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Abstract
The human microbiome provides essential physiological functions and
helps maintain host homeostasis via the formation of intricate ecological
host-microbiome relationships. While it is well established that the lifestyle
of the host, dietary preferences, demographic background, and health sta-
tus can influence microbial community composition and dynamics, robust
generalizable associations between specific host-associated factors and spe-
cific microbial taxa have remained largely elusive. Here, we propose factor
regression models that allow the estimation of structured parsimonious associ-
ations between host-related features and amplicon-derived microbial taxa. To
account for the overdispersed nature of the amplicon sequencing count data,
we propose negative binomial reduced rank regression (NB-RRR) and nega-
tive binomial co-sparse factor regression (NB-FAR). While NB-RRR encodes
the underlying dependency among the microbial abundances as outcomes and
the host-associated features as predictors through a rank-constrained coef-
ficient matrix, NB-FAR uses a sparse singular value decomposition of the
coefficient matrix. The latter approach avoids the notoriously difficult joint
parameter estimation by extracting sparse unit-rank components of the coeffi-
cient matrix sequentially, effectively delivering interpretable bi-clusters of taxa
and host-associated factors. To solve the nonconvex optimization problems
associated with these factor regression models, we present a novel iterative
block-wise majorization procedure. Extensive simulation studies and an appli-
cation to the microbial abundance data from the American Gut Project (AGP)
demonstrate the efficacy of the proposed procedure. In the AGP data, we iden-
tify several factors that strongly link dietary habits and host life style to specific
microbial families.
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1 INTRODUCTION

The human microbiome, the collection of microbes that reside on or within human tissues and fluids, has formed intricate
ecological relationships with the host over the course of co-evolution.1 Advances in next-generation amplicon sequenc-
ing technology and analysis techniques have enabled the direct identification of microbial species compositions and
abundances in their natural habitat. These approaches have revealed considerable variability in both composition and
diversity across different body sites2 and allowed the estimation of potential associations between the microbiome and
the underlying health condition of the subject.3 For instance, differential abundances of the gut microbiome have been
linked to medical conditions such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), type 2 diabetes,
obesity, and neurological disorders.4 The gut microbiome also makes considerable contribution to metabolic functioning,
for example, by breaking down specific food components.5 Dietary changes can thus induce considerable shifts in gut
microbial compositions.6 Similar intricate relationships between the environment and the microbiome are also known
in other ecosystems. For instance, the soil microbiome plays a significant role in the cycle of carbon and nitrogen fixa-
tion, thus having direct implications for plant growth.7 The soil microbiome also shows large variability with respect to
soil conditions such as pH, temperature, moisture, and spatial location. Likewise, cyanobacteria in the marine ecosys-
tems contribute to a large extent to the ocean’s primary productivity, yet exhibit considerable abundance variability across
location, season, and water conditions.8,9

Amplicon-based microbiome survey data are derived from samples of the habitat of interest, for example, the human
gut, where variable regions of the bacterial and archaeal 16S ribosomal RNA are experimentally extracted and sequenced.
These marker gene sequences serve as a proxy to the underlying bacterial taxon abundances and are summarized in oper-
ational taxonomic units (OTUs) or amplicon sequence variants (ASVs).10,11 Reference databases are used to identify the
(approximate) taxonomy of the representative microbial sequences. Bioinformatic workflows and databases, such as, for
example, QIIME-210 or the Qiita framework,12 allow standardized processing of and access to these OTU/species counts.
In addition, large-scale microbiome survey studies such as the American Gut Project (AGP),13 the Human Microbiome
Project (HMP),14 and the Earth Microbiome Project15 also collect large/high-dimensional host- or environment-associated
covariate data. These survey data reach a level of scale and completeness that, in principle, allows to make quantitative pre-
dictions about the relationship between host-associated factors and microbial abundance patterns. For example, the AGP
data comprises hundreds of host-associated features, including variables indicating dietary intake, medical conditions,
medication use, participants’ demography, and life style.

Using the AGP data as representative microbiome data resource, we here introduce a statistical factor regression
framework that allows the identification of key associations between host-related features and microbial taxa. While
recent work16 has already identified individual host factors that confound microbial abundance patterns in relation
to specific disease phenotypes, we propose a general factor model that simultaneously takes into account all relevant
host-associated covariates and links them to the observed microbial abundances, independent of a specific downstream
task. Since the observed microbial abundances across all levels of taxonomic aggregation come in form of overdispersed
count data, we base our model on the classical negative binomial (NB) distribution (see Figure 1). NB models are com-
mon place in genomics and microbiome data analysis. For example, the popular DESeq2 package,17 used extensively
in differential expression testing in bulk RNA-Seq data, uses the NB model as underlying model for total mRNA tran-
script abundance. Due to technical and experimental limitations, microbial count data, however, carry only relative
information and show varied sequencing depth across samples. To mitigate these limitations, microbiome data require
transformation/normalization approaches prior to statistical modeling.18 Important examples include rarefying samples
to a common sequencing depth or scaling using factors such as a cumulative sum, median, upper quartile, or the total
sum, the latter of which leading to compositional or relative abundance data. A particularly popular approach for NB
modeling of microbial count data is common sum scaling, as put forward by McMurdie and Holmes.19 When modeling
microbial count data on the OTU/ASV level, zero-inflated extensions of the NB model have been proposed to account for
the excess number of zeros in the data20 (see, eg, Reference 21 for a critical assessment).

Alternative generative statistical modeling approaches include the Dirichlet multinomial (mixture) framework,22

latent Dirichlet allocation,23,24 and Poisson distribution models25 (including their respective zero-inflated extensions).
Several models also allow the inclusion of host or environmental covariate data in generative modeling, including Poisson
factor models,26-28 latent Dirichlet allocation,29 and Bayesian Dirichlet multinomial models.30-32 Due to the abundance
of excess zeros at the amplicon or species level, some of these models also include a zero-inflation modeling component.
This and the high dimensionality of the data at the OTU/ASV level make both estimation and biological interpretability
challenging.
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Our modeling framework follows a different objective and focuses on accurate and parsimonious estimation of key
host-associated factors that influence microbial taxa at higher taxonomic ranks. This approach facilitates crisp, biologi-
cally interpretable statements about the underlying potential role of host features on broad microbial abundance patterns
at the expense of taxonomic resolution. When summarizing microbiome survey data on a higher taxonomic level, the
data remains overdispersed, yet contains no excess zeros. This makes the addition of zero-inflated components in the
model superfluous (see Figure S5 of the supplementary materials). Prior work33 already established that NB regression
(NB-GLM) is capable of relating individual taxa to the host-associated features (see Figure 1A). This marginal model,
however, ignores the fact that some of the taxa are likely influenced by a set of common factors, for example, age, diet, or
life style.

Here, we alleviate this shortcoming and introduce a NB factor regression framework that models microbial abun-
dance data as outcome and covariates as predictors jointly while encoding the underlying dependencies in a parsi-
monious fashion. In the high-dimensional multivariate linear regression setting, it is common practice to model the
underlying dependency for dependent outcomes via a structured coefficient matrix34 (see Figure 1B,C). The model
parameters are estimated by solving a regularized optimization problem. For example, reduced-rank regression35-37 pro-
motes information-sharing among response and predictors through a low-rank coefficient matrix. When covariates are
high-dimensional, sparsity is known to facilitate identifiability and better model interpretation.38 In the multivariate set-
ting, this has been achieved via a sparse factorization of the model coefficient matrix.34,39-41 When the outcome matrix
comprises non-Gaussian or mixed type variables, for example, Bernoulli-type for binary outcomes and Poisson-type
for counts, Luo et al42 proposed mixed-outcome reduced-rank regression. Mishra et al43 proposed generalized co-sparse
factor regression (GO-FAR) to model the outcome jointly under sparsity constraints. As we will show in the remain-
der of the article, these existing models are inappropriate for microbial taxon data due to the overdispersed nature of
the counts.

F I G U R E 1 Regression model for the overdispersed microbial abundance data Y of count types in terms of the covariates X and the
control variables Z. The upper panel presents the true generative model with parameters {𝜷∗,C∗} and the lower panel presents the three
approaches for estimating the parameters. (A) The generalized linear model of negative binomial regression (NB-GLM) estimates each of the
columns of C = [c1, … , cq] separately; (B) negative binomial reduced rank regression (NB-RRR) jointly estimates a low-rank coefficient
matrix as C = UDVT; (C) negative binomial co-sparse factor regression (NB-FAR) jointly estimates a low-rank coefficient matrix as
C = UDVT with sparse singular vectors {U,V}
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Instead, we propose negative binomial reduced rank regression (NB-RRR) and negative binomial co-sparse factor regres-
sion (NB-FAR) to jointly model the microbial abundance data using the host-associated features as covariates (see
Figure 1B,C for details). NB-RRR follows previous reduced rank regression frameworks by capturing the underlying
dependencies among response and predictors via a low-rank coefficient matrix. NB-FAR extends the GO-FAR framework
and encodes the underlying dependency via a sparse singular value decomposition (SSVD) of the coefficient matrix. Fol-
lowing the estimation strategy of GO-FAR, we extract unit-rank components of the coefficient matrix sequentially,34 thus
alleviating the challenging problem of joint estimation. There, each sequential step solves a co-sparse unit rank estima-
tion problem with a suitably adjusted offset term that accounts for the effects of previous steps. NB-FAR thus models
the associations of microbial abundance and host-associated features via a few latent factors that comprise only a subset
of predictors. Both NB-RRR and NB-FAR estimation procedures are implemented, tested, validated, and made publicly
available in the R package nbfar, available on GitHub at https://github.com/amishra-stats/nbfar.

The remainder of the article is organized as follows. Section 2 provides the details of the NB-RRR and NB-FAR frame-
work. Section 3 provides the details of the parameter estimation procedure. In Section 4, we present simulation studies
to demonstrate the efficacy of the estimation procedures. Section 5 provides a detailed analysis of the AGP taxon data on
the family level and an extensive set of host-associated covariates using our NB factor regression methods. Section 6 dis-
cusses the findings and provides future research directions. Additional data analysis plots and the details of the estimation
procedures are provided in the supplementary materials.

2 FACTOR MODELS FOR MICROBIOME DATA

As motivating example we consider the data from the AGP13 where samples from thousands of participants have been
collected, sequenced, and processed to obtain microbial abundances. Each sample is associated with participant-specific
covariates that are related to diet, heath, and lifestyle. Our overall goal is to understand the associations of these covariates
with the observed microbial abundance patterns. Let us denote the abundance/count data of q taxa from n samples as Y =
[yik]n×q = [y1, … yn]T ∈ N

n×q
0 , the associated predictors/covariates as X = [x1, … , xn]T ∈ Rn×p, and the control variables

as Z = [z1, … , zn]T ∈ Rn×c. Z comprises variables, such as age and gender, that are held constant in an experiment and
are thus fully adjusted for in the model.

The observed taxon abundance data are overdispersed, that is, the variance of the taxa tends to be considerably larger
than their mean.33 This fact motivates the use of a parametric framework based on the NB distribution to model the
underlying associations between multivariate count outcome Y and factors {X,Z}. Using the alternative parameterization
of the NB distribution,44 the generative model for the abundance of the jth taxon in the ith sample is given by

p(yij;𝜇ij, 𝜙j) = NB(yij;𝜇∗ij, 𝜙
∗
j ) =

(
yij + 𝜙

∗
j − 1

yij

)
𝜇

∗
ij

yij
𝜙

∗
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∗
j
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∗
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yij+𝜙∗j
, (1)

where 𝜇

∗
ij > 0 is the entry-specific mean parameter and 𝜙

∗
j ∈ R+ is the taxon-specific shape parameter. Let us jointly

represent the shape parameters of q taxa by 𝚽∗ = [𝜙∗1, … , 𝜙

∗
q] and the entry-specific mean parameters by 𝝁∗ = [𝜇∗ij]n×q.

For the generative model (1), E(yij) = 𝜇

∗
ij and var(yij) = 𝜇

∗
ij +

𝜇

∗
ij

2

𝜙

∗
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, that is, var(yij) ≥ E(yij), making the model suitable for
overdispersed count data. Then, the joint negative log-likelihood is given by

(𝝁∗,𝚽∗) = −
n∑

i=1

q∑
k=1
𝓁k(𝜇∗ik, 𝜙

∗
k), (2)

where 𝓁k(𝜇∗ik, 𝜙
∗
k) = log p(yik;𝜇∗ik, 𝜙

∗
k).

To associate the participant-specific covariates to the microbial abundance, we link entry-specific mean parameters
𝝁∗ to the linear predictors as

g(𝝁∗) = 𝜼∗(C∗
, 𝜷∗,O) = O + Z𝜷∗ + XC∗

, (3)

where g(⋅) is a suitable link function that satisfies 𝝁∗ > 0, O = [oik]n×q ∈ Rn×q is a fixed offset term, C∗ = [c∗1, … , c∗q] ∈
Rp×q is the coefficient matrix corresponding to the predictors X, and 𝜷 = [𝜷∗1, … , 𝜷∗q] ∈ Rc×q is the coefficient matrix

https://github.com/amishra-stats/nbfar
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corresponding to the control variables Z. The formulation includes an intercept in the model by setting the first column
of Z to be 1n, the n × 1 vector of ones. Following the work of Zeileis et al44 and Anders and Huber,45 we choose g(x) = log x
as the link function so that any 𝜇

∗
ij > 0. Depending on the problem, one may choose another link function that satisfies

𝝁∗ > 0. Unless otherwise stated, we write 𝜼∗(C∗
, 𝜷∗,O) as 𝜼∗.

With the shape parameter fixed, the NB distribution (1) belongs to the exponential dispersion family.46 To utilize the
form of this family, we define the corresponding natural parameter matrix 𝚯∗ = [𝜃∗ij]n×q ∈ Rn×q as

𝚯∗(C∗
, 𝜷∗,O) = h(𝝁∗,𝚽∗) = [h(𝜇∗ij, 𝜙

∗
j )]n×q = h(g−1(𝜼∗(C∗

, 𝜷∗,O),𝚽∗), (4)

where h(𝜇∗ij, 𝜙
∗
j ) = log

𝜇

∗
ij

𝜇

∗
ij+𝜙

∗
j
. Again, unless otherwise stated, we will conveniently express𝚯∗(C∗

, 𝜷∗,O) as𝚯∗. We assume

the outcomes to be conditionally independent given X and Z. In terms of the natural parameter𝚯∗, we rewrite the negative
log-likelihood function (2) as

(𝚯∗,𝚽∗) = −tr(YT𝚯∗) + tr(JTB(𝚯∗)) +
∑
i, j

log
(

yij + 𝜙

∗
j − 1

yij

)
, (5)

where J = 1n×q, tr(A) is the trace of a square matrix A and B(𝚯∗) = [b(𝜃∗ij)]n×q such that b(𝜃∗ij) = −𝜙
∗
j log(1 − e𝜃

∗
ij ). For fixed

shape parameter𝚽∗, it is straightforward to show that E(yij) = 𝜇

∗
ij = b′(𝜃∗ij). This results in linking𝚯∗ to the linear predictor

𝜼∗ via g(b′(𝜃∗ij) = 𝜂

∗
ij.

To obtain an estimate of the model parameters, we minimize the objective function(𝚯,𝚽)with respect to {C, 𝜷,𝚽},
where g(b′(𝚯(C, 𝜷,O))) = 𝜼(C, 𝜷,O) = O + XC + Z𝜷 and𝚽 = [𝜙1, … , 𝜙j]. Minimizing(𝚯,𝚽)with respect to {C, 𝜷,𝚽}
is equivalent to separately fitting a NB regression model for each outcome, ignoring potential dependencies among
covariates and responses.

In microbiome data analysis, however, we often observe correlated microbial taxa abundances. Moreover, it is biolog-
ically plausible that certain groups of host covariates (eg, diet components, participants’ life style) only influence specific
subsets of bacterial clades. To capture such response-predictors dependencies, we follow recent advances in multivariate
mixed outcomes modeling42,43 and introduce multivariate models for correlated predictors and interrelated responses via
structured low-rank and sparse coefficient matrices.

The microbial abundance data model (1) with the rank constraint

rank(C∗) ≤ r∗ (6)

is referred to as negative binomial reduced rank regression, denoted by NB-RRR. The low-rank coefficient matrix C∗

implies a significantly lower number of effective model parameters, thus enabling, under certain assumptions, better esti-
mation in high-dimensional data problems.34,39,43 Any low-rank coefficient matrix C∗ can be expressed as the product of
any two low-rank matrices. Based on the formulation of the linear predictor 𝜼∗ (3), we associate the responses to latent
factors that are constructed as linear combinations of predictors X. To ensure identifiability in the large-dimensional
setting, we may additionally assume that only a subset of predictors are relevant, and that the latent factors may be asso-
ciated with only a subset of responses. This can be achieved by expressing C∗ as a product of two unique and identifiable
low-rank matrices that are entry-wise sparse. Motivated by the recent work of Mishra et al,34,43 we assume that the singular
value decomposition (SVD) of the coefficient matrix C∗ in (1) is co-sparse34 and decompose C∗ as

C∗ = U∗D∗V∗T
, s.t. U∗T XTXU∗∕n = V∗T V∗ = Ir∗ , (7)

where both the left singular vector matrix U∗ = [u∗1, … ,u∗r∗ ] ∈ Rp×r∗ and the right singular vector matrix V∗ =
[v∗1, … , v∗r∗ ] ∈ Rq×r are assumed to be sparse, and D = diag{d∗1, … , d∗r∗} ∈ Rr∗×r∗ is the diagonal matrix with the
nonzero singular values on its diagonal. In the high-dimensional setting, this formulation facilitates better interpre-
tation. Additional orthogonality constraints in the formulation ensure that the SVD of C∗ is identifiable and the
latent factors (1∕

√
n)Xu∗k for k = 1, … , r∗ are uncorrelated. Each of the right singular vectors in V∗ associates the

corresponding latent factor to the microbial abundance outcome Y, and the singular values {d∗1, … , d∗r∗} denote the
strength of the association. We term the proposed model negative binomial co-sparse factor regression, denoted by
NB-FAR.
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Since the majority of the available microbial count data only provides relative abundance information, it is common
practice to scale or transform the data prior to statistical analysis.19 Finding a suitable normalization/transformation
approach remains an active area of research in microbiome data analysis.18,19,47 Since both NB-RRR and NB-FAR are
tailored toward modeling microbial count data Y, we facilitate scaling/normalization of the data via specifying the offset
matrix O ∈ Rn×q in (3). Let oik denotes sample i’s and taxon k’s entry of O. Similar to DESeq2,17 the R package nbfar offers
several normalization schemes:

(i) oik = log mi
mmin

where mi =
∑q

j=1yij and mmin = min1≤i≤n mi, related common sum scaling.18,19

(ii) oik = log
∑q

j=1yij, related to total sum scaling.

(iii) oik = log median
j∶Gj≠0

yij

Gj
where Gj =

(∏n
i=1yij

)1∕n (similar to DESeq’s size factors45).

(iv) oik = log
(∏q

j=1yij

)1∕q
, that is, sample-wise geometric mean scaling.

We emphasize that each normalization approach can significantly influence the outcome of the analysis.18 Following
McMurdie and Holmes 19, we use normalization (i) as default setting throughout this study. For convenience, the package
also enables the inclusion of a fully user-defined offset matrix (eg, when data-specific prior knowledge is available).

3 ESTIMATION PROCEDURES

Parameter estimation in both models requires minimizing a constrained, nonconvex negative log-likelihood function
(𝚯,𝚽)with respect to {C, 𝜷,𝚽}. Joint estimation of the parameters {C, 𝜷,𝚽} satisfying the rank constraint (6) in the case
of NB-RRR and the orthogonality constraints (7) in the case of NB-FAR is a notoriously difficult problem. In both cases,
we solve the optimization problem using the majorization-minimization (MM) approach,48 an alternating procedure that
updates the blocks of parameters in cyclic order until convergence. In an update step, we minimize a convex surrogate
that majorizes the objective function of the optimization problem.

3.1 Negative binomial reduced rank regression

The optimization problem to estimate the parameters of NB-RRR is given by

( ̂C,
̂𝜷, ̂𝚽) ≡ arg min

C,𝜷, 𝚽
(𝚯,𝚽) s.t. rank(C) ≤ r, (8)

where g(b′(𝚯(C, 𝜷,O))) = 𝜼(C, 𝜷,O) = O + XC + Z𝜷. Let us denote the problem as NB-RRR(C, 𝜷,𝚽;W,Z,X,O, r). Unless
otherwise stated, we will write𝚯(C, 𝜷,O) as𝚯 and 𝜼(C, 𝜷,O) as 𝜼. Using the framework of MM, we minimize the objective
function using an iterative procedure that cycles between C-step, 𝜷-step, and𝚽-step to update C, 𝜷, and𝚽, respectively,
until convergence.

In the C-step, for fixed 𝜷 and𝚽, let us denote the natural parameter𝚯 and(𝚯,𝚽) as𝚯(C) and(𝚯(C)), respectively.
Suppose differentiable (𝚯(C)) is L-Lipschitz continuous gradient function for some constant Lc that is, ||𝛁(𝚯( ̌C)) −
𝛁(𝚯(C))|| ≤ Lc|| ̌C − C|| for any conformable ̌C. The statement holds for any Lc such that supC ||𝛁2

(𝚯(C))|| ≤ Lc =
max1≤j≤q ||XTdiag(Y

.j + 1)X||∕2; see Section 1.1 of the supplementary material for details. Using the result, we majorize
(𝚯(C),𝚽) by a convex surrogate at a given ̌C and update the parameter C as C = T(r)( ̌C − 𝛁(𝚯( ̌C))∕Lc), where
T(r)(M) extracts r SVD components of matrix M. Similarly, in the 𝜷-step, for fixed C and 𝚽, we denote (𝚯,𝚽) as
(𝚯(𝜷)). Following the C-step procedure, (𝚯(𝜷)) is also L-Lipschitz continuous gradient function for some constant
Lb = max1≤j≤q ||ZTdiag(Y

.j + 1)Z||∕2; see Section 1.1 of the supplementary material for details. At any ̌𝜷, we majorize
(𝚯(𝜷)) and then update the parameter 𝜷 as 𝜷 = ̌𝜷 − 𝛁(𝚯( ̌𝜷),𝚽)∕Lb. Finally, in the 𝚽-step, we follow Zeileis et al44

to update each shape parameter 𝜙j using the Newton-Raphson method for fixed C and 𝜷; see Section 1.6 of the
supplementary material for details. We compute the parameter estimates for 1 ≤ r ≤ r̃ where r̃ is the user-specified con-
servative maximum rank, and select a rank r using K-fold cross-validation.49 The iterative procedure is summarized in
Algorithm 1.
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Algorithm 1. Negative binomial reduced rank regression (NB-RRR)

Input: X,Y,Z,O and rank r ≥ 1; Set: C(0) = 0, 𝜷(0),𝚽(0), t ← 0.
Set Lb = max1≤j≤q ‖ZTdiag(Y

.j + 1)Z‖∕2, Lc = max1≤j≤q ‖XTdiag(Y
.j + 1)X‖∕2

repeat
(1) C-step: C(t+1) = T

(r)(C(t) − 𝜵(𝚯(C(t)))∕Lc) where g(b′(𝚯(C(t)))) = 𝜼(C(t)
, 𝜷(t),O), and T

(r)(M) extracts r SVD
components of matrix M.

(2) 𝜷-step:𝜷(t+1) = 𝜷 (t) − 𝜵(𝚯(𝜷(t)))∕Lb where g(b′(𝚯(𝜷 (t)))) = 𝜼(C(t+1)
, 𝜷 (t),O).

(3) 𝚽-step: 𝚽(t+1) ← Apply Newton-Raphson to increase (𝚯(t+1)
,𝚽) at 𝚽(t) such that g(b′(𝚯(t+1))) = 𝜼(O,C(t+1)

,

𝜷 (t+1)) t ← t + 1.
until convergence, for example, ‖[C(t+1) 𝜷(t+1)] − [C(t) 𝜷 (t)]‖F∕‖[C(t) 𝜷(t)]‖F ≤ 𝜖 with 𝜖 = 10−6.
return ̂C, ̂𝜷, ̂𝚽.

3.1.1 Monotonically decreasing property of NB-RRR

Using Algorithm 1, we estimate the parameters {C, 𝜷,𝚽} of NB-RRR. The iterative procedure consists of minimizing sev-
eral convex surrogates of the objective function with fixed Lipschitz constants {Lb,Lc}. Let us jointly denote the updated
parameters from C-step, 𝜷-step and𝚽-step after tth iteration by {C(t)

, 𝜷(t),Φ(t)}.

Theorem 1. The sequence of parameter estimates {C(t)
, 𝜷 (t),Φ(t)}t∈N obtained using Algorithm 1 satisfies

(𝚯(C(t+1)
, 𝜷(t+1)

,O),𝚽(t+1)) ≤ (𝚯(C(t)
, 𝜷(t),O),𝚽(t))

for the constants Lb = max1≤j≤q ||ZTdiag(Y
.j + 1)Z||∕2 and Lc = max1≤j≤q ||XTdiag(Y

.j + 1)X||∕2.
We have relegated the proof of Theorem 1 to Section 1.2 of the supplementary material. In extensive simulation studies,

we have found that the sequence always converges in practice.

3.2 Negative binomial co-sparse factor regression

Joint estimation of the model parameters {U,D,V, 𝜷,𝚽} requires solving an optimization problem that minimizes
(𝚯,𝚽) in the presence of a sparsity-inducing penalty on {U,V} and the orthogonality constraint (7).43 The optimiza-
tion problem requires the rank r to be specified. Since existing optimization tools are computationally inefficient for the
task, we extend the sequential extraction procedure, proposed by Mishra et al,34,43 for NB-FAR and estimate the unit-rank
components of C =

∑r
k=1Ck =

∑r
k=1dkukvT

k , that is, (dk,uk, vk), for k = 1, … , r. Let ̂Ci for i = 1, … , k − 1 be the estimate
of the unit-rank components. Then, to extract the kth unit-rank component in the kth step of the sequential procedure,
we solve the optimization problem

( ̂dk, ûk, v̂k, ̂𝜷, ̂𝚽) ≡ arg min
u,d,v,𝜷,𝚽

(𝚯,𝚽) + 𝜌
𝜆
(C),

s.t. C = duvT
, uTXTXu∕n = vTv = 1, g(b′(𝚯)) = 𝜼(C, 𝜷,O(k)), (9)

where 𝜌
𝜆
(C) is a sparsity-inducing penalty function with tuning parameter 𝜆 and O(k) = O + X

∑k
i=2

̂Ci−1 with O(1) = O is
the offset term. This problem is referred to as negative binomial co-sparse unit-rank estimation (NB-CURE) with input
parameters C, 𝜷,𝚽;Y,X,Z,O(k) and penalty function 𝜌, in short, NB-CURE(C, 𝜷,𝚽;Y,X,Z,O(k)

, 𝜌).
Following Mishra et al,43 we use the elastic net penalty and its adaptive version50 for the kth step as

𝜌
𝜆
(C) = 𝜌

𝜆
(C;W, 𝛼) = 𝛼𝜆||W◦C||1 + (1 − 𝛼)𝜆||C||2F , (10)

where the operator “◦” stands for the Hadamard product, W = [wij]p×q is a prespecified weighting matrix, 𝜆 is a tuning
parameter controlling the overall amount of regularization and 𝛼 ∈ (0, 1) controls the relative weights between the two
penalty terms. In the kth step of NB-FAR, we let Wk = | ̃Ck|−𝛾 , where 𝛾 = 1 and ̃Ck = ̃dkũkṽT

k is an initial estimate of Ck.



MISHRA and MÜLLER 2793

Here, we solve NB-RRR(C, 𝜷,𝚽;Y,Z,X,O(k)
, 1) to obtain this initial estimate ̃Ck and extract { ̃dk, ũk, ṽk}. Assuming that

the NB-CURE problem can be solved for a suitable tuning parameter 𝜆 (see Section 3.2.1), NB-FAR’s estimation procedure
is summarized in Algorithm 2.

Algorithm 2. Negative binomial co-sparse factor regression (NB-FAR)

Input: X,Y,Z,O and rank r ≤ rank(X); Set: C(0) = 0, 𝜷(0),𝚽(0), t ← 0.
for k ← 1 to r do

(1) Update offset: O(k) = O + X
∑k

i=2
̂Ci−1

(2) Initialize: ̃C,
̃𝜷, ̃𝚽 = NB-RRR(C, 𝜷,𝚽;Y,Z,X,O(k)

, 1) with ̃C = ̃dũṽT.
(3) Set u(0) = ũ, v(0) = ṽ, d(0) = ̃d, 𝜷(0) = ̃𝜷,𝚽(0) = ̃𝚽 and W = | ̃Ck|−𝛾 where 𝛾 = 1.
(4) Solve NB-CURE(C, 𝜷,𝚽;Y,X,Z,O(k)

, 𝜌) such that C = duvT.
(5) ûk = û, ̂dk = ̂d, v̂k = v̂, ̂𝜷 = ̂𝜷, ̂𝚽 = ̂𝚽 and ̂Ck = ̂dkûkv̂T

k .
if ̂dk = 0 then Set r̂ = k end if

end for
return ̂C =

∑r̂
k=1

̂Ck, ̂𝜷, ̂𝚽.

3.2.1 Computation of negative binomial constrained unit-rank regression (NB-CURE)

The general form of the optimization problem for the kth step of the sequential procedure, that is,
NB-CURE(C, 𝜷,𝚽;Y,Z,X,O, 𝜌), is given by

( ̂d, û, v̂, ̂𝜷, ̂𝚽) ≡ arg min
u,d,v,𝜷,𝚽

{F
𝜆
(d,u, v, 𝜷,𝚽) = (𝚯,𝚽) + 𝜌

𝜆
(C;W)} ,

s.t. C = duvT
, uTXTXu∕n = vTv = 1, g(b′(𝚯)) = 𝜼(C, 𝜷,O), (11)

where W = w(d)w(u)w(v)T. In practice, we fix 𝛼 = 0.95 and denote 𝜌
𝜆
(C;W, 𝛼) as 𝜌

𝜆
(C;W). Similar to NB-RRR model

estimation, we use the MM framework and solve the optimization problem using an iterative procedure that cycles
between u-step, v-step, 𝜷-step, and𝚽-step to update the parameters in blocks of (u, d), (v, d), 𝜷, and𝚽, respectively, until
convergence.

Let us represent 𝚯 and (𝚯(ǔvT),𝚽), which are functions of C, as 𝚯(C) and (𝚯(ǔvT)), respectively. In the u-step,
for fixed {v, 𝜷,𝚽}, (𝚯(ǔvT)) has L-Lipschitz continuous gradients for some Lu where ǔ = du. Again, using this fact
and following the NB-RRR estimation procedure, we majorize (𝚯(ǔvT)) by a convex surrogate and then minimize it to
update the block variable ǔ as

̂ǔ = S(ǔ − 𝛁(𝚯(ǔvT))∕Lu; 𝛼𝜆vTw(v)w(d)w(u)∕Lu)∕{1 + 2𝜆(1 − 𝛼)||v||22∕Lu}, (12)

where S(t; ̃𝜆) = sign(t)(|t| − ̃
𝜆)+ is the element-wise soft-thresholding operator on any t ∈ Rp; see Section

1.3 of the supplementary material for details. Similarly, in the v-step, for fixed {u, 𝜷,𝚽} with v̌ = dv,
we show that (𝚯(uv̌T)) is a L-Lipschitz continuous gradient function for some Lv and update the block
variable v̌ as

̂v̌ = S(v̌ − 𝛁(𝚯(uv̌T))∕Lv; 𝛼𝜆uTw(u)w(d)w(v)∕Lv)∕{1 + 2𝜆(1 − 𝛼)||u||22∕Lv}. (13)

We apply the equality constraints in (9) to recover the estimate of {d,u, v} from the estimate of the block variables {ǔ, v̌}.
In the 𝜷-step and the 𝚽-step, we follow the corresponding step of NB-RRR parameter estimation (see Algorithm 1) to
update 𝜷 and 𝚽, respectively. We have relegated the details of the convex surrogate function that majorizes the objec-
tive function, the computation of the constants (Lu, Lv, Lb), and the update steps to Section 1.3 of the supplementary
material.

We compute the parameter estimates for several 𝜆 values (the default is 50) in the range of 𝜆max to 𝜆min that are
equi-spaced on a log scale, where 𝜆max = 2||XT(Y − g−1(O))||∞ and 𝜆min = 1e−6 × 𝜆max. We apply K-fold cross-validation49

to select a tuning parameter 𝜆. The iterative procedure is summarized in Algorithm 3.
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Algorithm 3. Negative binomial constrained unit-rank regression (NB-CURE)

Input: X,Y,Z,O, 𝜆, W; Set Lb = max1≤j≤q ‖ZTdiag(Y
.j + 1)Z‖∕2.

Initialize u(0) = ũ, v(0) = ṽ, d(0) = ̃d, 𝜷(0) = ̃𝜷,𝚽(0) = ̃𝚽
repeat

Lu = ‖XTX +
∑n

i=1 xi

(∑q
k=1 yikv(t)2k

)
xT

i ‖∕2, Lv =
max1≤j≤q uTXTdiag(Y

.j+1)Xu
2

(I) u-step: Set ǔ = d(t)u(t) and v = v(t). Update ǔ(t+1) using (12).Recover block variable ( ̃d(t+1)
,u(t+1)) using equality

constraint in (11).
(II) v-step: Set v̌ = ̃d(t+1)v(t) and u = u(t+1). Update v̌(t+1) using (13).Recover block variable (d(t+1)

, v(t+1)) using
equality constraint in (11).

(III) 𝜷-step: 𝜷(t+1) = 𝜷(t) − 1
Lb
𝛁(𝚯(C(t+1)

, 𝜷(t)),𝚽) where C(t+1) = d(t+1)u(t+1)v(t+1)T.

(IV) 𝚽-step: 𝚽(t+1) ← Apply Newton-Raphson to increase (𝚯(t+1)
,𝚽) at 𝚽(t) such that g(b′(𝚯(t+1))) =

𝜼(O,C(t+1)
, 𝜷 (t+1))

t ← t + 1.
until convergence, for example, the relative 𝓁2 change in parameters is less than 𝜖 = 10−6.
return û, ̂d, v̂, ̂𝜷, ̂𝚽

3.2.2 Monotonically decreasing property of NB-CURE

Using Algorithm 3, we solve the optimization problem of NB-CURE to estimate the parameters {d,u, v, 𝜷,𝚽}. In the iter-
ative procedure, the objective function (11) is majorized by a convex surrogate in each of the u-step, v-step, and 𝜷-step, and
then minimized. Let us jointly denote the updated parameters from u-step, v-step, 𝜷-step, and 𝚽-step after tth iteration
by {d(t),u(t), v(t), 𝜷(t),Φ(t)}.

Theorem 2. The sequence of parameters estimate {d(t),u(t), v(t), 𝜷(t),Φ(t)}t∈N obtained from Algorithm 3 satisfies

F
𝜆
(d(t+1)

,u(t+1)
, v(t+1)

, 𝜷(t+1)
,Φ(t+1)) ≤ F

𝜆
(d(t),u(t), v(t), 𝜷 (t),Φ(t))

for Lu = ||XTX +
∑n

i=1xi

(∑q
k=1yikv(t)2k

)
xT

i ||∕2, Lv =
max1≤j≤q uTXTdiag(Y

.j+1)Xu
2

and Lb = max1≤j≤q ||ZTdiag(Y
.j + 1)Z||∕2.

We have relegated the proof of Theorem 2 to Section 1.4 of the supplementary material. Similar to NB-RRR, we have
found in extensive simulation studies that the sequence always converges in practice.

3.2.3 Handling missing outcome values in NB-FAR

Besides microbiome data, the NB factor models may also prove useful for multivariate count data in
other domains, including genomics, sports, image analysis, and text mining. A common scenario in these
domains is the presence of missing entries in the outcome matrix Y. To highlight NB-FAR’s ability to
account for missing entries, we can extend the framework of (5) by calculating the negative log-likelihood as
follows.

Let us define an index set of the observed entries in Y as 𝛀 = {(i, k); yik is observed, i = 1, … ,n, k =
1, … , q}, and denote the projection of Y onto 𝛀 by ̃Y = 𝛀(Y), where ỹik = yik for any (i, k) ∈ 𝛀 and
ỹik = 0 otherwise. Following Mishra et al,43 we write the negative log-likelihood function with incomplete
data as

(𝚯∗,𝚽∗) = −tr( ̃YT𝚯∗) + tr(̃JTB(𝚯∗)) +
∑

i, j∈𝛀
log

(
yij + 𝜙

∗
j − 1

yij

)
, (14)

where ̃J = 𝛀(J) and g(b′(𝚯∗) = 𝜼∗. In case of missing entries in the outcome matrix Y, one should replace Y with
̃Y and J with ̃J and apply our proposed procedure to estimate the parameters. The same approach is applicable in the
NB-RRR model.
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4 SIMULATION STUDIES

4.1 Setup

We compare the performance of NB-RRR and NB-FAR with GO-FAR and NB-GLM to showcase the efficacy of the pro-
posed procedures in modeling multivariate overdispersed count data in the high/large-dimensional settings. We evaluate
the performance of the methods in terms of estimation error, prediction accuracy, sparsity recovery, rank identification,
and shape error. GO-FAR (implemented in the R package gofar) assumes that the underlying distribution of the count
outcomes is Poisson. The specific comparison with GO-FAR allows us to probe the effect of overdispersion in the data on
model quality. The comparison with NB-GLM highlights the potential limitations of marginal approaches in modeling
dependent variables.

We followed Mishra et al43 to simulate the predictor matrix X and sparse SVD components of the coefficient matrix
C∗, that is, {U∗

,D∗
,V∗}. Our setup considers the true rank r∗ = 3 with U∗ = [u∗1,u

∗
2,u

∗
3], V∗ = [v∗1, v

∗
2, v

∗
3], and D∗ =

diag[d∗1, d∗2, d∗3] such that d∗1 = 6, d∗2 = 5, d∗3 = 4. The notations unif(, b) denote a vector of length b whose entries are
uniformly distributed on the set  and rep(a, b) denote the vector of length b with all entries equal to a. We gener-
ate u∗k as u∗k = ǔk∕||ǔk||, where ǔ1 = [unif(u, 8), rep(0, p − 8)]T, ǔ2 = [rep(0, 5),unif(u, 9), rep(0, p − 14)]T, and ǔ3 =
[rep(0, 11),unif(u, 9), rep(0, p − 20)]T. Similarly, we generate v∗k as v∗k = v̌k∕||v̌k||, where v̌1 = [unif(v, 5), rep(0, q − 5)]T,
v̌2 = [rep(0, 5),unif(v, 5), rep(0, q − 10) ]T, and v̌3 = [rep(0, 10), unif(v, 5), rep(0, q − 15) ]T. Here we set u = ±1 and
v = [−1,−0.3] ∪ [0.3, 1]. An intercept is included in the model by setting Z = 1n with 𝜷∗ = [rep(0.5, q)]T. We have
considered simulation settings with p = 100 and p = 300 to demonstrate the efficacy of the proposed procedure in
large/high-dimensional examples.

We simulate the predictor matrix X ∈ Rn×p from a multivariate normal distribution with some rotations such that the
latent factors XU∗∕

√
n satisfy the orthogonality constraint (7); we refer to the simulation study of Mishra et al34 for details

on the formulation. At the OTU/ASV level in the taxonomy, typical microbial abundance observations are excessively
sparse. Since our factor models are tailored toward modeling taxa aggregated on a higher taxonomic rank, for example,
the family level, we first estimate the level of sparsity in the observed AGP data. We found that, on the family level, 20%
of the entries AGP data are zeros. In the simulation setting, we thus set the shape parameters to 𝜙

∗
k = 0.5 for k = 1, … , q,

resulting in 20% zero entries in the simulated outcome matrix Y. Based on the model suggested in (1), we simulate Y such
that g(𝝁∗) = 𝜼∗ = Z𝜷∗ + XC∗. Finally, we also include a simulation scenario where 20% of entries in the response matrix
Y are missing at random. The latter scenario showcases the ability of NB-FAR and NB-RRR to handle missing values in Y.

We evaluate model performance in terms of (a) the estimation error Er(C) = || ̂C − C∗||F∕(pq), (b) the prediction error
Er(𝜼) = ||�̂� − 𝜼∗||F∕(nq), (c) sparsity recovery using the false positive rate (FPR) and the false negative rate (FNR), and (d)
rank estimation r̂. FNR is computed by comparing the support (nonzero entries) of (u∗k, v

∗
k)with corresponding entries in

its estimate (ûk, v̂∗k) for k = 1, … , r∗. The FPR, on the other hand, compares zero entries in (u∗k, v
∗
k) with corresponding

entries in its estimate (ûk, v̂∗k) for k = 1, … , r∗. In case of overestimated rank, we report the relative residual signal in the
excessive components as R% = 100(

∑r̂
i=r∗+1

̂d
2
i )∕(

∑r̂
i=1

̂d
2
i ). The error in the shape parameter estimate is reported as Er(Φ)

= || ̂𝚽 −𝚽∗||∕√q.

4.2 Results

Since we observed similar model performances in the p = 100 and p = 300 scenarios, we report the model evaluation
statistics only for the latter case in Table 1. The results are average performances over 100 replicates. The model compar-
ison for the p = 100 case is available in Table S1 of the supplementary material. The boxplot in Figure 2 compares the
models in terms of prediction error Er(𝜼) (see Figure S1 of the supplementary material for comparison on the basis of esti-
mation error Er(C)). Compared to the standard approach of modeling overdispersed count outcome using the marginal
negative binomial regression model (NB-GLM) or the Poisson counterpart of NB-FAR, that is, GO-FAR, both NB factor
models show superior performance in terms of parameter estimation, prediction, support identification, and rank estima-
tion. In the present model scenario, NB-FAR outperforms NB-RRR at the expense of a higher computational cost. Since
the true parameters of the underlying model are sparse, we expect and confirm this superior behavior of NB-FAR. The
performance decrease of the GO-FAR model highlights the effect of the misspecification in the model with respect to the
overdispersed data. In particular, the performance of GO-FAR considerably deteriorates in terms of false negative rate.
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T A B L E 1 Simulation: Model evaluation based on 100 replications using various performance measures (standard deviations are shown
in parentheses) in case of p = 300 with negative binomial responses

M% Er(C) Er(𝚯) FPR FNR R% r Er(𝚽) Time (seconds)

NB-FAR 0 2.68 (1.10) 20.70 (3.32) 5.10 (1.60) 1.42 (1.44) 0.00 (0.00) 3.00 (0.00) 0.10 (0.07) 263.20 (28.01)

NB-RRR 0 14.49 (1.14) 40.99 (1.71) 100.00 (0.00) 0.00 (0.00) 0.00 (0.00) 3.00 (0.00) 0.63 (0.14) 95.63 (8.43)

GO-FAR 0 10.79 (2.17) 47.58 (5.77) 4.56 (3.58) 49.80 (30.21) 0.00 (0.00) 2.51 (0.98) 1.37 (0.00) 60.49 (27.45)

NB-GLM 0 276.31 (10.27) 163.75 (2.15) 100.00 (0.00) 0.00 (0.00) 69.66 (1.29) 29.58 (0.56) 3741.83 (149.34) 1376.36 (35.38)

NB-FAR 20 3.36 (1.35) 22.98 (3.58) 5.63 (2.13) 2.51 (2.29) 0.00 (0.00) 3.00 (0.00) 0.12 (0.08) 273.12 (26.96)

NB-RRR 20 15.15 (1.35) 43.77 (2.07) 100.00 (0.00) 0.00 (0.00) 0.00 (0.00) 3.00 (0.00) 0.74 (0.17) 92.31 (8.80)

GO-FAR 20 11.78 (2.59) 50.37 (7.45) 4.89 (3.79) 54.17 (28.03) 0.00 (0.00) 2.54 (0.99) 1.37 (0.00) 79.46 (20.03)

NB-GLM 20 228.27 (7.35) 172.59 (2.53) 100.00 (0.00) 0.00 (0.00) 71.53 (1.24) 29.68 (0.47) 3773.07 (135.35) 1774.59 (41.64)

F I G U R E 2 Notched boxplots of the prediction error Er(𝜼) on the simulated count data under Setup I (p = 100) and II (p = 300),
respectively. The results are based on 100 replications

Based on the results in the simulation examples where 20% of entries in Y are missing (M%20 rows in Table 1), we observe
that NB-FAR can efficiently estimate the model parameters with slight deterioration compared to the full data model.

5 APPLICATION

We now illustrate the performance of the NB factor models using the microbial abundance data from the AGP.13 AGP
comprises around 30 000 fecal, oral, hand, skin, and other body site samples. We used Qiita,12 an open-source platform
for microbial study, to access the raw data. We selected and downloaded the microbial abundance data that were obtained
after processing 150-nucleotides-long trimmed sequences from the 16S V4 region and used the provided Greengenes ref-
erence database for taxonomic annotation. The AGP study also records metadata/covariates related to each participant’s
health condition, diet, demography, nutrient intake, and habit. Here, we focused on a subset of n = 627 participants where
both fecal amplicon data (with sufficient sequencing depth>2000) and VioScreen variables were available. The VioScreen
variables provide a detailed account of the dietary habits of the participants.

We aggregated the microbial count data to the family level using the available taxonomic annotation and performed
sample-wise geometric mean scaling18,19 at the minimum sequencing depth. After dropping taxa observed in less than
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10% of samples, we arrive at q = 39 microbial families as multivariate outcome Y. We curated the metadata as fol-
lows. First, we dropped several descriptive variables, such as, for example, sample name and sample identifier. We then
removed all variables that were missing in more than 50 out of n = 627 samples. The final covariate matrix X com-
prises p = 357 predictors. Each of the continuous predictors in X are both centered and scaled. We manually assigned
each of the different predictors to high-level categories, such as, for example, diet, habit, health-related, nutrient-related,
etc. The curated AGP dataset with the assigned categories is available on the GitHub page of the project (see also
agAnalysis.R in the supplementary material). Finally, we considered gender, body mass index (BMI), and age as con-
trol variables Z and included an intercept, leading to Z ∈ 627 × 4, and sample-wise geometric mean scaling in the offset
specification.

We used NB-FAR and NB-RRR to learn about the underlying association between the set of p = 357 covariates and
the observed microbial family abundances with a special focus on the patterns in the low-rank and sparse coefficient
matrix estimates C. For comparison, we also ran NB-GLM and GO-FAR and assessed model quality based on AIC, BIC,
and log-likelihood. We also report rank estimates r and model size. Table 2 summarizes model performance results from
100 replications with 80% of data used for training and 20% for testing. Compared to the marginal approach of NB-GLM
and the GO-FAR model, NB-FAR and NB-RRR achieve considerably lower AIC, BIC, and log-likelihood. Both NB-FAR
and NB-RRR have comparable prediction errors on the test data and choose approximately rank-3 models. Interestingly,
GO-FAR estimates a rank-1 model, though at the expense of decreased predictive performance.

Since NB-FAR achieved comparable performance to NB-RRR in terms of predictive log-likelihood with considerably
reduced model complexity, we re-estimated the model parameters of NB-FAR on the full data set using Algorithm 2.
NB-FAR again identified a rank(C) = 3 solution, enabling a parsimonious and interpretable description of host
covariates—microbial family associations with only three sparse latent factors, given by sparse left and right singu-
lar vectors ̂U and V. The support size (% of nonzero entries) of the estimates of the singular vectors are supp(U) =
{16%, 17%, 20%} and supp(V) = {28%, 74%, 59%}. Using the union of the support of the estimated U and V, we can
visualize all associations with the block-sparse coefficient matrix C, shown in Figure 3(left panel). The other panels in
Figure 3 display the individual unit-rank components C1, C2, and C3. Note that each of the unit-rank components is
orthogonal to one another. We highlight the high-level categories of the covariates, including diet, habit, and health, by
vertical lines. Horizontal lines delineate the different microbial phyla to which the families belong to. We observed that
each of the singular vectors induced a different sparse pattern of positive (red) and negative (blue) blocks of associa-
tions between covariates and taxa. Overall, we found that 30 out of the 39 microbial families were found to be associated
with host-associated covariates. The families Pseudomonadaceae, Barnesiellaceae, Paraprevotellaceae, Christensenel-
laceae, Coriobacteriaceae, ML615J-28, Mogibacteriaceae, Ys2, and Oxalobacteraceae were not associated with any of the
covariates.

As an example for how to read and interpret the coefficient matrices, consider the top-left sub-matrix of C which
relates the two Actinobacteria (red row label) Bifidobacteriaceae and Corynebacteriaceae to diet covariates (green column
label). Here, we observe an almost disjoint association pattern of positive and negative factors with diet covariates for
these two families. This pattern arises from the first two latent factor C1 and C2 (Figure 3, middle panels). There, we
observe a unique nonzero association pattern of diet variables with Corynebacteriaceae (second row in C1) and a unique
nonzero association pattern of diet variables with Bifidobacteriaceae (first row in C2). The third latent component does
not contribute any additional associations.

We next focused on the analysis of the overall most important covariates-taxa associations. The left panel of Figure 4
shows the top 25 covariates based on the row sum

∑q
j=1| ̂C|ij of the absolute values of the estimated coefficient matrix; the

T A B L E 2 Summary of average model performances on the AGP data in terms of AIC, BIC, and log-likelihood (second to fourth column)
on the test data

Model AIC BIC Log-likelihood r Supp(U) Supp(V)

NB-FAR 1.37 1.71 −9.44 3.15 7.97 16.80

NB-RRR 1.86 3.69 −9.23 3.15 100.00 100.00

GO-FAR 34.90 35.20 −19.00 1.00 17.90 3.59

NB-GLM 36.40 37.10 −19.80 27.20 55.10 86.00

Note: The other columns summarize the average rank estimate r and support of the singular vectors of C as {Supp(U), Supp(V)}.
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F I G U R E 3 Application—AGP: The sparse estimate of the selected rows and columns of the coefficient matrix ̂C with its corresponding
unit-rank components using NB-FAR. Based on the phylum of the taxon, horizontal lines separate the response into seven ranks:
Actinobacteria, Bacteroidetes, Euryarchaeota, Firmicutes, Proteobacteria, Tenericutes, and Verrucomicrobia (top to bottom). Based on the
type of the covariates, vertical lines (left to right) separate the selected predictors into five categories: diet, habit, health, nutrients, and subject
features

F I G U R E 4 Application—AGP: Plots show the selected rows and columns of the coefficient matrix C based on the estimated effect size.
The left plot selects the top 25 covariates based on the row sum of the absolute values of the estimated coefficient matrix,

∑q
j=1| ̂C|ij. The right

plot shows the union of the top 10 covariates selected by each of the three unit-rank components of the estimated C
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right plot shows the union of the top 10 covariates selected by each of the three unit-rank components of the estimated C.
The color intensity in the plot reflects the effect of covariates on the abundance (red/blue for positive/negative effect). For
instance, our analysis suggests that latitude (an indicator of geography) or cat ownership significantly impact the abun-
dance of Bifidobacteriaceae, Pasteurellaceae, and Streptococcaceae. This finding is supported by several studies that also
report a strong role of geography51-53 and pet ownership54,55 on microbial abundance patterns. Likewise, the consumption
of olive oil (unsaturated fatty acids) negatively impacts the abundance of Corynebacteriaceae and of several families in
the Firmicutes phylum while showing no influence on Bacteroidetes families. Several studies such as De Wit et al,56 Zhao
et al,57 and Farràs et al58 have reported associations between olive oil intake and a reduction in Firmicutes/Bacteroidetes
ratio, consistent with the observations here. The NB-FAR model also suggests that Bifidobacteriaceae abundances are pos-
itively associated with grain intake (vioscreen hei grain: Healthy Eating Index [HEI] score of total grain), as previously
observed.59 Finally, we also observed several associations between an underlying medical condition and microbial taxa.
For instance, attention deficit hyperactivity disorder (ADHD) (last column in left panel, add adhd) negatively impacts
the abundance of Streptococcaceae, Bifidobacteriaceae, and Pasteurellaceae. A similar observation about Streptococcaceae
has been reported in a separate study on children with Autism Spectrum Disorder (showing signs of ADHD).60

The orthogonality property of the three latent factors also allows a unique factor-by-factor analysis of the estimated
associations. Since each unit-rank component estimate divides response-predictor pairs into two groups, that is, positive
and negative, we can cluster each component into exactly four quadrants, essentially providing disentangled bi-clustering
of microbial families and host-associated covariates. Figure 5 illustrates these biclusters for each of the three unit-rank
components {C1,C2,C3}. For instance, in the C1 estimate plot, the upper left quadrant shows the negative associa-
tions between subsets of covariates and subsets of families. The covariate olive oil intake (column A1) is significantly
negatively associated with seven out of the eight taxa, including Corynebacteriaceae and Enterococcaceae. On the other
hand, the covariate exercise location (column A3) is positively associated with these (and other) taxa. Similarly, from
the C2 estimate, we observed that the taxa Bifidobacteriaceae, Pasteurellaceae and Streptococcaceae are positively associ-
ated with latitude/geography, Erythritol intake, and grain (columns B1-B3), and negatively associated with inositol level
(nutrients) and ADHD (columns B4 and B5). Finally, from the C3 estimate, we observe that the covariates sets {starchy
vegetable, acne medication, salted snack frequency, drinking water source} (columns C1-C3 and C6) and {cesarean birth,
lung diseases, juice serving} (columns C4, C5, and C7) have significantly opposite effects on the C3-associated microbial
families.

Overall, these results highlight a strong influence of specific host-associated features on specific family abundance
pattern which should be taken into account in downstream analysis whenever these features are available in a microbiome
study.

F I G U R E 5 Application—AGP: Plots show the selected rows and columns of the estimated unit-rank components, that is, {C1,C2,C3},
of the coefficient matrix C. Covariates selected in the right plot of Figure 4 are marked ⋆ in each of the three components. Each quadrant in
the subplots shows the underlying associations
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6 DISCUSSION

In this contribution, we have presented two novel NB factor regression models, NB-FAR and NB-RRR, for the analysis
of microbial abundance data. The models have been tailored toward modeling overdispersed count outcome data in the
context of amplicon-derived microbiome data. However, we posit that the models may prove useful in other applica-
tion areas, including clinical trials,61 sports,62 and single-cell genomics.63 The key novelty of the models is to express
underlying dependencies between responses (eg, microbial counts) and predictors (eg, host or environmental covari-
ates) by assuming either a dense low-rank or a co-sparse low-rank representation of the coefficient matrix. These
structural assumptions appear realistic in the context of microbiome data where certain bacterial taxa are likely spe-
cialized in metabolizing specific food ingredients and hence show a concerted diet dependence. Compared to marginal
approaches where each of the families is separately modeled using a Poisson or NB regression, we have shown that
our models are both computationally more efficient and simultaneously achieve better estimation performance on sim-
ulated data and the large-scale AGP data compendium. These results, in turn, challenge recent efforts in establishing
host-microbiome relationships using marginal approaches.33,64 In particular, the study by Manor et al64 attempted to
estimate large-scale association patterns between microbial genera and host features across thousands of participants
using marginal logistic or Poisson regression. There, the authors used microbial abundances as predictors and reported
the most significant association patterns with individual host covariates as outcome. In particular, they identified the
genera Ys2, Ml615j-28, Coriobacteriaceae, Christensenellaceae, Mogibacteriaceae, and Oxalobacter to be significantly
associated with host covariates all of which were among the few families that were not associated with host covariates
in our analysis. These discrepancies highlight the fact that, despite reasonably large sample sizes, there still remain con-
siderable inconsistencies across microbiome studies that require further statistical (meta-)analysis. As we have shown
in our application on the AGP data, the ability of the NB-FAR model to deliver crisp bi-clustering of the underlying
host-microbiome associations makes them an ideal tool to perform such future analysis and generate testable biological
hypotheses.

On the statistical side, potentially fruitful extensions of the NB factor models include the handling of excess zeros in
the outcome data using, for example, zero-inflated components or hurdle models. Since there are two types of zeros in
the microbial abundance data, true (structural) zeros and experimental (measurement) zeros, one potential path forward
is to identify structural zeros a priori65 and treat the remaining zeros as missing values the latter of which can already be
efficiently handled by NB-FAR and NB-RRR. Furthermore, our current approach is restricted to using the log link function
associating the mean to the linear predictor. Introducing alternative link functions that satisfy the positive mean constraint
would add to the flexibility and generality of the current modeling framework. Finally, in our current framework we
select the tuning parameter 𝜆 via K-fold cross-validation, making the parameter estimation procedure computationally
intensive. This can potentially be alleviated by developing a stage-wise algorithm66 for parameter estimation since such
a strategy has been proven to be computationally efficient in the multivariate linear regression setting with normally
distributed response matrix Y.

Going forward, we also posit that NB-FAR and NB-RRR may serve as useful sub-routines in more complex statistical
analysis workflows, including causal inference. For example, consider a typical randomized clinical trials experiment
that aims at understanding the causal effect of a treatment on a phenotype of interest. In a diet intervention study, for
instance, it is not unlikely that the intended direct effect on host health is mediated or confounded by the presence of
certain microbes in the microbiome. While the instrumental variable (IV) approach67 provides a powerful framework
to uncover causal effects (see also Ailer et al68 in the context of microbiome data), it requires that the instruments are
strong and not confounded. A standard IV approach for continuous data estimates the parameters using two-stage least
square. For the high-dimensional data problem, Lin et al69 proposed a regularized two-stage framework that solves a
penalized multivariate linear regression in the first stage and a Lasso problem38 in the second stage. This framework can
be likely extended by using the NB-FAR/NB-RRR methodology in the first stage when overdispersed count data serve as
the independent variables.

Taken together, we believe that the introduced NB factor regression models and their efficient implementation in the
R package nbfar provide a useful statistical framework for analyzing overdispersed count data in medicine, biology, and
other scientific disciplines.
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