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Themutual influence of the slow rearrangements of secondary structure and fast collapse of the long single-stranded RNA (ssRNA)
in approximation of coarse-grained model is studied with analytic calculations. It is assumed that the characteristic time of the
secondary structure rearrangement is much longer than that for the formation of the tertiary structure. A nonequilibrium phase
transition of the 2nd order has been observed.

1. Introduction

Single-stranded RNA (ssRNA) plays a central role in molec-
ular biology. In addition to transmitting genetic information
from DNA to proteins, RNA molecules participate actively
in a variety of cellular processes. Examples are translation
(rRNA, tRNA, and tmRNA), editing of mRNA, intracellular
protein targeting, nuclear splicing of pre-mRNA, and X-
chromosome inactivation. The RNA molecules involved in
these processes do not code for proteins but act themselves
as functional products. In addition, some RNA molecules
prepared in vitro can bind to specific molecules such as ATP.
In all these cases, the information encoded in the sequence
of nucleotide bases of each RNA molecule determines its
functional tertiary structure.

The forceswhich stabilize the secondary structure of RNA
are stronger than interactions responsible for the tertiary
structure and hence these two structures are characterized by
two different energy scales. According to one of the currently
accepted concepts of RNA folding the secondary structure
elements, such as helices and loops hairpins, are formed
first and then stack together to form a three-dimensional
tertiary structure [1]. This is so-called hierarchical folding
mechanism.

However, some experiments show that the folding rate of
large RNA is lower than that predicted by the hierarchical

mechanism [2]. This might mean that two successive folding
steps are not fully independent. The landscape of the energy
function of large RNA is extremely rugged and contains
multiple deepminimawhich act as kinetic traps in the folding
pathways [2]. The molecule can remain trapped in the states
distinct from the native structure for time periods even longer
than the average lifetime of RNA in a living cell [3, 4]. It
should be noted that excellent models for describing the
RNA secondary structure formation have been developed as
well [5–10]. What remains relatively poorly understood is
the full path of formation of the tertiary structure and, in
particular, the mutual interplay between the secondary and
tertiary structures [11–15].

The secondary structure of RNA is determined by the
base pairing pattern. It has been shown that the characteristic
pattern of the secondary structure of RNA is a tree-like
structure, formed by relatively short double-stranded helices.
The hierarchical folding scenario has been studied, for exam-
ple, in [14], where the folding of RNA with fixed secondary
structure is described by the model of tree-like polymer with
quenched random branching. In [15] the concept of annealed
randomly branched polymer has been applied to study the
equilibrium characteristics of RNA.The completely annealed
branching patterns describe the ensemble of secondary struc-
tures, wherein the tertiary structure is being formed as a
result of substantial rearrangements of secondary structure
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Figure 1: A fragment of the RNA chain with typical elements of secondary structure.

elements. This scenario is typical for large RNAs, to which
the hierarchical folding mechanism is most probably not
applicable. While the model of a polymer with randomly
annealed branching can be applied successfully for studying
the equilibrium features of RNA folding, it cannot describe
the folding kinetics efficiently. At the same time, the kinetic
effects in the folding process are viewed to be of great
importance due to the existence of long-living intermediates,
as mentioned above.

In the present study we focus on the thermodynamic
behaviour of the RNAmolecule in the steady nonequilibrium
state that occurs in case of well-defined separation between
the relaxation timescales of secondary and tertiary structures.
We introduce a reasonable coarse-grainedmodel of RNA and
study its behavior through analytical equations.The obtained
results provide evidence for the existence of a nonequilibrium
phase transition of the second order between the glassy phase
and the ensemble of freely fluctuating spatial structures.

2. The Model

Let us consider the following mental experiment.The ssRNA
molecule is dissolved initially in the solvent at temperature
𝑇
󸀠 which satisfies inequalities 𝜃 < 𝑇

󸀠
< 𝑇
𝑚
, where 𝑇

𝑚
is the

melting temperature and 𝜃 is the Flory temperature. Under
these conditions the RNA molecule is a random coil with a
well-defined secondary structure. Next, transfer a very small
amount of our RNA containing solution into the same kind
of solvent but with the temperature 𝑇, such that 𝑇 < 𝜃. In

the beginning, the secondary and spatial structures in this
state still correspond to the temperature 𝑇

󸀠 but they start to
relax to the new temperature 𝑇. In the end of the process,
the RNA will arrive at a compact globular state with some
secondary structure pattern. The tertiary structure of RNA
is stabilized by interactions between different elements of
secondary structure: helical stems, hairpins, internal loops,
mismatches, and so forth (Figure 1).

Interactions between helical stems can be considered as
homogeneous since the nitrogen bases are located inside the
double helix. At the same time, interactions between single-
stranded regions are heterogeneous because of the interac-
tions between nitrogen bases of different types. To describe
the conformation of RNA in a coarse-grained approximation,
we consider each nonpaired region of RNA as an effective
monomer. The monomers are numbered by 𝑖 = 1, . . . , 𝑁.
The center of mass of monomer 𝑖 is placed at the point with
coordinates 𝑥⃗

𝑖
. Secondary structure is described in terms of

the randomly branched polymer (Figure 2) as the matrix 𝐵 =

‖𝐵
𝑖𝑗
‖, where 𝐵

𝑖𝑗
= 1 if the 𝑖th and 𝑗th monomers are linked

by helical stems and 𝐵
𝑖𝑗

= 0, otherwise [14, 16]. The helices
between the monomers are modelled as springs.

Then we introduce the following Hamiltonian of the
model:

𝐻 = 𝐻
𝐼𝐼
+∑

𝑖<𝑗

V
𝑖𝑗
𝛿 (𝑥⃗
𝑖
− 𝑥⃗
𝑗
) +𝑉conf, (1)

where the term 𝐻
𝐼𝐼
({𝑥⃗
𝑖
}, 𝐵) = (𝑑𝑇/2ℓ2) ∑

𝑖<𝑗
𝐵
𝑖𝑗
(𝑥⃗
𝑖
− 𝑥⃗
𝑗
)
2

mimics the helical spring elasticity between the 𝑖th and 𝑗th
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Figure 2: A fragment of the RNA secondary structure (a) and corresponding branched structure (b).

effectivemonomers and ℓ is the equilibriumdistance between
neighbouringmonomerswhich here coincideswith themean
length of the helical stem. Thus, the helical spring elasticity
constant is assumed to be equal to 𝑑𝑇ℓ

2. Here V
𝑖𝑗
is the second

virial coefficient of interaction between the 𝑖th and 𝑗th effec-
tive monomers, which refer to the tertiary contacts between
nonpaired regions (loops). 𝑉conf ({𝑥⃗𝑖}) is the confinement
potential describing the homogeneous attraction between
helical stems. The interactions between nonpaired regions
(loops) 𝑖 and 𝑗 are governed by their size and nucleotide
sequences (Figure 3).

Since many nucleotides contribute to the interaction of
these effective monomers 𝑖 and 𝑗, it is reasonable to consider
coefficients V

𝑖𝑗
as statistically independent random Gaussian

variables with distribution

𝑝 (V
𝑖𝑗
) ∝ exp(−

V2
𝑖𝑗

2Λ2) , (2)

whereΛ is the variance of virial coefficients V
𝑖𝑗
. Collapse of the

ssRNAmolecule is drivenmostly by electrostatic interactions
and has been investigated experimentally [17, 18] and theo-
retically [10]. Unlike [10], here we do not take into account
the counterions explicitly. Their impact is present implicitly
in the confinement potential 𝑉conf ({𝑥⃗𝑖}) = 𝑇(V0 ∑𝑖<𝑗 𝛿(𝑥⃗𝑖 −
𝑥⃗
𝑗
) + 𝑔0 ∑𝑖<𝑗<𝑘 𝛿(𝑥⃗𝑖 − 𝑥⃗

𝑗
)𝛿(𝑥⃗
𝑘
− 𝑥⃗
𝑗
)), which ensures existence

of globular state of the RNAmolecule. Here V0 < 0 and 𝑔0 > 0
are the second and third virial coefficients of interactions
between helical stems, correspondingly.

Two types of conformational rearrangements in RNA
are possible: rearrangement of the secondary structure with
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ing with the second virial coefficient 𝑉

5,9
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characteristic time scale 𝜏2 and tertiary structure fluctuations
with characteristic time scale 𝜏3. The difference between
timescales 𝜏2 and 𝜏3 is well pronounced.Thus as shown in [19]
the collapse of 400-nucleotide-long RNA takes about 3-4ms
while the two-order shorter 21-nucleotide sequence of RNA
folds into a hairpin in about 10ms [20]. Therefore, in further
calculations it will be assumed that 𝜏3 ≪ 𝜏2. The reason for
this is not only the higher stability of base pairs as compared
with the tertiary contacts. The kinetic factors play important
role as well. Formation of the base pairs requires twisting of
two single-stranded subchains into a double helix, which is
kinetically hampered to unwind.

On the timescale 𝜏, such that 𝜏3 ≪ 𝜏 ≪ 𝜏2, secondary
structure and spatial arrangement of the effective monomers
(nonpaired regions) are not in thermal equilibrium, and this
stationary nonequilibrium steady state can be described in
terms of the effective partition function [21]

𝑍 = ⟨⟨(𝑍
𝐵,V̂)
𝑛

⟩
𝐵
⟩
V̂
, (3)

where 𝑍
𝐵,V̂ is the partition function of a branched molecule

with the given branching pattern 𝐵 and interaction matrix
V̂ = ‖V

𝑖𝑗
‖. ⟨⋅ ⋅ ⋅ ⟩

𝐵
means the average over all possible

branching patterns, ⟨⋅ ⋅ ⋅ ⟩V̂ is the average over intermonomer
interactions, and 𝑛 = 𝑇/𝑇

󸀠. 𝑇 and 𝑇
󸀠 are the effective tem-

peratures of coarse-grained spatial and secondary structures
correspondingly.

3. Thermodynamic Parameters

The effective partition function (3) is calculated by using
the replica technique developed for systems with quenched
disorder (see, e.g., [21, 22]). In our case the limit 𝑛 → 0
corresponds to the quenched disorder, 𝑛 = 1 describes the
completely annealed disorder, and 0 < 𝑛 < 1 for the partially
annealed disorder.

Following the method described in [14] we rewrite the
partition function (3) in the form

𝑍 = ∫𝐷𝜌𝑒
−𝛽𝐹{𝜌}

, (4)

where 𝛽 = 1/𝑇, 𝜌(𝑋⃗) = ∑
𝑁

𝑖=1 ∏
𝑛

𝑎=1𝛿(𝑥⃗
𝑎

𝑖
− 𝑥⃗
𝑎
), 𝑋⃗ = (𝑥⃗

1
, . . . ,

𝑥⃗
𝑛
), and 𝐹{𝜌} = 𝐸{𝜌}−𝑇𝑆{𝜌} is the 𝑛-replica free energy with

𝐸 {𝜌} = ∑

𝑎

𝑉conf (𝑐𝑎) −
𝛽Λ

2

4
∑

𝑎 ̸=𝑏

∫𝑑𝑥𝑑𝑦𝑞
2
𝑎𝑏

(𝑥⃗, ⃗𝑦)

𝑆 {𝜌} ≅ −
ℓ
4

2
∫𝑑𝑋

(Δ𝜌 (𝑋⃗))
2

𝜌 (𝑋⃗)

.

(5)

Here 𝑐
𝑎
(𝑥⃗) = ∫ 𝑑𝑋𝜌(𝑋⃗)𝛿(𝑥⃗

𝑎
− 𝑥⃗) is the one-replica

density of monomers, 𝑞
𝑎𝑏
(𝑥⃗, ⃗𝑦) = ∫ 𝑑𝑋𝜌(𝑋⃗)𝛿(𝑥⃗

𝑎
− 𝑥⃗)𝛿(𝑥⃗

𝑏
−

⃗𝑦) is the two-replica overlapping parameter, and Δ is the
Laplace operator in the nd-dimensional space. Further in all
equations we set 𝑘

𝐵
= 1. The energy term in (5) is obtained

by averaging the 𝑛th power of the partition function over
variables V

𝑖𝑗
, and the entropy term includes averaging over

all possible branching patterns corresponding to the rooted
tree with coordination number equal to three. For function
𝜌(𝑋⃗) the form 𝜌(𝑋⃗) = 𝜌0exp(−(1/2) ∑ 𝑘

𝑎𝑏
𝑥⃗
𝑎
𝑥⃗
𝑏
) is used.

The confinement potential is written as a virial expansion
𝑉conf (𝑐) = 𝑁𝑇((1/2)V0𝑐 + (1/3!)𝑔0𝑐

2
). In compactly packed

chain the density of monomers 𝑐0 ≈ ℓ
−𝑑 and 𝑉conf (𝑐0) ≈

𝑁𝑇(V0/4ℓ
𝑑
). Like in [22] we parameterize the offdiagonal

entries of the matrix 𝑘 by function 𝑘(𝑢), where 𝑢 ∈ [𝑛, 1], and
the diagonal entries as 𝑘

𝑎𝑎
= 𝑘. The inverse matrix 𝑚̂ = 𝑘̂

−1

is parameterized by 𝑚(𝑢), 𝑢 ∈ [𝑛, 1], and 𝑚
𝑎𝑎

= 𝑚̃ = ℓ
2
𝑁

2/𝑑.
By introducing notations [𝑘](𝑢) = 𝑢𝑘(𝑢) − ∫

𝑢

𝑛
𝑑V𝑘(V) and

𝑘 = ∫
1
𝑛
(𝑑𝑢/𝑢

2
)[𝑘](𝑢), the free energy functional takes a form

𝐹 {𝜌}

= 𝑛𝑉conf (𝑐0)

+
𝛽Λ

4

4
𝑛𝑁

2
𝜋
𝑑

(2𝜋)−2𝑑 ∫
1

𝑛

𝑑𝑢 (𝑚̃
2
−𝑚 (𝑢)

2
)
−𝑑/2

−
𝑇ℓ

4

2
𝑑𝑁𝑛[𝑘

2
+∫

1

𝑛

𝑑𝑢

𝑢2
[𝑘] (𝑢)

2
− 𝑘̃

2
] .

(6)

4. Results and Discussion

Variation of the free energy (6) over 𝑘̃ and [𝑘](𝑢) as indepen-
dent “variables” gives that the free energy per monomer has
two branches:

𝑓 =
𝐹 {𝜌0}

𝑁𝑛
= 𝑇

V0
4ℓ𝑑

+{

𝑓
<
, 𝑛 ≤ 𝑢0

𝑓
>
, 𝑛 > 𝑢0

} , (7)

where the disordered free energy is

𝑓
<
= 𝑓

0
<
−

𝑛
𝜁

𝜁
(𝑎1 −𝑇ℓ

4
𝑑𝑧

2
0) , (8)

where 𝑛 ≤ 𝑢0, 𝜁 = (3𝑑 + 4)/(4 − 𝑑), and 𝑎1(𝑑, 𝛽, Λ, ℓ) ∝

𝛽
−1
(𝛽𝛽ℓ
−𝑑

)
1/𝛾(𝑑). 𝑓0

<
= 𝑓

0
<
(𝑇, 𝑑, Λ, ℓ) is the free energy of

ssRNAwith frozen secondary structure at 𝑛 ≤ 𝑢0. At the same
time, for 𝑛 ≥ 𝑢0 the disordered free energy can be written as

𝑓
>
= 𝑓

0
>
− 𝑛 (𝑎1𝑢

𝜁−1
0 +𝑇ℓ

4
𝑑𝑧

2
0𝑢
𝜁+1
0

1
𝑛2

) , (9)
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where 𝑓
0
>

= 𝑓
0
>
(𝑇, 𝑑, Λ, ℓ). Here the following notations are

introduced: 𝑧20(𝑑, 𝛽, Λ, ℓ) ∝ (𝛽Λℓ
−𝑑

)
1/𝛾(𝑑), 𝛾(𝑑) = (4 − 𝑑)/8,

𝛿(𝑑) = (𝑑 + 4)/(4 − 𝑑), and 𝑢0(𝑑) = (3/2)((3(𝑑/2 + 1) + (𝑑 +

1)(𝑑/2 − 1))/(𝑑 + 2)2) ≈ 0.6 if 𝑑 = 3.
Thus, at 𝑛 < 𝑢0 a glassy phase with replica-symmetry

breaking is observed while at values 𝑛 > 𝑢0 a replica
symmetric phase is obtained.

The second derivatives of the free energy branches (8) and
(9) with respect to variable 𝑛 at the point of transition 𝑛 = 𝑢0
satisfy equations

𝜕
2
𝑓
<

𝜕𝑛2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛=𝑢0

= − (𝜍 − 1) 𝑢𝜍−20 (𝑎1 −𝑇ℓ
4
𝑑𝑧

2
0)

𝜕
2
𝑓
>

𝜕𝑛2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛=𝑢0

= − 2𝑢𝜍−20 𝑇ℓ
4
𝑑𝑧

2
0

(10)

while the first derivatives are as follows: (𝜕𝑓
<
/𝜕𝑛)|
𝑛=𝑢0

=

(𝜕𝑓
>
/𝜕𝑛)|
𝑛=𝑢0

= −𝑢
𝜍−1
0 (𝑎1 −𝑇ℓ

4
𝑑𝑧

2
0). Thus, in the nonequilib-

rium state with 0 < 𝑛 < 1 the model exhibits nonequilibrium
phase transition of the second order. The temperature of
transition is

𝑇
󸀠

𝑐
=

𝑇

𝑢0
. (11)

In the framework of the proposed model the value of
the parameter 1 − 𝑛 serves a measure of the distance from
the equilibrium state, corresponding to the 𝑛 = 1. If RNA
molecule is far enough from the equilibrium (𝑛 < 𝑢

0
), then

the glassy phase is realized which is dominated by a few long-
lived intermediates, which were observed experimentally in
[23].

5. Conclusion

The interplay between the secondary structure formation
and fast collapse of the single-stranded RNA is addressed
in terms of the model with interaction between heteroge-
neous nonpaired andhomogeneous double-stranded regions.
Thus, the nucleotide sequence heterogeneity is approxi-
mately described in terms of statistical-mechanical model
with disorder [22]. The memory effects in RNA compact
structure formation are governed by slow rearrangements of
the secondary structure with subsequent fast relaxation of
the spatial degrees of freedom. Under these conditions, the
mutual equilibration of fast and slow variables is hindered.
Monomers rapidly attain their equilibrium at the tempera-
ture 𝑇 and thus, because of the wide timescale gap, their
equilibrium free energy acts as a driving force pushing the
slow dynamics of the elements of secondary structure to
reach a nonequilibrium stationary state at long times. This
scheme is known generally as the adiabatic elimination of fast
variables [24–26]. The observed experimentally [23] long-
lived intermediates are obtained if RNA molecule is far
enough away from the state of thermodynamic equilibrium.
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