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Simple Summary: Insects play many important roles including in ecosystems, food production,
pathogen transmission, and production of materials. As a result, humans are interested in understand-
ing how to control insect population sizes for control, propagation, or conservation efforts. In many
insect species, female reproductive output is promoted by mating and components of the ejaculate.
Beyond just the impact of receiving sperm, mating and ejaculate components can result in increased
rate of oocyte development, ovulation, and oviposition as well as other changes such as reduced
mating receptivity. To understand how mating causes these changes, researchers have investigated
changes in female gene expression that occur after mating. In this review, we summarize the current
state of knowledge on mating-induced gene expression changes in female insects and the methods
used for conducting such studies. We find that genes related to immune response, chemosensation,
and metabolism are commonly regulated across species. We suggest future research paths to facilitate
the comparison of studies on mating-regulated gene expression across insect species.

Abstract: There is intense interest in controlling insect reproductive output. In many insect species,
reproductive output is profoundly influenced by mating, including the receipt of sperm and seminal
fluid molecules, through physiological and behavior changes. To understand these changes, many
researchers have investigated post-mating gene expression regulation. In this review, we synthesize
information from studies both across and within different species about the impact of mating, or
components of mating, on female gene expression patterns. We found that genes related to the roles
of metabolism, immune-response, and chemosensation are regulated by mating across many different
insect species. We highlight the few studies that have taken the important next step of examining the
functional consequences of gene expression regulation which is crucial in order to understand the
mechanisms underlying the mating-regulated control of female lifespan and reproduction and to
make use of such knowledge to propagate or control insect populations. The potential of cross-study
comparisons is diminished by different studies using different methods. Thus, we also include a
consideration of how future studies could be designed to facilitate cross-study comparisons and
a call for collaboration across researchers studying different insect species and different aspects of
insect biology.

Keywords: mating; gene expression; chemosensation; metabolism; immune response

1. Introduction

Insects play important roles in human society. Some of these roles are beneficial
such as providing pollination and sources of silk and food; others are detrimental such
as acting as pests of crops and vectors of disease-causing pathogens [1–3]. For both of
these categories, as well as other insect species of conservation concern, humans may
want to manage a species’ reproductive output for a variety of reasons including to in-
crease agricultural productivity, decrease pathogen spread, and/or increase endangered or
threatened populations.
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New advances for managing insects could come from understanding how mating
impacts key behavioral and physiological processes. Across different insect species, mating
modifies several female phenotypes including feeding, digestion, egg production, immune
response, locomotion, olfactory and visual responses, mating receptivity, morphology,
and lifespan (e.g., [4–10]. Similar phenotypic changes can occur across insects with dif-
ferent mating systems. For example, both in species in which females mate only once
on average during their lifetime (e.g., Aedes aegypti and Anopheles gambiae; Diptera: Culi-
cidae)) and species in which females mate multiple times (e.g., Drosophila melanogaster;
Diptera: Drosophilidae), mating results in reduced receptivity to future inseminations [11].
The cues that induce post-mating changes in females could include internal and exter-
nal physical stimulation and internal and external biomolecules (e.g., pheromones and
seminal fluid molecules). For some species, particular cues that females receive during
mating have been identified as contributors to these phenotypic changes (e.g., sex pep-
tide in D. melanogaster) [6,12]. These cues include the receipt of sperm and/or seminal
fluid molecules (SFMs; e.g., [4,7,13], which can be transferred in the form of liquid ejac-
ulate or more solid spermatophores and mating plugs [14]. However, the mechanisms
by which females respond to these cues to produce phenotypic changes are still largely
unknown. For example, although 292 seminal fluid proteins (SFPs) have been identified
in D. melanogaster [15], the receptor in the female for only one of them (sex peptide) has
been definitively identified [16–18]. The detailed mechanisms of how mating-induced
phenotypic changes occur has rarely been established [19,20].

One approach to begin to understand the mechanisms underlying female mating-
induced phenotypic changes is to study mating-induced gene expression changes. Such stud-
ies have been conducted in several insect species and have revealed interesting patterns.
Some expression changes are in genes with predicted functions related to known fe-
male post-mating changes (e.g., egg production, immunity, and chemosensation; [21–25],
whereas others are in genes with unexpected predicted functions (e.g., muscle development,
pH regulation; and translation initiation factors; [26–28] which have led to new candidate
phenotypes to test for post-mating changes. However, most such studies have resulted in
as-of-yet untested hypotheses about the connections between mating-regulated genes and
mating-regulated phenotypes. As a result, the full potential for such studies to result in a
deeper understanding of basic biology, to discover novel mating-regulated phenotypes, and
to generate novel applications for insect management has yet to be realized. Furthermore,
due to variation in the methodologies used in the different studies, it has been difficult to
draw any conclusions about commonalities and differences between species in how mating
or components of mating (e.g., receipt of sperm or SFMs) impact female gene expression.
In this paper, we synthesize the current state of knowledge about genes and pathways
regulated by mating or components of mating in female insects in order to identify apparent
commonalities across species. Most of the published studies on this topic are from just a
few species of Diptera and Hymenoptera, although we include all species for which we
found studies. Further, we review the different methodologies used to address the question
of how mating impacts female gene expression and provide a framework for consistent
methodology that will allow for more meaningful comparisons across studies in the future.

2. Commonalities in Mating-Induced Gene Expression Changes across Species

Across different studies of mating-regulation of female gene expression (sometimes
using different methods), we see some commonalities emerge in the predicted or known
functions of regulated genes, as well as apparent species- (or study-) specific differences.
Metabolism, immunity, and chemosensation are the main functions (or predicted func-
tions) of the proteins encoded by genes regulated by mating across multiple insect species.
These findings correspond to findings from studies of SFMs which have revealed that
males transfer proteins to females known or predicted to influence these same processes [4].
Therefore, we will review findings on genes in these three functional groups before dis-
cussing two species-specific cases of studies that have taken the next important step of
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connecting the mating-regulated gene expression changes with post-mating physiological
and behavioral changes in females.

A. Metabolism-related genes

Metabolic processes are mainly used by insects to produce energy and to obtain
necessary metabolites that can be important for many processes including development,
immune response, reproduction, and locomotion. Gene ontology analysis have shown
an enrichment of metabolism-related genes of those genes regulated by mating in female
Apis mellifera (Hymenoptera: Apidae), Anastatus disparis (Hymeonptera: Eupelimidae),
Ae. aegypti, Bactrocera dorsalis (Diptera: Tephritidae), Callosobruchus maculatus (Coleoptera:
Chrysomelidae), D. melanogaster, An. gambiae [25,29–37]. The main metabolism-related
families regulated by mating in females across different insect species are oxidoreductases,
hydrolases and transferases [26,29,31,34,37,38]. Although the function of the regulation of
these genes have not been investigated, based on post-mating behavioral and physiological
changes, it is likely that they play roles in processes including maintenance of stored sperm,
egg production, immunity, and detoxification.

Several of the mating-regulated metabolism-related genes are known or predicted
to promote sperm storage, egg production, and egg hatchability. For example, one such
gene, glucose dehydrogenase (GDH) involved in the glucose catabolism and therefore the
homeostasis of carbohydrates, is regulated by mating in female D. melanogaster, Ae. aegypti,
and Bemisia tabaci (Hemiptera: Aleyrodidae) [29,31,39]. In D. melanogaster, GDH is expressed
in the spermathecae and knockout in females leads to fewer stored sperm after mating
with a previously-mated male, more asymmetrical sperm storage across spermathecae, and
an elongated period of offspring production [40]. In Ae. aegypti, GDH is expressed in the
spermathecal duct and the spermathecae. GDH knockdown in Ae aegypti females decreases
egg hatchability, possibly through impacts on stored sperm [41]. Lida and Cavener [40]
proposed that GDH may impact sperm through changing the extracellular environment
of the female reproductive tract. Interestingly, in D. melanogaster, GDH protein is also
transferred from males to females during mating suggesting that both sexes may contribute
to the regulation of the female reproductive tract environment. GDH may also impact egg
production through its impact on fat metabolism [42]. Hatchability is also impacted by a
different mating-regulated oxidoreductase in An. gambiae. In this species, heme peroxidase
HPX15 expression is upregulated post-mating in glandular cells of the spermathecae and
associates with stored sperm. Knockdown of HPX15 decreases hatchability of eggs after
the first gonotrophic cycle [43]. Together, these results suggest that cues received during
the mating process regulate the expression of genes encoding proteins with oxidoreductase
activity within the female reproductive tract and that regulation of these genes impacts the
storage and maintenance of sperm in the female sperm storage organs.

In addition to oxidoreductases, other mating-regulated metabolism-related genes
impact sperm storage and egg hatchability. For example, transferases are regulated by
mating in several species of insects [31,34,41,44]. In Ae. aegypti, N-acetylgalactosaminyl
transferase 6 (GALNT6) is highly expressed in the spermathecal gland of unmated females
but is sharply downregulated after mating. Its knockdown reduces the probability of
oviposition and egg hatchability. Pascini et al. [41] proposed that GALNT6 expression
may affect the development of the spermathecae, since it is part of the chitin biosynthesis
pathway [45]. Interestingly, in D. melanogaster a gene encoding a protein with predicted
N-acetylgalactosaminyl transferase activity has highly enriched expression in the male
reproductive accessory glands [46]. Therefore, as with GDH, it may be that transferases are
used by both sexes to regulate processes within the reproductive tract.

The mating regulation of metabolism-related genes may also play a role in shift-
ing female physiological processes towards egg development. For example, in several
species, mating regulates the expression of dehydrogenases in metabolic pathways. As dis-
cussed above, glucose dehydrogenases are regulated by mating in Ae. aegypti (downreg-
ulated), D. melanogaster (upregulated) and the sweet potato white fly B. tabaci (upregu-
lated; [29,39,41] and glyceraldehyde 3 phosphate dehydrogenase is upregulated by mating in
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Anastrepha ludens (Diptera: Tephritdae) [24]. The lipid biosynthesis pathway is signifi-
cantly upregulated by mating in A. ludens and genes involved in fatty acid synthesis are
upregulated by mating in both A. ludens and Anastatus disparis [24,47]. Fatty acid syn-
thesis contributes to egg development, embryogenesis, fecundity, and digestion in some
insects [48,49]. For example, in Ae. aegypti, knockdown of fatty acid synthase results in
reduced fecundity and dramatically delayed blood digestion [48]. These results suggest
that mating influences gene expression in such a way to affect female fecundity.

In addition to influencing reproductive processes, mating-induced regulation of
metabolism-related genes may affect female ability to mount an immune response and to
activate or inactivate molecules in the ejaculate. Female immune response is impacted by
mating in many insect species [50–52]. GDH can be converted into glucose oxidase that
produces hydrogen peroxide and D-gluconic acid, that are antimicrobials [53]. Insect cy-
tochrome P450s (CYPs) are involved in the detoxification of xenobiotics, chemicals that
enter their body from external sources, including insecticides and plant allelochemicals [54].
It is plausible that mating-regulation of CYPs could contribute to detoxification of seminal
fluid molecules that impact female survival [23,55,56]. Further, the many proteolysis-related
mating-regulated genes are likely to play a role in other processes including: immune re-
sponse; the activation, inactivation, and/or degradation of seminal fluid molecules; and
protection of sperm from proteolytic degradation [24,29,31,39,57]. Together, the regulation
of many different genes involved in immunity and detoxification are likely to be involved
in the female response to the introduction of foreign substances during the mating process.

B. Immune genes

The importance of the regulation of the immune response in mated females is evident
not only by the aforementioned mating-regulated immune function and metabolism-related
genes, but also by the regulation of canonical immune genes including those encoding: heat
shock proteins, thio-ester proteins, antimicrobial peptides, and ones in the JNK, Toll, IMD,
Jak Stat, and RNA interference pathways [25,29,34,39,58–61]. Both across and within insect
species, the direction of mating-regulation of these genes varies highlighting the complex-
ity in understanding their roles. For example, genes encoding the antimicrobial peptide
(AMP), defensin, is upregulated after mating in Atta colombica, Ae. aegypti, B. dorsalis,
Ceratitis capitata (Diptera: Tephritidae), D. melanogaster, Lasius niger (Hymenoptera: Formi-
cidae) [23,25,29,58,62,63] whereas it is downregulated after mating in A. mellifera [34].
Within D. melanogaster, defensin (as well as other AMP genes) expression is lower in mated
females relative to unmated females at 12 h post bacterial infection but higher at 24 h
post-infection [63]. Further, in D. melanogaster, mating-induced changes in AMP (as well
as Toll and IMD) gene expression are regulated at least in part by receipt of the SFP, sex
peptide [64]. These gene expression differences appear to have functional consequences
in that mated D. melanogaster females are less able to defend against bacterial infections
than unmated females [51], although more research is necessary to understand how the
time-dependent changes in AMP gene expression impacts female immune response [64].

Heat shock proteins (Hsps) also impact the susceptibility of insects to pathogens
and are regulated by mating in several insect species including D. melanogaster, B. tabaci,
and A. mellifera, An. gambiae [23,31,33,39]. For instance, in this latter species Hsp70b is
upregulated in the head of mated females whereas hsp68 is downregulated in the whole
body of B. tabaci [39,61]. Interactions between Hsps, pathogens, and immune pathways
have been demonstrated in several insect species. For instance, in Drosophila, Hsps are
involved in the activation of the nuclear factor kappa B (NF-kB) pathways (Toll and
Imd) [65]. Further, the silencing of HCS-70-4 (a member of Hsp70 family) increases the
susceptibility of D. melanogaster to bacterial infection [65]. In Apis mellifera, the heat shock
response repressed three AMPs (defensin, abaecin and Hymenoptaecin), at 45 ◦C as compared
to 35 ◦C [66]. Further, the knock down of heat shock cognate 3 reduces the intensity of
Plasmodium falciparum in An. gambiae [67]. Thus, mating regulation of Hsps have the
potential to influence not only infection status of female insects but also their likelihood of
pathogen transmission.
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The potential impact of mating-regulated gene expression on pathogen transmission
is also evident in the regulation of genes encoding thioester-containing proteins (TEPs).
TEP1, for example, is upregulated in mated An. gambiae at 3 and 24 hpm, but not at
96 hpm [44,61]. TEP1 is secreted by mosquito hemocytes into the hemolymph and mediates
killing of P. berghei ookinetes by binding to their surface [68]. RNAi mediated silencing of
TEP1 increases the number of oocysts in a susceptible strain of An. gambiae and abolishes
Plasmodium ookinete melanization in a refractory strain, which becomes susceptible in
the TEP1-silenced background [68]. Another gene associated with pathogen melaniza-
tion, prophenoloxidase (PPO) and CLIP proteases, are also regulated by mating in several
species [24,50,61,69–71]. Further, phenoloxidase activity increases after mating in the female
of the ground cricket, Allonemobius socius (Orthoptera: Gryllidae) [72]. Together with the
findings of physiological studies demonstrating the impact of mating on immune response,
these findings on mating-regulation of immune genes support the hypothesis that mating
stimulates major changes to female immunity with functional consequences for both their
own health and their ability to transmit pathogens.

C. Chemosensory genes

Chemosensation allows the transduction of environmental stimuli into signals ca-
pable of being understood by the organism. In insects, chemosensation controls crucial
behaviors for survival and reproduction such as searching for food, avoiding hazards,
discovering of oviposition sites, and attracting and responding to potential mates [73].
Further, chemosensory related processes change upon mating in females of some species
(e.g., [74–76]. Chemosensory related genes are regulated by mating in females of sev-
eral insect species. The main families of genes regulated by mating are those encod-
ing odorant binding proteins (OBPs), ionotropic receptors (IRs), and gustatory receptors
(GRs) [30,31,44,77,78].

Odorant binding proteins (OBPs) contribute to the transfer of odorants and pheromones
to their receptors. The information received from the binding of these molecules may
help insects in choosing between different stimuli such as food sources, oviposition sites,
and mates [44,79]. OBPs are regulated in different directions by mating in different insect
species [30,31,34,44,47]. For instance, after mating, three OBPs were downregulated in Anas-
tatus disparis whereas the OBP25 was upregulated in An. gambiae and Ae. aegypti [30,44,47].
In Ae. aegypti, OBP22 was downregulated after mating, showing variation in the direction
of mating regulation of different OBPs within a single species. Interestingly, knockdown
of OBP22 in Ae. aegypti reduces the propensity for blood meal probing [80]. This result
suggests that mating-regulation of OBP22 could be the mechanism underlying the decrease
in blood feeding by female Ae. aegypti after mating [81,82]. More generally, investigating
both the mechanisms and functional impacts of mating regulation of other OBPs could
provide valuable insights for managing insect feeding and reproductive behavior.

Similarly to OBPs, ionotropic receptors (IRs) are also associated with the feeding
behavior of insects. IRs that are olfactory receptors are mainly expressed in olfactory sensory
neurons and allow insects to detect the volatile chemicals present in their environment [83].
For instance, in D. melanogaster, an IR regulates salt-induced feeding suppression [84].
Moreover, IRs are important for the detection of acids in D. melanogaster and their presence
in sour gustatory receptor neurons (GRNs) are crucial for oviposition preference on acid
containing sugar-agar as compared to sugar-agar. Indeed, in this fly, the knockout of
IR76b and IR25a suppresses the responses to carboxylic and mineral acids and GRNs
mediate the choice of flies to lay eggs on foods composed of acids [85]. Furthermore,
some IRs are both up- and downregulated after mating in Ae. aegypti and Dendrolimus
punctatus (Lepidoptera: Lasiocampidae) depending on the time point and tissue type [78].
For instance, in Ae. aegypti, IR8a is upregulated by mating in the head and thorax [30].
In these latter tissues, other IRs were also up- or downregulated depending on the gene but
IRs in the lower reproductive tract (including all reproductive tissues except ovaries) were
not regulated by mating [29,30,41]. These results are in agreement with those obtained in
D. punctatus where different individual IRs are also upregulated by mating in antennae [78].
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Thus, mating may regulate IR gene expression in such a way that modifies female response
to volatile cues related to feeding and reproduction.

Like OBPs and IRs, gustatory receptors (GRs) are involved in chemosensation and are
regulated in both directions by mating. These G-protein coupled receptors are transmem-
brane molecules expressed in gustatory receptor neurons of insects where they respond
to various attractants such as sweat, lactic acid, octenol, and carbon dioxide (CO2) [86].
In D. melanogaster and Ae. aegypti, the CO2 receptors are composed of GRs. Silencing of
these genes in Ae. aegypti lead to the loss of CO2 sensitivity, which could change female
attraction to blood meal sources [87]. Furthermore, the expression of GRs leads to a sig-
nificant response to the insecticide canavanine in low salt sensing GR-expressing neurons
and the disruption of GRs in D. melanogaster produces an inability to avoid this aversive
compound [88,89]. These latter examples show the implication of GRs in the detection
and susceptibility of several compounds in insects. In this way, by regulating expression
of GR-encoding genes, mating may regulate female responsiveness to different stimuli.
Mating regulates the expression of genes encoding GRs (in both directions) in the antennae
of D. punctatus. For instance, gustatory receptor for sugar taste 64a is downregulated while gus-
tatory receptor 4 is upregulated [78], but the specific functions of these GRs is not yet known.
Therefore, further studies should be conducted to decipher the role and the mechanism
of action of GRs that are differentially expressed during mating in insects. Furthermore,
mating-regulated genes encoding chemosensation related proteins are excellent candidates
for investigating how mating changes female response and receptivity to further courtship
and mating attempts by males.

3. Studies Examining the Functional Consequences of Mating-Regulated Gene
Expression Changes

After determining which genes are regulated by mating, a next step is to investigate
the effects of this mating-induced gene regulation on female phenotypes. One excellent
example of such an investigation is the series of studies by Catteruccia and colleagues on
mating-induced stimulator of oogenesis (MISO, AGAP002620) in An. gambiae [57,90]. In this
species, studies of mating-induced gene expression changes in females, combined with
subsequent biochemical and functional studies, led to the identification of MISO that is
regulated by the receipt of seminal fluid 20-hydroxyecdysone (20E) by females [57,90,91].
Knockdown of MISO leads to a reduction of the mating-induced egg production by delaying
the development of follicles and by impeding the release of 20E from the atrium and
subsequent expression of 20E-regulated genes [90,91]. Furthermore, MISO expression
protects females from a Plasmodium infection induced reduction in egg production [92].
These careful studies, together with others from the Catteruccia lab, have demonstrated
how a detailed understanding of the mechanisms underlying mating-induced changes
can provide important insights into the molecular social interactions between males and
females and between a pathogen and host [93].

Drosophila melanogaster provides another example of how mating-regulated gene ex-
pression studies can result in a more thorough understanding of post-mating phenotypic
changes. In this species, the identification of musculature-related genes regulated by
mating [59] led to novel discoveries of the impact of mating on morphological and physio-
logical changes in the female reproductive tract [94]. These post-mating changes include
promotion of innervation and muscle differentiation in the oviduct, opening of the oviduct
lumen, and relaxation of the oviduct musculature [20,94], which presumably function to
facilitate release of eggs from the ovary to the uterus. These changes to the oviduct are likely
mediated, at least in part, by the mating-induced increase release of neuromodulators,
including octopamine [19,95,96]. In particular, the ovulation-inducing SFP, ovulin, ap-
pears to exert its effect by increasing octopamine signaling within the female reproductive
tract [20]. Further studies have demonstrated other major post-mating structural changes
to the female reproductive tract [97–99]. Thus, in the case of D. melanogaster, studies of
mating- (and SFP-) regulated gene expression complemented extensive elegant biochemical,
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physiological, and morphological studies to further our identification of female post-mating
phenotypic changes and their underlying mechanisms.

4. Discussion and Future Directions

The goal of this review was to summarize the current state of knowledge about
common gene families regulated by mating in female insects. The most common mating-
regulated gene families in females are predicted to be involved in three main functions:
metabolism, immunity, and chemosensation (Figure 1). Although different protocols and
techniques are used during gene expression studies, for each function, some gene or gene
families that are differentially expressed are shared by at least two species. For example,
OBP25, which encodes a protein involved in chemosensation, is significantly upregulated
in the mated females of An. gambiae and Ae. aegypti [30,44]. Contrary to OBP25 that has
the same pattern across insect species, the immune gene defensin has a different pattern of
regulation in different species but it is regulated by mating in females of at least six species
including Atta colombica (Hymenoptera: Formicidae), Ae. aegypti, C. capitata, D. melanogaster,
L. niger and A. mellifera [23,29,34,58,62,63]. Like defensin, GDH that plays a role during insect
metabolism has a different regulation pattern after mating in D. melanogaster, Ae. aegypti,
and B. tabaci [29,31,39,41]. These genes that are differentially expressed, especially those
that are upregulated by mating across different insects are good candidates for insect
management and a standardization of protocols may confirm their roles in more insects.
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Thorax; LRT = Lower Reproductive tract; Mg = Midgut; Ov = Ovary; Sp = Spermathecae; T = Thorax;
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Understanding how mating and specific cues received during mating impact female
phenotypes is critically important both for a basic understanding of insect physiology,
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molecular biology, and behavior and for solving applied problems including controlling
reproduction and lifespan for pest management and conservation breeding. One way to
better understand the phenotypes that are impacted by mating and the mechanisms under-
lying these impacts is to analyze which genes change expression after mating. In this field
of post-mating changes in female insects, gene expression studies are increasingly available,
but it is difficult to compare findings between studies because of lack of standardization
between them. Subsequent studies should work to establish norms and standards for gene
expression studies and this field of study will progress more efficiently by collaborating
across multiple species.

Although there now are a number of studies of the effects of mating on gene expression
in female insects, the results of these studies are difficult to compare and draw broad
conclusions from due to variation in methodologies between studies (Table 1). For example,
the studies we reviewed varied in timepoints post mating; whether or not matings were
observed to establish precise timepoints; tissues analyzed; and methods for RNA extraction
and differential gene expression analysis. With the goal of developing our understanding of
general and species-specific effects of mating on gene expression, we suggest the following
considerations prior to new studies:

1. Time points after mating: Most studies that we reviewed either used set time points
after mating of 0 h, 6 h, and 24 h, or placed females with males but did not actually
record exact latencies between mating and mRNA extraction. We recommend us-
ing set time points after observed matings rather than putting females with males
unobserved as the patterns of gene expression change dramatically with time since
mating even over the course of a few hours. Furthermore, it would be interesting and
important to explore in more species whether there are additional changes in gene
expression patterns that occur at later time points, as some post-mating phenotypic
changes occur and/or persist over the course of several days to months (e.g., for
species in which females reject male mating attempts for their entire lives) or possibly
years (e.g., in honey bee, A. mellifera, queens) [100].

2. Number of matings: All studies that we reviewed either compared unmated versus
singly mated females or compared unmated females with females that had an un-
known number matings because they were left unobserved with males. Females of
many insect species mate multiple times. The phenotypic effects of single versus
multiple matings for females have not been as well explored as the effects of single
versus no mating. It would be a useful addition to the field of insect reproduction
to understand how variations in female reproductive history (e.g., number and fre-
quency of matings; operational sex ratio; density) impact both female post-mating
phenotypes and gene expression.

3. Tissues for analysis: Just as gene expression varies between tissue types, expression
changes in response to mating are likely to be tissue-specific. Important patterns of
mating-induced gene expression changes might be obscured when analysis is at the
level of the whole body. Resources-permitting, the field would benefit from having
within species studies documenting patterns of mating-induced gene expression
across different tissue types expected to be relevant to post-mating phenotypic changes
(e.g., nervous system tissues; fat bodies; ovaries; sperm storage organs). Further,
comparisons of mating-induced gene expression patterns within the same tissues
across species would provide insights into the consistent and divergent genes that are
regulated by mating.

4. RNA extraction methods: The methods used for RNA extraction can potentially im-
pact the discovery rate of mating-induced gene expression changes. For example, a
comparison of three different RNA extraction methods in the yeast, Saccharomycies cere-
visiae, yielded significantly different transcript abundances between phenol-extracted
samples relative to samples extracted using two commercially available kits. These dif-
ferential transcript abundances could potentially impact the detection of differentially
expressed genes when comparing between treatments [101].
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5. Sequencing and analysis methods: In the case of RNAseq, methodology for con-
ducting, sequencing and analyzing gene expression studies is improving rapidly.
Therefore, it is not possible to recommend a single methodology that will remain the
best approach over time. However, it is important to note that the analysis method
can affect the results [102] and therefore care should be taken when interpreting
comparisons across studies that used different sequencing and analysis methods.
Appropriate and/or best practices should be established for differential expression
studies in each study species and may vary depending on that species’ genome or
transcriptome features [103].

6. Functional analyses: Studies of mating-induced gene expression pattern changes
provide a good starting point both for generating hypotheses for mechanisms under-
lying known post-mating phenotypic changes and for discovering novel post-mating
phenotypic changes. However, future studies should also investigate the functional
consequences of mating-induced changes in gene expression on female phenotypes,
similar to the studies described above in An. gambiae and D. melanogaster. Such func-
tional studies will provide insights into the consequences of intersexual molecular
interactions and could be important for understanding both basic biological processes
and applied insect management program that depend on reproductive processes such
as the sterile insect technique and release of insects carrying a dominant lethal.

Table 1. Comparison of Approaches to Analyze Gene Expression Regulation Between Microarrays,
qPCR and RNAseq. Nb for number. Cq stands for quantification cycle.

Technologies/Parameters Microarrays qPCR RNAseq

Description Comparison of expression
levels of predefined genes

Transcript
quantification/expression of
predefined genes in real time

RNA sequencing and gene
quantification/expression of

several genes

Principle Hybridization PCR and Cq Deep sequencing

Sensitivity Intermediate Highest Lowest

Specificity Intermediate Highest Lowest

Nb of genes studied Limited Limited Unlimited

Background signal Low Low Very low

Transcription abundance
detection Intermediate Highest High

Time Long Short Long

Price Expensive Less expensive Expensive

Expertise Needed High Intermediate Highest

Examples
An. gambiae

Ceratitis capitata
D. melanogaster

An. gambiae
An. coluzzii
Ae. aegypti

Anastatus disparis
Apis mellifera

Bactrocera dorsalis
Ceratitis capitata

Dendrolimus punctatus

An. gambiae
An. coluzzii
Ae. aegypti

Anastatus disparis
Apis mellifera

Bactrocera dorsalis
Bactrocera tryoni [104]
Dendrolimus punctatus

D. melanogaster
Anastrepha ludens

Collaborations to progress our understanding of mating-induced gene
expression changes.

The field of post-mating gene expression changes would benefit greatly from a large-
scale collaboration between researchers studying different insect species and between scien-
tists working in different sub-disciplines of biology. Such a collaboration could progress the
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field forward by benefiting from specific knowledge of the reproductive biology, behavior,
physiology, and natural history of different insect species coupled together with specialized
expertise in fields such as insect cell biology, immunology, biochemistry, evolution, and
bioinformatics. This approach could be used to understand important questions such as
those explained below.

a. Across different species and different mating/social systems, are the similar patterns
of post-mating female responses (e.g., egg development, mating inhibition) induced
by regulation of the same genes or pathways? If so, that would suggest that these
phenotypic changes may be conserved and homologous. In contrast, if the genes or
pathways are different, it would suggest that these similar post-mating phenotypes
arose through multiple independent evolutionary events (i.e., convergent evolution).
Such a finding would lay the groundwork for further research on what common
selective forces result in the evolution of particular post-mating females responses
and answer questions such as whether mating induced gene expression changes
correspond to particular life or natural history characteristics (e.g., monandrous vs.
polyandrous; degree of sociality; diet; how individuals find mates; lifespan).

b. What are the mating-related stimuli (e.g., mechanical, chemical, molecular) that
induce gene expression changes in females and are these similar or divergent across
species? Intriguingly, some of the most thoroughly studied stimuli of female post-
mating changes (e.g., D. melanogaster sex peptide and ovulin) induce only subtle
effects on gene expression patterns [64,105] and there is evidence that sex peptide
induces its impacts through regulating expression of microRNAs [106]. By identifying
these stimuli, we can begin to explore the mechanisms by which an externally-
derived stimulus from a male (e.g., sperm, seminal fluid, vibrations, or odors) can
affect the gene expression changes of a female in such a way that induces profound
behavioral and/or physiological changes as well as the behavioral and molecular
interactions between females and males that result in these changes [93,107]. Through
such studies, we then may be able to devise approaches for manipulating female
gene expression changes either directly or indirectly through artificial selection or
transgenesis of male behavior or physiology.
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