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Abstract: Transmembrane proteins (TMPs) play important roles in cells, ranging from transport
processes and cell adhesion to communication. Many of these functions are mediated by intrinsically
disordered regions (IDRs), flexible protein segments without a well-defined structure. Although a
variety of prediction methods are available for predicting IDRs, their accuracy is very limited on
TMPs due to their special physico-chemical properties. We prepared a dataset containing membrane
proteins exclusively, using X-ray crystallography data. MemDis is a novel prediction method, utiliz-
ing convolutional neural network and long short-term memory networks for predicting disordered
regions in TMPs. In addition to attributes commonly used in IDR predictors, we defined several
TMP specific features to enhance the accuracy of our method further. MemDis achieved the highest
prediction accuracy on TMP-specific dataset among other popular IDR prediction methods.

Keywords: transmembrane proteins; intrinsically disordered proteins; deep learning; convolutional
neural network; bidirectional long-short term memory

1. Introduction

Transmembrane proteins (TMPs) are located in different membranes and they provide
gates between the inner and outer side of cells or organelles. Around 25% of the coded pro-
teins in the human proteome contain one or more membrane regions [1]. These segments
embedded in the lipid bilayer are structurally well defined; however, their tail and loop re-
gions often contain unstructured segments. Such regions are aiding various functions from
providing flexible linkers to binding motifs for other molecules [2]. Although intrinsically
disordered regions (IDRs) are well studied in general, the currently available prediction
methods have limited accuracy on membrane proteins for several reasons [3]. On the one
hand, protein disorder is conditional [4] and heavily influenced by the environment; thus,
membrane proteins, exposed on both outside and inside spaces, cannot be well described
using a single function or machine learning algorithm. Moreover, lipid components of
the membrane influence the charge and acidity near the transmembrane regions, further
complicating the situation. On the other hand, these methods are generally trained on
mixed protein sets predominantly containing non-TMPs, resulting in biased information
from the perspective of TMPs. Here, we propose MemDis, a novel tool for predicting IDR
regions in TMP proteins, which achieved the highest accuracy among tested methods. We
utilized Convolutional Neural Networks (CNNs) to capture local features of the sequence
represented by Position-Specific Scoring Matrix and Long Short-Term Memory (LSTM)
Network to take advantage of the semantic properties of the protein sequence.

2. Results

To realistically capture the different flavors of disorder in membrane proteins, four
different models were created according to different topological regions. CNNs were
trained on extracellular-distant (distance from membrane > 15aa), proximal- (≤15aa) and
intracellular-distant (distance > 15aa), proximal (≤15aa) residues separately. A bidirectional
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LSTM network was also trained to “smooth” the prediction of CNNs on individual residues
and achieve better sensitivity.

Based on the training and validation set, we found that the CNNs, with a slightly
higher cutoff (0.65—notably this result is scaled so the web server will display 0.5 cut-off)
and a ±4 residue smoothing achieved the best specificity, while also keeping other metric
values considerably high. In contrast, the LSTM with a ±7 residue smoothing had the best
sensitivity. Both versions (from now on referred to as specific and sensitive, respectively)
achieved a remarkable 0.83–0.84 Area Under Curve (AUC) (Figure 1A, Supplementary
Materials). We compared the results of our method to other popular algorithms [5–8]
using metrics from the most recent CAID experiment [9] (Supplementary Table S1). We
used the complete protein sequence for testing; however, we only considered fragments
selected earlier for the evaluation. Some of the tested methods achieved slightly better
specificity, at the cost of barely predicting disordered segments. The best sensitivity was
achieved using the MemDis sensitive. Although dozens of IDR prediction methods are
available, when selecting other methods, we aimed to select ones with slightly different
methodology (machine learning, biophysical approaches) and training sets (X-ray, NMR,
etc.). Both the sensitive and specific settings of MemDis achieved the highest balanced
accuracy, Matthew’s Correlation Coefficient (MCC) and AUC (Figure 1A, Supplementary
Materials). Notably, MemDis uses different models to predict membrane-distant and
proximal regions, and their separate performance also captures disorder better compared
to other methods (Figure 1B,C; Supplementary Table S1, Supplementary Materials). When
evaluating IUPred3 locally, experimental filtering was not used.

Figure 1. (A) Receiver operating characteristic of MemDis and other disorder prediction methods. (B) Averaged performance
of membrane-distant predictors. (C) Average performance of membrane proximal predictors.

MemDis is available on GitHub at https://github.com/brgenzim/MemDis. Since the
local installation is slightly complicated as users have to set up all dependencies as well,
we also prepared a webserver (available at http://memdis.ttk.hu), where users can query
their sequence(s). The webserver displays topology predicted by CCTOP and a graph for
disordered prediction.

We also checked a handful of well-defined examples where the output of MemDis is
supported by literature evidence. Phospholemman is a member of the FXYD family that
regulates ion transport [10]. The cytosolic C-terminal tail was shown to associate with the
micelle surface [11], forming a helical structure upon binding. MemDis predicts this region
as disordered. The helical propensity prediction of FELLS [12] suggests that this region
is likely helical (Figure 2A). Thus, combining the MemDis and other secondary structure
prediction methods, lipid binding can be assumed for membrane proximal regions. Integrin
alpha-IIIb is a receptor protein with a cytosolic disordered tail according to DisProt [13],
exhibiting short linear motifs (SLiMs) proposed to play a role in SARS-CoV-2 infection [14].
Membrane proximal disordered regions are often missed by prediction methods, making it
hard to find novel linear motif candidates; however, MemDis successfully detects these
regions (Figure 2B). Mucolipin-1 is a cation channel, probably playing a role in membrane
trafficking. The C-terminal cytosolic region has five cysteines, a residue that is often
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referred to as order-promoting (as they can form disulphide bridges in an extracellular
environment), which deceives many predictors. MemDis has a built-in topology filter and
predicts this region as disordered, in agreement with the electron-microscopy structure
lacking coordinates for this region [15]. The C-terminal cytosolic tail of Mucolipin is also
stacked with SLiMs: it has two di-leucine motifs [16], and phosphoserines [17] in the
well-defined PKA phosphorylation site [18], further supporting that the C-terminal is
disordered (Figure 2C).

Figure 2. Interpretation of MemDis results. (A) Phospholemman: solution NMR structure, and
representation of C-terminal by the prediction of MemDis, CCTOP and FELLS (helical propensity:
purple, coil propensity: grey). (B) Integrin beta-3: solution NMR structure, MemDis and CCTOP
predictions. The proposed NPxY endocytosis sorting signal is marked with purple, the LIR autophagy
motif is marked with an orange box. (C) Mucopilin-1: Electron-microscopy structure, prediction
from MemDis and CCTOP. Phosphoserines are marked with green cones below the sequence. The
phosphorylation site is marked with a purple box, di-leucine motifs are marked with orange boxes.
Cysteines have blue color. Topology is represented both in the structures and topology lines and
structures are colored blue, red, yellow and orange (extracellular, cytosolic, transmembrane, and
re-entrant loop regions, respectively). Disordered regions from MemDis are marked with green
lines on the graphs. Note, only specific regions of the sequences are shown. (D) Detection rate of
lipid-binding and non-lipid-binding disordered regions from the MemMoRF database.

We also assessed how predictors work to predict lipid-binding regions. MemMoRF
is a novel database of disordered regions that undergo disorder-to-order transition upon
membrane binding [19]. We measured the accuracy of different prediction methods on
such regions. Unfortunately, all methods have poor performance (−0.19–0.03 MCC, Sup-
plementary Table S1) on this dataset when measuring residue level accuracy. To overcome
this, we counted the number of regions that have at least 60% of their residues predicted as
disordered. In this comparison, Espritz DisProt had the highest hit rate, however, on the
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price of predicting many false positive regions too, while MemDis with sensitive settings
was second, with somewhat fewer false positive regions (Figure 2D). We also evaluated
DisoLipPred [20], which was developed specifically to find lipid-binding regions; however,
it detected only 20% of lipid-binding disordered regions. In sum, none of the methods
are capable of detecting such information reliably alone; however, introducing additional
filters (topology, secondary structure) may increase their accuracy, as it was shown on
MemDis in the case of Phospholemman.

3. Materials and Methods

We downloaded the MobiDB database [21] in 1April 2021, and selected the missing
residues (th_90, used as disordered label) and observed (th_90, used as ordered label)
subsets, defining regions from X-ray structures when there is 90% agreement between the
observations. Next, we used CCTOP [22] to filter TMPs and used CD-HIT [23] to reduce
redundancy to 40% sequence identity (Supplementary Table S2). In most cases, the full
protein structure was not solved, so we used fragments of the protein sequences. First, we
selected every IDR together with flanking ordered regions up to 15aa if they were included
in the PDB. Next, we randomly selected ordered regions (Figure 3). The fragments were
randomly selected into the train, validation and independent test set (Supplementary
Table S3). We prepared Convolutional Neural Networks (CNNs) and a bidirectional Long
Short-Term Memory (LSTM) network to predict IDRs.

For the CNNs, each non-membrane residue in this dataset belonged to one of the fol-
lowing four TMP topology categories: extracellular-distant (distance from membrane > 15aa),
proximal (≤15aa) and intracellular-distant (distance > 15aa), proximal (≤15aa). Disordered
and ordered residues were selected in a way that their distributions be roughly equal in
each topological subset (max. 10% difference, Supplementary Table S4). We prepared
four convolutional neural networks (CNNs) for the four topological regions (Figure 3).
The features (Supplementary Table S5) include amino acid distribution, non-redundant
AAIndex [24] categories (i.e., different amino acid scales), ProtParam [25] features (i.e.,
molecular weight, isoelectric point and instability index), topology information based on
CCTOP and PSI-BLAST results. We also used Netsurfp [26] to predict accessibility of
residues and SEG implemented in PlatoLoco [27] to detect low complexity regions. We
used a ±5 length window around each residue and calculated 39 features for them, this
way producing a feature matrix of size 11 × 39 (Supplementary Table S5) that was fed into
the appropriate CNN (this window may contain residues not included in PDB or trans-
membrane residues, as these residues are only used as features belonging to a properly
labelled residue). The CNNs were trained until their validation loss stopped decreasing
for a constitutive 10 epochs (this occurred roughly at 1000 epochs)—the training and the
validation accuracy at this point did not show high differences (Supplementary Table S6).

The bidirectional Long Short-Term Memory (LSTM) was trained on the full length
fragments (including membrane regions) and used the output of the CNNs with topology
information to predict disordered regions. Since the CNNs can only predict residues in an
aqueous environment, for membrane residues the LSTM received “0” value as input. The
LSTM was set to consider the preceding 12 time steps (Figure 3). The parameters of the
CNNs and LSTM are available in Supplementary Table S7.

For testing, we hold back each hit from PSI-BLAST that occurred during training to
avoid data leakage. Since the redundancy filter was originally performed on full-length
proteins, we ensured again that no fragment in the independent testing set shared 40% or
higher sequence identity to any sequence in the training and validation sequence fragment
sets.

To define lipid-binding regions, we used the MemMoRF [19] database. We used
redundancy filtering to 40%, and excluded proteins from the training set of MemDis. The
negative set was generated using fragments near to the membrane (15AA), that did not
have lipid-binding annotation in MemMorRF.



Int. J. Mol. Sci. 2021, 22, 12270 5 of 7

Figure 3. Data preparation for the training of MemDis. First, we selected protein fragments based on
the available PDB information. Extracellular-distant (distance from membrane > 15AA), proximal
(<15AA) and intracellular-distant, proximal residues from these fragments were fed into the appro-
priate CNN, also considering information from residues within 5AA from the residue of interest. The
LSTM was trained on the full-length protein fragments considering the preceding 10AA.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222212270/s1.
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