allosteric site, further
demonstrates the potential affinity of the top-five phenolics for the allosteric site, revealing their
probable capability to modulate the amino acid residues of PBP2a allosteric site. Interestingly,
this finding is in correlation with the observation of Alhadrami et al. [16] where some flavonoids
showed a better affinity at the allosteric site of PBP2a of S. aureus than conventional β-lactam
antibiotics (e.g., ampicillin and ceftaroline). Interestingly, epicatechin gallate and other top-five
phenolics which demonstrated their potential affinity for the allosteric site of PBP2a in the order
of epigallocatechin 4-benzylthioether > silicristin > chroman-4-one > propan-2-one, all had a
higher binding free energy at the allosteric site than at the active site. This observation demon-
strates the better potential affinity of the top-five phenolics and most especially epicatechin
gallate for the allosteric site, revealing their potential benefit in treating S. aureus infections in
combination with standard β-lactam antibiotics.

3.6. Allosteric Modulation of PBP2a Active Site Amino Acid Residues Following 120 ns
Simulation at the Allosteric Site

The allosteric modulation of the active site gatekeeper residue of PBP2a was studied by
evaluating the RMSF of PBP2a through a 120 ns simulation time. Except for epigallocatechin
4-benzylthioether, binding at the allosteric site of PBP2a by the top-five phenolics (silicristin
(2.45 Å), propan-2-one (2.49 Å), chroman-4-one (2.55 Å), and epicatechin gallate (2.06 Å)) and
amoxicillin (2.56 Å) resulted in a lesser average RMSF than the unbound PBP2a (2.71 Å),
with epicatechin gallate having the lowest RMSF value (Table 5). This observation shows
the potential of the top-five phenolics and most especially epicatechin gallate in promoting
PBP2a internal amino acid stability following binding at the allosteric site. However, further
insight into how allosteric binding influences access to the PBP2a active site was achieved
by evaluating fluctuations of the gatekeeper residue, Tyr446, which has been demonstrated
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to hinder drugs from entering the PBP2a active site. The average RMSF of Tyr446 is pre-
sented in Table 6 while its plots are presented in Figure 10b. Interestingly, PBP2a allosteric
binding of epicatechin gallate (3.61 Å), silicristin (2.91 Å), epigallocatechin 4-benzylthioether
(3.12 Å), and propan-2-one (2.27 Å) all resulted in the higher RMSF of Tyr446 relative to the
unbound PBP2a (1.66 Å) and PBP2a + amoxicillin (1.30 Å). This observation is suggestive
of the higher fluctuation of the gatekeeper residue during the 120 ns allosteric binding of
PBP2a with epicatechin gallate, silicristin, epigallocatechin 4-benzylthioether, and propan-
2-one. Another inference from this observation is the lesser involvement of Tyr446 in the
intramolecular interactions of adjacent residues (α9 helix (Q577–Y588) and M641 residues) of
PBP2a thereby resulting in its higher instability in bond formation and its reduced obstruction
of the PBP2a active site. This inference correlates with the report of Mahasenan et al. [41], who
experimentally demonstrated the shifting of adjacent residues that may form intramolecular
interactions with Tyr446 following the allosteric binding of PBP2a with cefepime. Remarkably,
the higher fluctuation of the gatekeeper residue following allosteric binding of the top-five
phenolics relative to amoxicillin was in agreement with the observed binding free energy
findings in this study, where the top-five phenolics demonstrated higher binding free energy
than amoxicillin (−14.36 kcal/mol). Specifically, the higher fluctuation of Tyr446 was noted
to partially correlate with the binding free energy obtained in this study with the top-five
phenolics at the allosteric site of PBP2a (epicatechin gallate (∆Gbind: −47.65 kcal/mol; RMSF:
3.61 Å) > epigallocatechin 4-benzylthioether (∆Gbind: −36.83 kcal/mol, RMSF: 3.12 Å), sili-
cristin (∆Gbind: −33.57 kcal/mol; RMSF: 2.91) > propan-2-one (∆Gbind: −28.55 kcal/mol,
RMSF: 2.27 Å) > Chroman-4-one (∆Gbind: −29.52 kcal/mol, RMSF: 1.63 Å) > amoxicillin
(∆Gbind: −14.36, RMSF:1.30 Å)) and the graft is presented in Figure 11. This observation
pinpoints that the higher the affinity of a compound to the allosteric site of PBP2a, the higher
the instability of Tyr446. This finding is also in agreement with the report of Mahasenan
et al. [41] who demonstrated both experimentally and computationally how appropriate al-
losteric site binding of PBP2a simultaneously opened the gatekeeper residue of the active site.
Furthermore, the top-five phenolics, when bound to the allosteric site, have higher fluctuations
of the gatekeeper residue relative to when they are complexed directly at the PBP2a active
site. This observation could be investigative of the gatekeeper residue’s lesser involvement in
intramolecular interactions with other residues of PBP2a when the top-five phenolics were
bound at the allosteric site rather than intermolecular interactions with the top-five phenolics
when bound at the active site. Interestingly, a lesser fluctuation of the gatekeeper residue was
noted in amoxicillin when bound at the allosteric site relative to the active site, suggesting
that the gatekeeper residue was more actively involved in intramolecular interactions with
other PBP2a residues when amoxicillin was bound at the allosteric site compared with in-
termolecular interactions with amoxicillin when bound at the active site. This observation
may be analytical of the advantages of the top-five phenolics in the allosteric modulation of
PBP2a over amoxicillin. Generally, findings from this aspect of the study partially correlates
the affinity of the top-five phenolics at the allosteric site of PBP2a with the fluctuation of
the active site gatekeeper residue (Tyr446). In addition, the study demonstrated the lesser
involvement of Tyr446 in the intramolecular interactions with other PBP2a residues when the
top-five phenolics bind at the allosteric site compared with their intermolecular interactions
at the active site, suggestive of the reduced obstruction of the active site, an observation that
was not observed with amoxicillin. Interestingly, binding of PBP2a at the allosteric site caused
the enhanced thermodynamic stability of PBP2a as the bound system (4.06 Å) had a lesser
average RMSD value than the unbound PBP2a (6.86 Å), with chroman-4-one having the
lowest RMSD value (3.24 Å) (Table S2 and Figure S2). Similarly, the ROG and SASA findings
showed the orderliness of PBP2a geometry following binding of the top-five phenolics and
amoxicillin at the allosteric site (Table S2 and Figure S2). All of these observations suggest the
thermodynamic compatibility of the top-five phenolics and amoxicillin at the allosteric site
of PBP2a.
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Table 6. PBP2a active site gatekeeper residue average fluctuation (Å) after 120 ns simulation of the
top-five phenolics at the allosteric site.

PBP2a Active Site
Gatekeeper Residue Top-Five Phenolics

Silicristin Epigallocatechin
4-benzylthioether Epicatechin gallate Chroman-4-one Propan-2-one Amoxicillin Unbound PBP2a

Tyr446 2.91 3.12 3.61 1.63 2.27 1.33 1.93

Figure 10. Comparative root-mean-square fluctuation (RMSF) plots of alpha-carbon, the top-five
phenolics, and amoxicillin against residues of PBP2a of S. aureus (a), and gatekeeper residues [Tyr446
(black arrow)] of PBP2a (b) when the top-five phenolics and amoxicillin were bound at the allosteric
site of PBP2a over a 120 ns MD simulation period.

Figure 11. Correlation of the binding free energy of the top-five phenolics at the allosteric site of
PBP2a and fluctuation of Tyr446 of PBP2a of S. aureus.
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3.7. Bonds Analysis of the Interaction Plots of the Top-Five Phenolics against the Active and
Allosteric Sites of PBP2a of S. aureus

In general, the ability of a ligand to bind and inactivate a protein is determined by a
variety of thermodynamic criteria relating to the flexibility of amino acid residues, protein
stability and compactness, and, most importantly, the nature of interactions with the essential
amino acids of a protein [42,43]. Thus, in this study, the number, nature, and length of bond
interactions formed by the top-five phenolics with PBP2a at both the active and allosteric sites
were analysed. The plot of interactions for amoxicillin and phenolics with the highest binding
free energy at both the active and allosteric sites are presented in Figure 12a,b, respectively,
while the plots for other top-five phenolics are presented in Table S3. The nature, bond lengths,
and numbers of interactions of the top-five phenolics as well as amoxicillin at the active site
of PBP2a differs from one compound to another and were noted to have impacts on the
binding free energy observed in this study. These bond interactions include hydrogen bonds
(conventional and carbon), Van der Waals, amide π-stacked, π-anion, π-sigma, π-cation, π-π
t-cation, π-π t-shaped, π-π t-stacked, π-alkyl, alky, π- Sulphur, as well as some unfavourable
donor–donor interactions. In this study, propan-2-one and amoxicillin (Figure 12a) had the
highest number, with 17 interactions each (Table 7 and Table S3). This observation is not
directly in accordance with the free binding energy scores of this study where silicristin,
epigallocatechin 4-benzylthioether, chroman-4-one, and epicatechin gallate had a higher free
binding energy than amoxicillin and propan-2-one. However, when the interactions were
further analysed as to the nature and distance of the bonds formed with amoxicillin and
propan-2-one, more insight into why they have a low binding free energy relative to the other
compounds was revealed. Hydrogen bond interactions have been demonstrated as one of
the most important non-covalent bonds in drug discovery as they exhibit unusually strong
intermolecular interactions [40]. Propan-2-one had only one hydrogen bond interaction with
Tyr447 (Table 7) relative to four hydrogen bonds each formed by silicristin (Tyr446, Thyr600,
Asn464, Glu602) (Figure 12b), epigallocatechin 4-benzylthioether (Lys584, Glu460, Thr582,
Asp586), and amoxicillin (Ala642, Ser643, Ser461, Ser462) as well as five hydrogen bonds
formed by epicatechin gallate (Lys581, Ser461, Glu447 (2), Gly599) against the active site of
PBP2a of S. aureus (Table 7 and Table S3). Although, chroman-4-one also had one hydrogen
bond interaction with Ser642 of PBP2a, however, when the average distance of interactions
of PBP2a + chroma-4-one (4.99 Å) was compared with PBP2a + propan-2-one (5.53 Å), the
average bond length of the former was considerably lower, which could have contributed to
its observed higher binding free energy relative to PBP2a + propan-2-one. The importance of
bond length observed in this study agrees with the report of Du et al. [34], who demonstrated
the importance of shorter bond length in the stronger pull between two intra- or intermolecular
entities, which may lead to their atoms being held together more tightly and hence a greater
affinity. Similarly, the lower binding free energy of amoxicillin relative to the other top-four
phenolics observed in this study could also be partly attributed to its higher bond length, which
is second only to silicristin against PBP2a. Furthermore, relative to the top-five phenolics with
no unfavourable bonds (except silicristin), amoxicillin had two unfavourable donor-donor
bonds which are relatively shorter in length (2.66 Å) when compared to the average bond
interaction distance of PBP2a + amoxicillin (5.14 Å). The formation of the unfavourable bonds
which imply the presence of a repelling force in the PBP2a + amoxicillin complex [44], and the
short distance of the unfavourable bond which suggests how strong the repulsion was, could
have greatly impacted the lower binding free energy observed with the PBP2a-amoxicillin
complex relative to the top-five phenolics despite amoxicillin forming 17 interactions (of which
four were hydrogen bonds) with PBP2a (Table 7 and Table S3). Although one interaction
in the PBP2a-silicristin interaction plot was also unfavourable, with a longer bond length of
6.35 Å relative to the average bond interaction length of PBP2a-silicristin (5.75 Å) (Figure 12b),
this implied its lesser impact on the binding free energy observed in silicristin against PBP2a.
While the PBP2a-silicristin complex (16) had one interaction greater than the interactions
observed with PBP2a-epigallocatechin 4-benzylthioether, PBP2a-epicatechin gallate, and
PBP2a-chroman-4-one complexes, having a remarkably higher average bond length did not
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entirely justify the PBP2a-silicristin complex having a higher binding free energy against
PBP2a than the other three complexes. However, among the top-five phenolics as well
as amoxicillin, only silicristin interacted with a hydrogen bond with Tyr446, an important
amino acid residue at the active site of PBP2a [16,41] (Figure 12b), a clue of its affinity for the
PBP2a active site which could have impacted its higher binding free energy observed in this
study. Amoxicillin interacted with a π-cation, propan-2-one interacted with a π-π t-shaped,
epigallocatechin 4-benzylthioether interacted with a π-Sulphur, while epicatechin gallate and
chroman-4-one both interacted with Van der Waals interactions, all of which are of lesser
strength relative to the hydrogen bonds. Generally, none of the top-five phenolics as well as
amoxicillin interacted with the catalytic residue Ser403 [16] that was sandwiched between the
α2-α3 loop and ß3–ß4 loop of the PBP2a active site, suggesting the partial occupancy of the
active site by the top-five phenolics and amoxicillin.

Table 7. Bond interactions against the active and allosteric site of PBP2a of S. aureus by the top-
five phenolics.

Top-Five
Phenolics
and Standard

Total Number of
Interactions (Average
Distances in Å)

Number of Hydrogen
Bonds and
Interaction Residues

Other Important
Interactions
and Residues

Unfavourable Bonds
(Bond Length in Å)

Active Site

Amoxicillin 17 (5.14) 4 (Ala642, Ser643,
Ser461, Ser462)

3 (Tyr446, Ala642,
His583)

2 (Thyr600,
Ala642) (2.96)

Silicristin 16 (5.75) 4 (Tyr446, Thyr600,
Asn464, Glu602)

3 (Met641, Glu602,
Arg445) 1 (Gln521) (6.35)

Propan-2-one 17 (5.53) 1 (Tyr447) 3 (His583, Tyr446,
Ala642) None

Epigallocatechin
4-benzylthioether 15 (4.91) 4 (Lys584, Glu460,

Thr582, Asp586)
3 (Ala642, His583,
Tyr446) None

Chroman-4-one 15 (4.99) 1(Ser642) 2 (His583, Ala642) None

Epicatechin gallate 15 (4.94) 5 (Lys581, Ser461,
Glu447 (2), Gly599) 2 (Ala642, His583) None

Allosteric Site

Amoxicillin 8 (5.44) 2 (Lys122, Asp294) 2 (Lys122, Glu212) None

Silicristin 16 (5.37) 5 (Lys273, Lys148,
Asn146, Asp295(2))

3 (Asp275,
Lys316, Tyr297) (Tyr297) (6.06)

Propan-2-one 16 (5.23) 4 (Asp275, Lys273,
Asn146 (2)) 2 (Tyr297, Lys273) none

Epigallocatechin
4-benzylthioether 23 (4.71)

7 (Asp269, Ser214,
Glu213, Glu144, Val251,
Ala250, Hie267)

2 (Val251, Pro332) none

Chroman-4-one 12 (5.0) 4 (Lys148, Lys273,
Val277, Ala276) 1 (Tyr297) none

Epicatechin gallate 11 (3.87) 5 (Asn104, Gly296,
Asn146 (2), Asp295) 1 (Tyr297) Lys273 (4.61)
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Figure 12. Plot of interactions of amoxicillin (a) and silicristin (b) against the active site of PBP2a of
S. aureus.

Similar to the active site, the nature, bond lengths and numbers of interactions of the
top-five phenolics as well as amoxicillin at the allosteric site of PBP2a differs from one
compound to another and were noted to have impacts on the binding free energy observed
in this study. These bond interactions include hydrogen bonds (conventional, carbon,
and π-donor), Van der Waals, amide π-stacked, π-anion, π-sigma, π-cation, π-π t-cation,
π-π t-shaped, π-π t-stacked, π-alkyl, alky as well as some unfavourable donor–donor in-
teractions (Table S3). The PBP2a + epigallocatechin 4-benzylthioether complex having
the highest number of total interactions (23) and hydrogen bond interactions (7 (Asp269,
Ser214, Glu213, Glu144, Val251, Ala250, Hie267)) (Table 7 and Table S3) could have con-
tributed to epigallocatechin 4-benzylthioether having a significantly higher binding free
energy over amoxicillin (Figure 13a), silicristin, propan-2-one, and chroman-4-one at the
allosteric site of PBP2a (Table S3). Nevertheless, this observation did not entirely justify
PBP2a + epigallocatechin 4-benzylthioether having a significantly lower binding free en-
ergy relative to PBP2a + epicatechin gallate (Figure 13b) observed in this study. However,
among the top-five phenolics, only epigallocatechin 4-benzylthioether failed to interact
with some of the essential amino acids of the allosteric site (Table 7 and Table S3). According
to Alhadrami et al. [16], amino acids, such as Tyr297, Tyr105, Asn146, Ile144, and 296 are
important at the allosteric site of PBP2a of S. aureus, all of which are absent in the interaction
plot of PBP2a + epigallocatechin 4-benzylthioether, which could have impacted epigallocat-
echin 4-benzylthioether having a lower binding free energy relative to epicatechin gallate
at the allosteric site. This observation is suggestive of the partial occupancy of epigallocate-
chin 4-benzylthioether at the allosteric site of PBP2a and hence its lesser potential to cause
a higher fluctuation of Tyr446 (active site gatekeeper residue) relative to epicatechin gallate
despite the high number of interactions. Moreover, epicatechin gallate at the allosteric
site of PBP2a (11 interactions), interacted with a relatively shorter bond length (3.87 Å)
when compared with epigallocatechin 4-benzylthioether and other studied compounds
(Figure 13b and Table 7). In addition, despite having the least number of interactions among
the top-five phenolics, PBP2a + epicatechin gallate alongside PBP2a + silicristin had the
second-highest number of hydrogen bond interactions (five) (Figure 13b and Table 7). All
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these observations could have contributed to the significantly higher binding free energy
noted in this study by epicatechin gallate at the allosteric site of PBP2a relative to epigal-
locatechin 4-benzylthioether and other study compounds and hence re-emphasises the
impact of bond length and hydrogen bonds in the stability and affinity of a compound for
a protein. PBP2a + silicristin, PBP2a + Propan-2-one, and PBP2a + Chroman-4-one all had
interactions including hydrogen bonds that justified their respective binding free energy
observed in this study (Table 7 and Table S3). PBP2a + silicristin had sixteen interactions
at the allosteric site of PBP2a, of which five interactions were hydrogen bond interactions
with residues Lys273, Lys148, Asn146, and Asp295(2) and three interactions were other
important interactions with Asp275, Lys316, and Tyr297. PBP2a + Propan-2-one had sixteen
interactions at the allosteric site of PBP2a, of which four interactions were hydrogen bond
interactions with residues Lys148, Lys273, Val277, and Ala276 and two interactions were
other important interactions with Tyr297, Lys273. Similarly, PBP2a + Chroman-4-one had
twelve interactions at the allosteric site of PBP2a, of which four interactions were hydro-
gen bond interactions with residues Lys148, Lys273, Val277, and Ala276 and one other
important interaction with Tyr297. The extra hydrogen bond interaction and at least one
other important interaction had by PBP2a + silicristin over PBP2a + Propan-2-one, and
PBP2a + Chroman-4-one could have contributed to silicristin’s higher binding free energy
over propan-2-one and chroman-4-one at the allosteric site of PBP2a. In this study, all
the top-five phenolics interacted with a higher number of interactions, hydrogen bond
interactions and other important interactions than amoxicillin (Figure 13a) at the allosteric
site of PBP2a, which could have contributed to amoxicillin’s significantly lower binding
free energy at the allosteric site of PBP2a relative to the top-five phenolics. PBP2a + amoxi-
cillin had eight interactions at the allosteric site of PBP2a, of which two interactions were
hydrogen bond interactions with residues Lys122 and Asp294 and two other important
interactions with Lys122 and Glu212. Similar to PBP2a + epigallocatechin 4-benzylthioether,
none of the interacted amino acid residues in the PBP2a + amoxicillin plot were among
the essential amino acid residues at the allosteric site of PBP2a, suggesting the partial
occupancy of this site by amoxicillin and could have imparted the lesser fluctuation of
gatekeeper residue (Tyr446) observed in this study relative to the top-five phenolics and
hence the lesser ability of amoxicillin to modulate the PBP2a active site when bound at the
allosteric site.

Figure 13. Plot of interactions of amoxicillin (a) and epicatechin gallate (b) against the allosteric site
of PBP2a of S. aureus.
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4. Conclusions

Findings from this study have identified lead phenolics with the capability to bind
to the active and allosteric sites of PBP2a of S. aureus. Specifically, the lead phenolics
showed more promising affinity at the allosteric site than the active site, with silicristin
and epicatechin gallate having the best affinity at the active and allosteric sites of PBP2a,
respectively. Interestingly, the modulation of Tyr446, a residue implicated in impeding
access of β-lactams to the PBP2a active site, was noted to correlate with the affinity of the
lead phenolics with the allosteric site of PBP2a with epicatechin gallate, which has the
highest binding free energy, resulting in the highest fluctuation of Tyr446. This observation
is indicative of the lesser involvement of Tyr446 in the intramolecular interactions of
adjacent residues of PBP2a, thereby creating lesser obstructions of the PBP2a active site.
Furthermore, when the lead phenolics bind at the active site of PBP2a, Tyr446 had less
fluctuation, implying its active involvement in the binding of the compounds. These
observations are suggestive of the possible advantage of the lead phenolics in the direct
and synergistic treatment of infections caused by S. aureus and, interestingly, as the lead
phenolics had favourable pharmacokinetics and a feasible synthetic score, signifying the
possibility of structural alterations for improved druggability and toxicity. However,
further in vitro and in vivo confirmation of the activities observed in this study is strongly
recommended and efforts are underway in this direction.
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