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Abstract: An α-galactosidase-producing strain named Anoxybacillus vitaminiphilus WMF1, which
catalyzed the reverse hydrolysis of D-galactose and glycerol to produce isofloridoside, was isolated
from soil. The α-galactosidase (galV) gene was cloned and expressed in Escherichia coli. The galV
was classified into the GH36 family with a molecular mass of 80 kDa. The optimum pH and
temperature of galV was pH 7.5 and 60 ◦C, respectively, and it was highly stable at alkaline pH
(6.0–9.0) and temperature below 65 ◦C. The specificity for p-nitrophenyl α-D-galactopyranoside
was 70 U/mg, much higher than that for raffinose and stachyose. Among the metals and reagents
tested, galV showed tolerance in the presence of various organic solvents. The kinetic parameters
of the enzyme towards p-nitrophenyl α-D-galactopyranoside were obtained as Km (0.12 mM), Vmax

(1.10 × 10−3 mM s−1), and Kcat/Km (763.92 mM−1 s−1). During the reaction of reverse hydrolysis,
the enzyme exhibited high specificity towards the glycosyl donor galactose and acceptors glycerol,
ethanol and ethylene glycol. Finally, the isofloridoside was synthesized using galactose as the donor
and glycerol as the acceptor with a 26.6% conversion rate of galactose. This study indicated that galV
might provide a potential enzyme source in producing isofloridoside because of its high thermal
stability and activity.

Keywords: α-Galactosidase; Anoxybacillus vitaminiphilus; thermal-stability; reverse hydrolysis; isofloridoside

1. Introduction

α-Galactosidases (α-D-galactoside galactohydrolases; EC 3.2.1.22) are exoglycosidases
that catalyze the hydrolysis of the terminal non-reducing α-galactosyl residue of various
substrates [1]. α-Galactosidases have been classified into six glycoside hydrolase (GH) fam-
ilies namely GH4, GH27, GH36, GH57, GH97, and GH110 based on structure and sequence
similarity, but most of them belong to the GH27 or GH36 families, which share common
evolutionary origins and reaction mechanism [2]. A majority of GH36 α-galactosidases
are reported from bacterial sources with high molecular mass and multimeric nature [3].
α-Galactosidases are known to be potentially useful in diverse applications. In the pharma-
ceutical industry, they have been shown to be effective against Fabry disease [4]. Addition-
ally, α-galactosidases, which act as hydrolases in nature, can be used in the food industry,
such as the hydrolysis of galactosyl residues from raffinose to improve the crystallization
of sucrose [5]. Studies conducted over the years have shown that α-galactosidases can
mediate transglycosylation to produce a series of important compounds [6].
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α-D-Galactosyl-glycerol is the main photosynthetic assimilation product in red algae,
which plays an important role in regulating osmotic pressure [7]. Two structural types of
α-D-galactosyl-glycerol exist, namely 2-O-α-D-galactopyranosyl-glycerol (floridoside) and
1-O-α-D-galactopyranosyl-glycerol (isofloridoside), which are widely used in cosmetics,
healthcare, food and medicine because of their chemical antioxidant, anti-inflammatory,
immune-regulatory and free radical-scavenging effects [8]. High concentrations of isoflori-
doside have been found in red algae (Hydra and Porphyra), but using alcohol for extracting
isofloridoside was complex with low efficiency. Moreover, the chemical method to synthe-
size galactosyl glycerol requires complicated steps and highly toxic bromo glycosides [9].

Enzymatic synthesis can overcome these shortcomings. Two methods were devel-
oped for the enzymatic synthesis of galactosyl glycerol, namely kinetically controlled
transglycosylation and thermodynamically controlled reverse hydrolysis [10]. The trans-
glycosylation reaction is fast, but it needs expensive galactosyl donors such as melibiose
or pNP-α-D-galactopyranoside and the products are difficult to separate and purify. In
addition, the transglycosylation reaction requires a high concentration of the substrate to
make the reaction proceed in the direction of synthesis, and the presence of water will
cause the hydrolysis of the product, leading to low synthetic efficiency. For example,
α-galactosidase from Penicillium oxalicum SO catalyzed the transglycosylation of melibiose
and glycerol with the reaction time of 80 h, which produced not only galactosylglycerol,
but also tetrasaccharides from the self-transglycosylation of melibiose [11]. In previous
studies, the cheap ingredient guar gum was used as the donor for synthesizing galactosyl
glycerol. However, the enzyme-catalyzed transglycosylation was complex, and contained
not only α-galactosidase, but also β-mannosidase and β-mannanase, while α-galactosidase
alone could not catalyze the synthesis of galactosyl glycerol from guar gum by trans-
glycosylation [12]. In contrast, the reverse hydrolysis needed low-cost substrates such
as glycerol and galactose, and the product was single, which is more conducive to the
industrial production of galactosyl glycerol in the future [10]. So far, there has been only
one report which used whole-cell biocatalysts harboring α-galactosidase to catalyze the
reverse hydrolysis of galactose and glycerol to synthesize isofloridoside [13]. However,
since the reverse hydrolysis reaction needs a long reaction time and the efficiency is low, it
is necessary to find more enzymes with high synthetic ability.

Since the reverse hydrolysis reaction is controlled by thermodynamics, high tem-
perature is more conducive to the reaction. In addition, increasing the temperature can
accelerate the reaction rate, making the reaction reach equilibrium earlier because the
reaction of reverse hydrolysis is relatively slow [14]. Moreover, high temperature will
increase the solubility of substrates and the initial efficiency of enzymes, thereby increasing
the yield [15]. Thus, α-galactosidases characterized by thermal stability are considered to
have good potential in synthesizing galactosyl glycerol. To date, α-galactosidases with
thermal stability from thermophilic fungi and prokaryotic sources are few, especially those
able to catalyze the synthetic reaction.

Here, the microorganism that could catalyze the synthesis of isofloridoside with
reverse hydrolysis was isolated from soil and identified as Anoxybacillus vitaminiphilus.
An α-galactosidase (galV) gene from A. vitaminiphilus WMF1 was cloned, expressed in
Escherichia coli, and characterized. Furthermore, galV was used to catalyze the reverse
hydrolysis of galactose and glycerol to synthesize isofloridoside (Figure 1).
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2. Results and Discussion
2.1. Obtaining α-Galactosidase-Secreting Strains

Six α-galactosidase-producing strains were found by observing the blue single colony
on the primary screening plate, and enzyme activity was detected in the supernatant of
lysate but not in the supernatant of fermentation. Among them, a strain with the high-
est activity to catalyze the synthesis of isofloridoside by reverse hydrolysis was selected.
The 16s rDNA sequence of the target strain, which was named as A. vitaminiphilus WMF1,
possessed the highest homology (99.0%) with that of A. vitaminiphilus (NCBI GenBank acces-
sion no. NR_108379). As far as we know, no report has been published on α-galactosidase
from Anoxybacillus sp. Therefore, the research on the biochemical characterizations of
α-galactosidase from Anoxybacillus sp. is of great significance.

2.2. Sequence and Structure Analysis

The genomic DNA sequence of A. vitaminiphilus was found in NCBI, and a putative
α-galactosidase gene was noted; however, the gene has not been cloned, expressed, and
characterized yet. According to this sequence, the primers were designed and then the
α-galactosidase gene from A. vitaminiphilus WMF1 was cloned. The sequencing analysis
showed that galV showed 75.3% identity with the putative α-galactosidase from A. vita-
miniphilus (WP_111643960.1). Additionally, galV shared the identity of 91.4% with the un-
characterized α-galactosidase from Bacillus alveayuensis (WP_044748107.1), followed by the
α-galactosidase from Geobacillus sp. MR (73.4%, WP_171355420.1) and Alkalihalobacillus ak-
ibai (67.0%, WP_035664793.1). The α-galactosidase from G. stearothermophilus (AAG49421.1),
which has been experimentally characterized, shared 75.3% identity with galV and was
used as the template for modeling (Figure 2). The theoretical molecular mass of galV was
calculated to be 83.8 kDa. No signal peptide was found in galV, which was consistent
with the aforementioned result that the α-galactosidase was an intracellular enzyme. A
catalytic domain belonging to GH36 α-galactosidase was observed in the sequence (from
Glu328 to Glu627), indicating that galV should be a GH36 family α-galactosidase. More-
over, galV was found to contain the consensus motif LFVL/MDDGWFG of GH36 family
α-galactosidases [16]. Residues D478 and D548 are the putative nucleophile and catalytic
acid/base in the motif KWD and SDXXDXXXR of galV, respectively [16].

The putative structure of galV showed the typical GH36 organization, which com-
prised three parts: N-terminal domain, catalytic domain with a conserved (β/α)8-barrel
topology and similar active sites, and C-terminal domain [17]. The N-terminal domain
(residues 1–327), which was connected to the catalytic domain, consisted of a β-super sand-
wich and terminated in a long α-helix. The catalytic domain (residues 328-627) showed
a (β/α)8-barrel fold containing the putative nucleophile and proton donor, Asp478 and
Asp548 (Figure 3). The least conservative of the three domains, the C-terminal domain
(residues 628-727), showed a β-sandwich structure, which contained an α-helix and eight β-
folds. Furthermore, galV was presumed to have a symmetrical tetramer structure because
the template α-galactosidase was tetrameric, which was observed in a previous study [17].
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2.3. Expression and Purification of galV

Recombinant α-galactosidase was abundantly expressed in E. coli. The recombinant
protein was approximately 80 kDa on a 12% SDS-PAGE gel, which was in agreement with
the calculated molecular mass (83.8 kDa) of galV (Figure 4) and in the range of the molecular
weight (70–100 kDa) of most GH36 α-galactosidases [18]. The native molecular mass of the
enzyme was 320 kDa as determined by gel filtration, suggesting a homotetramer structure,
which was consistent with the previously speculated structure, and the same result was
also found in the α-galactosidase from Paecilomyces thermophila [19].
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Figure 4. SDS-PAGE analysis of α-galactosidase expressed in E. coli BL21 (DE3). Lanes: M,
protein molecular weight marker; 1, pET-28a; 2, crude pET-28a-α-galactosidase; 3, purified
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2.4. Biochemical Characterization of galV

The optimal pH of galV was found to be approximately 7.5, which was consistent
with the previous finding that GH36 enzymes functioned optimally at neutral or alkaline
pH [20]. Figure 5 shows that galV manifested the maximum activity at 60 ◦C, which was in
agreement with the α-galactosidase from Paceilomyces thermophila [19] and higher than that
reported for α-galactosidase from Bifidobacterium breve (37 ◦C) [21] and Aspergillus oryzae
YZ1 (50 ◦C) [22]. Under the optimal conditions, galV showed a specificity of 70 U/mg
against pNPG, which was higher than that of α-galactosidase from Carnobacterium piscicola
(2.3 U/mg) [23] and Lactobacillus fermenti (2.19 U/mg) [24], but lower than that produced by
Aspergillus oryzae YZ1 (76.9 U/mg) [22] and Penicillium janczewskii zalesk (667 U/mg) [25].
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The enzyme was stable over a slightly alkaline pH range between 6.0 and 9.0, which
was consistent with the α-galactosidase from Bacillus stearothermophilus NCIM 5146 [26].
Contrary to our results, the α-galactosidase from Penicillium sp. F63 CGMCC 1669 [16]
and Penicillium janczewskii zaleski [27] had optimum activity in the acidic pH range. The
neutral or weak alkaline pH form of α-galactosidase is suitable for the hydrolysis of soy
milk, since an acidic pH leads to the deposition of soy protein and gives milk its sour
taste [26]. The thermostability of galV was also measured. About 78% of its original
activity was retained after incubation at 60 ◦C for 2 h, which was consistent with the α-
galactosidase from thermophilic microorganisms, such as the α-galactosidase from Rhizomucor
miehei [28] and Dictyoglomus thermophilum sp [29]. Moreover, galV was more stable than
most GH36 α-galactosidases, such as the α-galactosidase from Bacillus megaterium [18],
Yersinia pestisbiovar Microtus str. 91,001 [30], Aspergillus oryzae YZ1 [22] and Paceilomyces
thermophila [19]. Thus, the enzyme showed activity and stability over a broad range of
temperature, which made it a potential candidate in various industrial processes.

Table 1 presents the effects of metal ions and reagents on galV. The enzyme activity
drastically decreased to 2.37%, 4.86%, and 3.93% of the original activity in the presence
of Fe2+, Ni2+, and Fe3+, respectively, while Ca2+, Mn2+, and Zn2+ considerably inhibited
the activity. The drastic mitigation of galV activity was seen in the presence of Cu2+

(0.16% residual activity), which was also reported for the α-galactosidase from Aspergillus
terrusGR [31]. Na+, K+, Li+, and Mg2+ did not affect the enzymatic action, which was similar
to that observed in Humicola sp [32] and Alicyclobacillus sp. A4 [33]. Reagents such as
CTAB, SDS, and acetonitrile had a strong inhibitory effect on the enzyme activity. Most
proteins lose the tertiary and quaternary structures under the action of SDS due to the
strong denaturation of SDS [34]. Unlike the α-galactosidase from Bacillus megaterium, the
organic solvents DMSO and methanol had no significant effect on the enzyme activity [18].
The tolerance of galV to alcohol may make it easier to construct a solvent-free system.
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In this case, a high concentration of acceptor such as alcohol is beneficial to the reverse
hydrolysis reaction, resulting in a high yield.

Table 1. Effects of metal ions and chemical reagents on the activity of α-galactosidase.

Supplement Relative
Activity (%) Supplement Relative

Activity (%)

None 100 ± 0.03 Mn2+ 55.13 ± 0.21
K+ 104.45 ± 0.01 Zn2+ 15.38 ± 0.08
Li+ 101.07 ± 0.03 Fe3+ 3.93 ± 0.07
Na+ 99.86 ± 0.36 CTAB 8.98 ± 0.14
Ni2+ 4.86 ± 0.05 SDS 4.43 ± 0.02
Ba2+ 100 ± 0.07 Triton X-100 100 ± 0.09
Ca2+ 28.47 ± 0.01 Tween-80 100 ± 0.07
Cu2+ 0.16 ± 0.00 DMSO 100 ± 0.07
Fe2+ 2.37 ± 0.08 Methanol 100 ± 0.09
Mg2+ 99.64 ± 0.06 Acetonitrile 3.43 ± 0.00

The activity in the absence of the supplement was considered as 100%. Values are the mean ± SD of three
independent experiments.

The kinetic parameter values of the galV were obtained using the Lineweaver–Burk
plot with certain concentrations of pNPG. The Km, Vmax, and Kcat/Km for pNPG were
0.12 mM, 1.10 × 10−3 mM s−1, and 763.92 mM−1 s−1, respectively. The kinetic parameters
of α-galactosidases have been studied extensively. Accordingly, the catalytic efficiency
(Kcat/Km) of galV toward pNPG was forty-fold that of the α-galactosidase from Rhizomucor
miehei [28]. Furthermore, the α-galactosidase from Bacillus megaterium possessed Km and
Kcat/Km values of 0.42 mM and 610 mM−1 s−1, respectively [18], and the α-galactosidase
from Sphingomonas sp. had the Km of 2.2 mM and Kcat/Km of 233 mM−1 s−1 [35]. In
addition, the α-galactosidase from Irpex lacteus owned the Km of 1.2 mM and Kcat/Km of
1900 mM−1 s−1 [36]. Compared with other α-galactosidases, galV was moderate in its
activity to catalyze the hydrolysis of pNPG.

2.5. Substrate Specificity in the Hydrolysis Reaction

The substrate specificity of galV was tested on the artificial substrates: pNPαGal
and pNPβGal, and the natural substrates: melibiose, raffinose, stachyose, lactose, D(+)-
cellobiose and guar gum. Further, galV showed no activity on pNPβGal, lactose, and
D(+)-cellobiose, indicating that aglV was highly specific for α-1,6-bound galactose. More-
over, galV showed remarkably higher activity towards pNPαGal than toward the natural
substrate (Table 2). The result was in agreement with previous findings (Table 3). Most
α-galactosidases exhibited higher activity with synthetic substrates (pNPG) than with
natural substrates (melibiose, raffinose, and stachyose) [37], which might be because of the
simple structure of pNPαGal [38]. For the galacto-oligosaccharide substrates investigated,
galV exhibited negligible activities on raffinose (2.75%) and stachyose (1.50%) compared
with pNPG (100%), but did not show any activity on melibiose. It was different from many
α-galactosidases, which showed activity on melibiose to different degrees, such as the
α-galactosidase from Lichtheimia ramosa [39] and Penicillium sp. F63 CGMCC 1669 [16]. Like
most GH36 α-galactosidases, the enzyme did not act on polymeric galactomannan guar
gum. In previous studies, α-galactosidases belonging to the GH36 family were specific
for small oligosaccharides but inactive on galactomannans, while GH27 α-galactosidases
could hydrolyze galactomannans [40].
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Table 2. Substrate specificity of the recombinant α-galactosidase.

Substrate Relative Activity (%)

pNP-α-D-galactopyranoside 100 ± 0.08
pNP-β-D-galactopyranoside <0.001

Melibiose <0.001
Raffinose 2.75 ± 0.01
Stachyose 1.50 ± 0.00

Lactose <0.001
D(+)-cellobiose <0.001

Guar gum <0.001
Relative activity was calculated in relation to pNPG activity, which was considered as 100%. Values are the mean
± SD of three independent experiments.

Table 3. Thermal and pH stability and substrate specificity of GH36 family α-galactosidases.

Organism pH Stability Thermostability Substrate Specificity Ref

Anoxybacillus vitaminiphilus
WMF1 >80%, 6.0–9.0 78%, 60 ◦C, 2 h pNPG > raffinose >

stachyose > melibiose This study

Rhizomucor miehei >80%, 4.5–10 70%, 60 ◦C, 30 min pNPG > stachyose >
raffinose > melibiose [28]

Bacillus megaterium >70%, 6.0–7.4 80%, 45 ◦C, 2 h pNPG > melibiose >
raffinose > stachyose [18]

Yersinia pestisbiovar Microtus
str. 91001 >60%, 6.5–7.5 63%, 50 ◦C, 30 min NR [30]

Lichtheimia ramosa >65%, 3.0–9.0 90%, 60 ◦C, 10 min pNPG > melibiose >
raffinose > stachyose [39]

Penicillium sp. F63 CGMCC
1669 5.5–6.5 stable below 40 ◦C melibiose > raffinose >

stachyose [16]

Bacillus stearothermophilus
NCIM 5146 >60%, 6.0–9.0 80%, 65 ◦C, 2 h pNPG > melibiose >

raffinose > stachyose [26]

Bifidobacterium longum
JCM7052 NR NR pNPG > raffinose >

melibiose > stachyose [41]

Dictyoglomus thermophilum sp >83%, 7.0–10.0 50%, 60 ◦C, 12 h pNPG, melibiose,
raffinose, stachyose [29]

Meiothermus ruber 3.0–10.0 50%, 60 ◦C, 12 h pNPG, melibiose,
raffinose, stachyose [29]

Penicillium janczewskii zaleski >50%, 4.0–6.8 60%, 35 ◦C, 2 h pNPG > melibiose >
raffinose > stachyose [27]

Aspergillus oryzae YZ1 >90%, 3.0–8.0 60%, 45 ◦C, 40 min pNPG > stachyose >
raffinose [22]

Paceilomyces thermophila >90%, 4.0–11.5 90%, 50 ◦C, 30 min pNPG > stachyose >
melibiose > raffinose [19]

NR: not reported.

As shown in Figure 6, the degradation of raffinose and stachyose by galV was per-
formed and analyzed by TLC. Most of the raffinose was rapidly degraded into sucrose and
galactose in 5 min, and the residue was completely hydrolyzed in 10 min (Figure 6a). For
the hydrolysis of stachyose, the degradation of the tetrasaccharide stachyose produces the
intermediate trisaccharide raffinose in the initial hydrolysis process, which indicates that
galV is an exoglycosidase [42]. The formed raffinose was completely converted to galactose
and sucrose as the final product in 20 min (Figure 6b). The difference in efficiency of
hydrolysis of the two oligosaccharides catalyzed by galV was in agreement with the result
that galV showed higher substrate specificity for raffinose than stachyose. The complete
hydrolysis of raffinose was faster than that of stachyose, probably because there is one
more α-1, 6-galactose bond in stachyose than in raffinose [36].
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2.6. Reverse Hydrolysis of galV

The capability of galV to synthesize glycosides by reverse hydrolysis was investigated,
using sugars as a donor and alcohols and sugar alcohols as an acceptor (Table 4). The result
indicated that D-galactose and glycerol were the best substrates for reverse hydrolysis
catalyzed by galV. No synthetic product was observed but ethanol and ethylene glycol
were used as acceptors, with similar relative galactose conversion rates (about 85.2% and
88.6% respectively). Many studies showed that glycerol was a good acceptor. For instance,
α-galactosidase from Penicillium oxalicum SO exhibited high acceptor specificity towards
glycerol [11]. In addition, a previous study indicated that mono-alcohols were a poor
acceptor compared with ethylene glycol and glycerol [12]. However, in our study, ethanol
was also a good acceptor. Therefore, this enzyme has great potential for application in
synthesizing alkyl glycosides.

Table 4. Acceptor specificity of α-galactosidase.

Acceptor Relative Activity (%)

Glycerol 100 ± 0.27
Methanol <0.001
Ethanol 85.2 ± 0.48

Ethylene glycol 88.6 ± 0.70
1-Butanol <0.001

Xylitol <0.001
Inositol <0.001

D-sorbitol <0.001
Mannitol <0.001

Relative activity was calculated in relation to the conversion rate of galactose using glycerol as the acceptor, which
was considered as 100%. Values are the mean ± SD of three independent experiments.

2.7. Synthesis of Isofloridoside

Figure 7 shows the time-course for synthesizing isofloridoside using the low-cost in-
gredients D-galactose and glycerol. The content of D-galactose and glycerol decreased with
the extension of reaction time, resulting in a gradual increase in the content of isofloridoside
in the time progression of synthesis. There was no significant increase in the content of
isofloridoside after reaction for 24 h. The final conversion rate of galactose was 26.6% with-
out the optimization of reaction conditions (Figure 8a). The structure of isofloridoside was
identified by LC−MS (Figure 8b). Mass spectra showed a peak with [M+Na]+ molecular
ions of 277.0, which confirmed that the product was isofloridoside (m/z 254). In addition,
galactosyl glycerol was synthesized by transglycosylation, using activated sugar melibiose
or pNPG as the substrate [43]. However, the use of these expensive substrates is not
practical in producing galactosyl glycerol. On the contrary, the reverse hydrolysis reaction
does not require activated sugar, the ingredients needed are cost effective, and the product
is single, which is more suitable for industrial production. Wang used the α-galactosidase
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from Alicyclobacillus hesperidum to catalyze the synthesis of isofloridoside by reverse hydrol-
ysis, the galactose conversion was 23% after optimizing pH, temperature, and galactose
and glycerol concentration [13]. In the future, effective methods should be used to improve
the content of isofloridoside, making it more suitable for expanding production, such as
protein engineering on the enzyme and optimization of the reaction parameters.
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3. Experimental Procedures
3.1. Materials

E. coli DH5α and pMD 19-T vector for gene cloning, and E. coli BL21 (DE3) and
pET-28a (+) for gene expression of α-galactosidase were preserved in our laboratory. Re-
striction endonuclease, pfu DNA polymerase and T4 DNA ligase were purchased from
TaKaRa (Tokyo, Japan). Genomic DNA and plasmid extraction kits were obtained from
Bioteke (Beijing, China). The substrates pNP-α-D-galactopyranoside (pNPG), pNP-β-D-
galactopyranoside, melibiose, raffinose, stachyose, lactose, D(+)-cellobiose and guar gum
were purchased from Sigma Chemical Company (MO, USA). The alcohols (methanol,
ethanol, ethylene glycol (1,2-ethanediol)) and sugar alcohols (xylitol, inositol, D-sorbitol
and mannitol) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). All other chemicals used were of analytical grade unless otherwise stated.

3.2. Microorganism Isolation and Identification

Soil samples from the Laoshan Forest Park (Nanjing, China) were collected. For
obtaining the enriched culture, the soil samples were placed in sterile water and stirred
at 37 ◦C. After 30-min standing, the supernatant was inoculated into the liquid medium
containing 1% (NH4)2SO4, 0.5% NaOAc, 0.2% citrate diamine, 0.2% KH2PO4, 2% raffinose
and 0.058% MgSO4·7H2O. Subsequently, the microorganisms were gradually diluted with
sterile water and screened using a primary screening medium (1% tryptone, 1% beef
extract, 0.5% NaOAc, 0.2% citrate diamine, 0.2% KH2PO4, 0.5% yeast extract, 2% raffinose,
0.058% MgSO4·7H2O, 2% agar and 6.25 × 10−3% X-α-Gal). The α-galactosidase-producing
colonies were screened through blue and white spots and cultured on the fermentation
medium (1% tryptone, 1% beef extract, 0.5% NaOAc, 0.2% citrate diamine, 0.2% KH2PO4,
0.5% yeast extract, 2% raffinose and 0.058% MgSO4·7H2O). The hydrolysis activity of the
supernatant of fermentation and the sediment strains lysed by ultrasonication on ice (work
time: 15 min, work/interval time: 3 s/5 s and ultrasonic output power: 200 W) was assayed
using pNPG as substrate. For isofloridoside synthesis, screw-capped glass vials were used
for carrying out reverse hydrolysis between glycerol and galactose at 35 ◦C for 24 h. The
strain with the highest activity for synthesizing isofloridoside was identified based on
the analysis of 16S rDNA sequence Basic Local Alignment Search Tool (BLAST) in the
GenBank Data Library using primers 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R
(5′-GGTTACCTTGTTACGACTT-3).

3.3. Cloning, Sequence and Structure Analysis of α-Galactosidase Gene

The galV-encoding gene was amplified using the forward primer (5′-CATGCCATGGTTAGC
ACGCCTTCAGCCTCC-3′ with restriction NcolI site) and reverse primer (5′-CCGCTCGAGATGG
GGATTATATATAATGA-3′ with restriction XhoI site), and ligated to the pMD 19-T vector, trans-
formed into E. coli DH5α and sequenced by GENEWIZ, Inc (Suzhou, China). The plasmid was
digested with NcolI and XhoI and ligated to the pET-28a (+), which was used as an expression
backbone and transformed into E. coli BL21 (DE3).

The presence of signal peptides was detected using SignalP 5.0 (http://www.cbs.dtu.
dk/services/SignalP/, accessed on 13 March 2021). Protein homology searches were con-
ducted by BLASTX (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 13 March 2021)
and ClustalW (https://www.genome.jp/tools-bin/clustalw, accessed on 13 March 2021)
was used for sequence alignments. Conserved domains were analyzed at National Cen-
ter for Biotechnology Information (NCBI) CD-Search (https://www.ncbi.nlm.nih.gov/
Structure/cdd/wrpsb.cgi, accessed on 16 April 2021). The classification of enzyme into
a GH family was determined by InterPro (http://www.ebi.ac.uk/interpro/, accessed on
16 April 2021). The theoretical molecular mass of the recombinant protein was predicted
using the ExPASy ProtParam tool.

The three-dimensional structure of α-galactosidase from A. vitaminiphilus AWM1 was
determined with a Swiss Model server using the α-galactosidase from Geobacillus stearother-
mophilus (PDB-ID: 4fnq) as the template and optimized based on the energy minimization.

http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.genome.jp/tools-bin/clustalw
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://www.ebi.ac.uk/interpro/
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3.4. Expression and Purification of Enzymes

The inoculum was prepared by transferring loopfuls of fresh strains cultured on
a Luria broth (LB) agar plate into an LB medium containing kanamycin, followed by
incubation at 37 ◦C for 12 h. The inoculation amount of 2% (v/v) was transferred to a fresh
LB medium containing kanamycin for 90 min at 37 ◦C and induced with Isopropyl β-D-
Thiogalactoside (IPTG) at a final concentration of 0.1 mM at 20 ◦C for 20 h. The sediment
strain of the culture broth was resuspended in 50 mM Na2HPO4–NaH2PO4 (pH 7.5) after
centrifugation (12000 rpm, 4 ◦C, 20 min) and lysed by ultrasonication on ice (work time:
10 min, work/interval time: 3 s/5 s and ultrasonic output power: 200 W). The supernatant
of total lysate, which was directly used as crude α-galactosidase for purification, was
obtained by centrifugation.

The crude α-galactosidase was purified by nickel affinity chromatography following
the manufacturer’s protocols. Purified α-galactosidases were analyzed by 12% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The native molecular mass
was estimated using a HiLoad 16/600 Superdex 200 pg gel filtration column (GE Healthcare,
USA). The molecular mass standards used in gel filtration included thyroglobulin (669 kDa),
ferritin (440 kDa), aldolase (158 kDa), conalbumin (75 kDa) and ovalbumin (44 kDa). The
protein concentrations were determined using the Bradford method.

3.5. Enzyme Assay

pNPG (10 mM) was incubated with an enzyme sample in 50 mM NaH2PO4–Na2HPO4
buffer (pH 7.5) at 35 ◦C for 10 min (working volume of 250 µL). Then the absorbance of
the released p-nitrophenol at 410 nm was determined. One unit of enzyme activity (U)
was defined as the amount of the enzyme required to liberate 1 µmol of p-nitrophenol per
minute. The enzyme was deactivated by boiling for 5 min.

3.6. Biochemical and Kinetic Properties of galV

For optimal pH, the enzyme activity was measured at various pH values ((pH 3–10),
using citrate buffer (pH 3–6), phosphate buffer (pH 6–8) and Tris-HCl buffer (pH 8–10)) at
35 ◦C for 10 min. Under stable pH conditions, the enzyme was pre-incubated at various pH
values (pH 3–10) and at 35 ◦C for 120 min. For optimal temperature, the enzyme activity
was measured at various temperatures (30–80 ◦C) and pH 7.5 for 10 min. Under stable
temperature conditions, the enzyme was pre-incubated at various temperatures and pH
7.5 for 120 min.

The effects of different metal ions on galV activity were determined by incubating the
enzyme with 100 mM solution of Na+, K+, Li+, Ni2+, Ba2+, Ca2+, Cu2+, Fe2+, Mg2+, Mn2+,
Zn2+ or Fe3+ for 1 h at room temperature. The effects of additives on α-galactosidase were
determined by incubating the enzyme with 1% solution of SDS, cetyltrimethylammonium
bromide (CTAB), Triton X-100, Tween-80, dimethyl sulfoxide (DMSO), methanol and
acetonitrile for 1 h at room temperature.

Kinetic parameters were determined by performing enzymatic reactions at 35 ◦C, with
pNPG (0.01–20 mM) in 50 mM NaH2PO4–Na2HPO4 buffer (pH 7.5) as the substrate. The
products were monitored as described earlier, and the reaction rate was calculated. The
catalytic constant (Kcat) and specificity constant (Kcat/Km) were calculated using Km and
Vmax determined from the Lineweaver–Burk plot.

3.7. Substrate Specificity in a Hydrolysis Reaction

The substrate specificity of galV towards artificial substrates (pNPG and pNP-β-D-
galactopyranoside) was measured in the standard assay as described above. For natural
substrates, the reaction mixture consisting of 10 mM oligosaccharide or 0.1% guar gum in
50 mM NaH2PO4–Na2HPO4 buffer (pH 7.5) was incubated at 35 ◦C for 30 min (working
volume of 2 mL). When raffinose, stachyose and guar gum were used as substrates, the
enzyme activity was determined by measuring the reducing sugar using 3,5-dinitrosalicylic
acid (DNS) method with galactose as a standard [44]. For melibiose, lactose and D(+)-
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cellobiose, the released glucose was determined by the glucose oxidase-peroxidase method
with a commercial kit (Biosino, Beijing, China). One unit of the enzyme activity was
defined as the amount of enzyme required to produce 1 µmol of reducing sugar or glucose
per minute.

The hydrolysates of raffinose and stachyose were analyzed. A mixture of purified galV
(4.7 unites/mL) and 10 mM raffinose or 10 mM stachyose in 50 mM NaH2PO4–Na2HPO4
buffer (pH 7.5) was incubated at 35 ◦C for 30 min. Aliquots of the solution were sampled
at different intervals and boiled for 5 min. Then the reaction products were analyzed by
thin-layer chromatography (TLC). Hydrolysates were loaded on silica gel G plates (10 cm
× 10 cm) and developed twice using n-propanol/acetic acid/water (10:15:1, v/v/v). The
plate was sprayed with a mixture of methanol:sulphuric acid (4:1), followed by heating at
115 ◦C for 10 min to detect sugar spots.

3.8. Substrate Specificity in a Reverse Hydrolysis Reaction

The synthetic substrate specificity of α-galactosidase was investigated by mixing 0.3 M
donor, 3 M acceptor, and 5 units/mL of the enzyme, giving a final volume of 10 mL by
adding 50 mM Na2HPO4–NaH2PO4 (pH 7.5). The reaction mixture was incubated at 35 ◦C
for 24 h. It was then boiled for 5 min to deactivate the enzyme after incubating for 24 h.
When D-galactose was used as the donor, the acceptors were alcohols (methanol, ethanol,
ethylene glycol (1,2-ethanediol), glycerol and 1-butanol) and sugar alcohols (xylitol, inositol,
D–sorbitol and mannitol). The donors used were sugars (D-galactose, D-(-)-arabinose, D-
xylose, D-fructose, L-sorbose, N-acetyl-D-glucosamine, and glucose) with glycerol as the
acceptor. The products were evaluated by HPLC. All reactions were performed in triplicate.
The results were reported as mean ± standard deviation (SD).

3.9. Time-Course for Isofloridoside Synthesis

Galactose (0.3 M), glycerol (3 M) and 5 units/mL of the enzyme were mixed, and
50 mM Na2HPO4–NaH2PO4 (pH 7.5) buffer was added to make the volume of the reaction
solution 10 mL. The reaction was carried out at 55 ◦C, and 200 rpm for 36 h, and the samples
were taken at regular intervals (0, 2, 4, 6, 8, 10, 15, 20, 24, and 36 h). The samples were
transferred to boiling water for 5 min to inactivate the enzyme. After filtration, they were
analyzed by high-performance liquid chromatography (HPLC) and liquid chromatography–
mass spectrometry (LC−MS).

3.10. HPLC Analysis

The sugars formed by the enzymatic reaction were analyzed by HPLC under the
following conditions: (1) column, 300 × 7.8 mm2, i.d. Aminex HPX-87H (Bio-Rad Ltd.,
Hercules, CA, USA); mobile phase, 5 mM sulfuric acid; column temperature, 50 ◦C; flow
rate, 1.0 mL/min; and differential refractive index monitor.

4. Conclusions

In this study, we successfully discovered and heterologously expressed a thermostable
α-galactosidase of the GH36 family from A. vitaminiphilus WMF1. galV showed high
activity for reverse hydrolysis with D-galactose as the donor and glycerol, ethanol, and
ethylene glycol as acceptors. Finally, isofloridoside was synthesized using the low-cost
galactose as the donor and glycerol as the acceptor. The conversion rate of galactose was
26.6% without optimization, which provided a potential enzyme to produce isofloridoside.
Furthermore, galV could be considered as a good candidate additive for the food and feed
industry due to its high thermal stability and tolerance to organic solvents.
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