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ABSTRACT: Hepatitis C Virus (HCV) is a bloodborne RNA virus that leads to severe liver
diseases, and currently, no effective prophylactic biologics are available to prevent its
transmission. The prevention of HCV is closely related to the major histocompatibility
complex (MHC). Linear antigenic peptides of HCV, known as T cell epitopes (TCEs), are
crucial in the presentation process by MHC molecules to T cells, playing a key role in
immune responses. Therefore, the rapid and accurate identification of these TCE−HCVs is
essential for advancing vaccine development. Herein, we propose TCellPredX, a novel
integrated predictor for TCE−HCV identification. TCellPredX leverages five distinct feature
encoding schemes, including local and global sequence encodings, composition-transition-
distribution descriptors, physicochemical properties, and embeddings from two protein
language models, which are processed through 12 machine learning algorithms. Our results
indicate that feature fusion significantly enhances predictive accuracy. Moreover, the maximal
relevance minimal redundancy feature selection method is particularly effective in isolating
informative features, ensuring the model’s use of the most informative data. Additionally, ensemble models, especially when
combined with an averaged voting strategy, demonstrate superior stability and accuracy compared to individual classifiers, effectively
reducing noise and enhancing model robustness. TCellPredX achieves notable accuracies of 0.900 and 0.897 in 10-fold cross-
validation and independent test, respectively. Furthermore, TCellPredX’s high accuracy is validated on experimentally verified
peptide sequences documented for their potential benefits in vaccine development. Overall, TCellPredX can offer a robust tool for
the precise identification of TCE−HCV, potentially serving as a cornerstone for future epitope research and advancing HCV
vaccines development.

1. INTRODUCTION
Hepatitis C virus (HCV), classified under the genus
Hepacivirus within the Flaviviridae family, is a single-stranded,
positive-sense, enveloped RNA virus.1,2 Due to the lack of
proofreading function in its RNA-dependent RNA polymerase,
HCV rapidly evolves into millions of quasispecies.3 In recent
years, there have been substantial advances in the pharmaco-
logical treatment of HCV, particularly with the development of
“direct-acting antivirals” that target the viral replication
machinery, leading to significant breakthroughs in HCV
treatment. However, despite these advancements, nearly 80%
of HCV-infected individuals worldwide remain undiagnosed
and without access to affordable treatment,4 making the World
Health Organization’s goal of eliminating HCV infections by
2030 increasingly challenging. Therefore, developing an
effective vaccine remains the most viable strategy for
controlling HCV-related diseases.5 Traditional HCV vaccine
designs have shown limited success, proving to be costly and
inadequate in addressing pathogens with high antigenic
diversity.6

The nucleotide sequence of the Hepatitis C virus varies by
over 30% between different genotypes and over 15% between
subtypes.7 These genetic differences are particularly pro-
nounced across various geographic regions, making it

imperative for vaccine design to either induce broad immune
responses or target highly conserved regions of the viral
genome.8 Numerous studies have shown that immune
responses targeting these conserved regions may be effective
against multiple HCV strains, providing broader protection.
Although initial progress has been made in developing vaccines
that induce neutralizing antibodies against the envelope
glycoproteins E1/E2, the heterogeneity of HCV significantly
impacts the broad-spectrum protective efficacy of the vaccine,
posing a substantial challenge for vaccine development.9 In
contrast, vaccines focusing on specific antigenic peptide
segments presented by major histocompatibility complex
(MHC) molecules and their impact on T cells show great
potential.

Within the immune response, CD8+ T cells are the principal
effectors in controlling viral infections, whereas CD4+ T cells
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are essential for sustaining CD8+ T cell functionality and
preventing viral escape mutations within CD8+ T cell
epitopes.10 The HCV has developed multiple strategies to
disrupt the antigen presentation process, thereby evading the
host’s immune system, particularly T cell-mediated re-
sponses.11 MHC molecules are crucial for presenting antigens
to T cells, thereby initiating and orchestrating immune
reactions.12 MHC molecules are categorized into two classes
based on their antigen presentation pathways: MHC class I
and MHC class II. MHC class I molecules present endogenous
antigen peptides, activating CD8+ T cells, which leads to the
elimination of infected cells.13 In contrast, MHC class II
molecules present exogenous antigen peptides to CD4+ T cells,
activating helper T cells that support B cell antibody
production and establish long-term immune memory.14

Accurately identifying linear T cell epitopes of the Hepatitis
C virus can enhance the binding efficiency of MHC molecules,
facilitating effective antigen presentation, which is crucial for
activating CD8+ T cells and helper T cells, thereby stimulating,
regulating, and forming memory within the immune system.
Although significant progress has been made in the
bioinformatics research of T cell epitopes TCE−HCV, clinical
trials are needed to validate these findings. In this context, our
goal is to accurately identify TCE−HCV using only sequence
information, thereby improving the antigen presentation
efficiency of MHC molecules and providing new directions
for vaccine development.

Machine learning methods have been extensively employed
in the prediction of linear T-cell epitopes for HCV. Phasit et al.
introduced the TROLLOPE method, which combines 12
features with 12 machine learning models to produce 144 base
classifiers that generate a feature set called APF, subsequently
refined using the GA-SAR feature selection algorithm and
applied to build the final classifier via PLS.15 Despite its
innovative approach, TROLLOPE15 faces significant limita-
tions in predictive accuracy, largely due to its lack of
comprehensive feature fusion and model integration. This
shortcoming affects both its overall performance and stability.
Moreover, TROLLOPE’s reliance on a single model, without
testing the benefits of model fusion, raises concerns about its
robustness and generalizability.

In response to these challenges, we developed TCellPredX, a
novel ensemble model that integrates 13 features and 12
models using a soft voting strategy. TCellPredX optimally
combines feature sets with top-performing models and further
refines them through the mRMR feature selection method.
Our experimental results clearly demonstrate that TCellPredX
not only surpasses TROLLOPE in predictive accuracy but also
offers enhanced precision in TCE−HCV predictions, thereby
providing new opportunities for advancing HCV vaccine
development.

2. MATERIAL AND METHODS
2.1. Benchmark Data Set. The data set utilized in this

study is derived from the work of Charoenkwan et al.,15 who
extracted both positive and negative samples related to HCV
(ID 11103) from the Immune Epitope Database version 2.26
(www.iedb.org).16 Specifically, the data set comprises peptide
sequences primarily associated with T-cell assays conducted in
humans, mice, and nonhuman primates.17 These peptides are
categorized as either TCE−HCV or non-TCE−HCV.15 The
original data set contained 711 positive and 790 negative
samples. To enhance data quality and reduce redundancy,

Charoenkwan et al.15 performed preprocessing, eliminating
redundant samples. This process resulted in a final data set
comprising of 446 TCE−HCV and 525 non-TCE−HCV. All
selected peptide sequences are between 8 and 10 amino acid
(AA) to ensure consistency and reliability of the data.

2.2. Feature Representation. HCV epitopes exhibit a
range of characteristics, including sequence patterns, structural
features, and physicochemical properties. To comprehensively
capture these attributes, we incorporated multiple feature
groups: local sequence encoding methods (AAC, PAAC,
APAAC), global sequence encoding techniques (DDE, DPC,
TPC), and physicochemical descriptors (PCP, AAI). These
features enhance the model’s ability to discern subtle yet
significant differences among HCV epitopes. Additionally,
embeddings from protein language models such as ESM and
PortT5 were employed to capture contextual sequence
information by integrating evolutionary and structural insights.
This approach was motivated by the necessity to represent
higher-order dependencies within protein sequences, which are
challenging to capture using simpler encoding methods alone.

Converting peptide sequences into numerical vector
representations is a critical step in this experiment.18−20 To
accomplish this, we utilized a diverse array of 13 features,
incorporating traditional sequence encodings, composition-
transition-distribution descriptors, physicochemical properties,
and advanced protein language models, as detailed below.
Initially, local sequence encoding methods, such as AAC,
transform sequences into 20-dimensional vectors by calculating
AA frequency in protein sequence.21 Building on this, PAAC
introduces additional sequence-order information,22 while its
variant, APAAC, captures hydrophilicity−hydrophobicity
distribution patterns along peptide chain.23 On the other
hand, global sequence encoding is exemplified by DDE, which
calculates the deviation between observed dipeptide frequen-
cies and their expected values, generating a corresponding
feature vector.24 Furthermore, DPC records the frequency of
all possible dipeptides within the sequence,25 and TPC extends
this to tripeptides, resulting in an 8000-dimensional vector
reflecting position-specific occurrence frequencies26 For
composition-transition-distribution descriptors, CTDC enco-
des various physicochemical properties.27 CTDD subsequently
maps the positional distribution of specific amino acids within
the sequence, for example, within the first 10% or last 20%.28

Following this, CTDT characterizes the frequency of amino
acid pair transitions between different groups.29 Physicochem-
ical properties are further captured through the AA index,
which generates indices representing attributes like hydro-
phobicity and molecular volume. These indices are then
employed in the PCP to encode the characteristics of amino
acids.29 Lastly, we integrated embeddings from protein
language models. Specifically, the ESM-2 model, a large-scale
pretrained protein language model, produces 1280-dimen-
sional vectors that encapsulate deep contextual and structural
information from protein sequences.30 Similarly, ProtT5
converts protein sequences into textual representations,
leveraging the T5 architecture to extract sophisticated features
from these sequences.31 Collectively, this comprehensive
feature representation framework ensures robust and precise
modeling for the experimental tasks.

2.3. Feature Normalization and Selection. To address
the variability in feature ranges, we standardized the data,
which is essential for improving interpretability and accuracy,
especially in classifiers sensitive to feature scales like k-nearest
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neighbors and support vector machines. The standardization
formula applied is x x std/= , x and x′ are the original
and standardized data, respectively, μ and std denote the mean
and standard deviation. Recognizing the importance of model
interpretability, we applied the max-relevance-min-redundancy
(mRMR) technique following feature fusion. This approach
allowed us to retain the most informative features while
reducing redundancy, thereby ensuring a streamlined feature
set without compromising accuracy. Moreover, feature
selection is crucial for reducing dimensionality and enhancing
model performance. We employed two key techniques: PCA
and mRMR. PCA involves standardizing the data, calculating
the covariance matrix, performing eigenvalue decomposition,
and mapping the data onto the chosen principal components.32

In contrast, mRMR focuses on selecting features most relevant
to target while minimizing redundancy among them, making it

widely applicable across different domains.33 Detailed method-
ologies for feature extraction and selection are provided in
Supporting Text S1.

2.4. Performance Evaluation Strategies and Metrics.
The data set was first split into: 80% (training) and 20%
(independent test). The training data is then used for model
validation through 10-fold cross-validation, repeating ten times
to ensure that each subset is used for testing, providing a
robust measure of the model’s reliability.34 Subsequently, the
remaining 20% data is used for independent test to objectively
assess the model’s performance and generalization capability.35

To evaluate the model’s performance, we referred to four tools,
PSRQSP,36 DrugormerDTI,37 FRTpred,38 and PRR-HyPred39

and selected five commonly used evaluation metrics: Matthews
correlation coefficient (MCC), specificity (SP), sensitivity
(SN), accuracy (ACC), and area under the curve (AUC).

Figure 1. Overall workflow of TCellPredX. (A) Data set curation, (B) Feature extraction, (C) Feature selection, individual model training and
testing, TCellPredX construction, and performance evaluation.
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These metrics collectively assess different aspects of model
performance.40,41

SN
TP

TP FN
=

+ (1)

SP
TN

TN FP
=

+ (2)

ACC
TP TN

TP TN FP FN
= +

+ + + (3)

MCC
TP TN FP FN

(TP FP) (TP FN) (TN FP) (TN FN)
= × ×

+ × × × + × +
(4)

where TP represents the number of correctly predicted TCE−
HCV samples (true positives), TN is the number of correctly
predicted non-TCE−HCV samples (true negatives), FP
denotes the number of non-TCE−HCV samples incorrectly
predicted as TCE−HCV (false positives), and FN is the
number of TCE−HCV samples incorrectly predicted as non-
TCE−HCV (false negatives).

3. PROPOSED MODEL TCELLPREDX
3.1. Workflow of TCellPredX. The development and

evaluation of TCellPredX (Figure 1) involve six key steps.
First, during data set curation, we utilized a data set from ref
15, which include both TCE−HCV and non-TCE−HCV, and
was divided into training and independent test sets to ensure
robust model generalizability. Next, in feature extraction, we
extracted 13 features categorized into five distinct types�local
and global sequence encoding, physicochemical descriptors,
composition-transition-distribution descriptors, and embed-
dings from protein language models, thereby providing a
comprehensive, multidimensional representation for distin-
guishing between TCE−HCV and non-TCE−HCV. Sub-
sequently, in feature selection, we employed PCA and mRMR
to identify the most informative features, effectively reducing
redundancy and enhancing both training efficiency and model
performance.

Following this, during individual model training and testing,
we trained and tested 12 classifiers, including LR, SVM, KNN,
ET, NB, ADA, XGB, RF, DT, LGBM, MLP, and PLS, with
performance assessed via 10-fold cross-validation and
independent test. Then, in TCellPredX construction, we
adopted an ensemble classification strategy, incorporating a
soft voting mechanism to integrate predictions from multiple
models, thereby enhancing robustness and predictive accuracy.
Finally, in performance evaluation, we assessed the models
using key metrics such as SN, SP, ACC, AUC, and MCC,
ensuring a thorough evaluation of model performance and
generalization capabilities.

3.2. Parameter Settings. To optimize model perform-
ance, we meticulously configured key parameters across
different models and conducted parameter optimization
using grid search. For partial least squares (PLS), we
systematically varied the number of components between 1
and 20. Additionally, we assessed the impact of scaling by
toggling it on and off (true/false) to gauge its influence on
performance. In logistic regression (LR), the “max_iter”
parameter was set to 5000 to ensure sufficient iterations for
convergence, particularly given the complexity of the feature
space. For MLP, a thorough exploration of the architecture was
performed, testing configurations with one to three hidden

layers. The size of these layers was varied between 20 and 500
neurons to find the optimal balance between model capacity
and the risk of overfitting.

4. RESULTS AND DISCUSSIONS
4.1. Model Performance Assessment through 10-Fold

Cross-Validation and Independent Test. As outlined in
Section 2.4, the data set was divided into training data for 10-
fold cross-validation and 20% for independent testing. Each
classifier and feature encoding were subjected to both 10-fold
cross-validation and independent test, with the average results
from ten iterations recorded. These results are presented in
Tables 1 and 2, Figures 2 and 3.

4.1.1. Comprehensive Evaluation of Classifier Perform-
ance and Computational Efficiency. We derived 156 base
classifiers from cross-validation results and conducted a
comprehensive analysis to identify the most effective models.
As shown in Figure 2, the ACC and AUC values for the top 30

Table 1. Performance Comparison of Classifiers on the
Training Data via 10-Fold Cross-Validation

feature classifier ACC SN SP MCC AUC

AAC ET 0.678 0.654 0.699 0.351 0.764
KNN 0.693 0.656 0.731 0.387 0.752
XGBoost 0.662 0.638 0.685 0.322 0.729

AAI SVM 0.683 0.664 0.701 0.361 0.745
LGBM 0.693 0.664 0.722 0.385 0.741
XGBoost 0.673 0.640 0.704 0.343 0.74

APAAC ET 0.678 0.642 0.715 0.356 0.762
KNN 0.687 0.648 0.730 0.377 0.742
SVM 0.696 0.684 0.707 0.387 0.724

CTDC ET 0.675 0.653 0.695 0.346 0.757
LGBM 0.680 0.655 0.701 0.354 0.735
XGBoost 0.680 0.654 0.706 0.358 0.733

CTDD LGBM 0.715 0.703 0.729 0.427 0.760
ET 0.691 0.683 0.699 0.375 0.753
XGBoost 0.679 0.658 0.698 0.353 0.743

CTDT ET 0.698 0.680 0.716 0.393 0.779
KNN 0.697 0.666 0.728 0.394 0.759
LGBM 0.680 0.658 0.700 0.356 0.749

DDE SVM 0.718 0.727 0.715 0.431 0.785
KNN 0.719 0.706 0.732 0.434 0.773
MLP 0.695 0.698 0.711 0.392 0.765

DPC SVM 0.720 0.725 0.723 0.437 0.780
KNN 0.710 0.696 0.724 0.416 0.770
ET 0.697 0.695 0.702 0.388 0.764

PAAC ET 0.679 0.658 0.701 0.356 0.750
KNN 0.692 0.649 0.743 0.391 0.736
PLS 0.655 0.642 0.664 0.299 0.725

PCP ET 0.664 0.650 0.677 0.321 0.729
RF 0.668 0.702 0.654 0.330 0.714
LGBM 0.668 0.684 0.665 0.330 0.708

TPC PLS 0.715 0.720 0.716 0.426 0.794
LR 0.719 0.700 0.739 0.435 0.787
SVM 0.719 0.707 0.734 0.435 0.786

ESM ET 0.701 0.688 0.714 0.397 0.764
SVM 0.706 0.693 0.718 0.407 0.762
LGBM 0.696 0.671 0.719 0.389 0.753

PortT5 SVM 0.697 0.778 0.670 0.402 0.758
LGBM 0.691 0.672 0.710 0.378 0.745
ADA 0.683 0.659 0.706 0.362 0.736
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base classifiers were evaluated through both cross-validation
and independent testing. Among the various feature encodings,
KNN, SVM, and ET consistently demonstrated superior
performance. Notably, under the TPC encoding, PLS achieves
an AUC of 0.794, while SVM-TPC and LR-TPC reach AUC
values of 0.786 and 0.787, respectively (Table 1). These results
are consistent with the findings of Phasit Charoenkwan et al.,15

who reported that SVM−TPC and LR-TPC are among the top
performers out of all 144 base classifiers, each achieving AUC
values greater than 0.780.

To ensure a balanced and thorough comparison of the 12
classifiers, we also assessed their performance in terms of
MCC, computational efficiency, and ACC. Tables 1 and 2
present detailed performance metrics for each classifier across
different feature encodings. The ACC results indicate that the
NB and ET performed exceptionally well in both 10-fold cross-
validation and independent test. For instance, ET-DPC
achieves an 0.697 in 10-fold cross-validation and ACC of
0.706 in independent test, showing minimal variance and
suggesting stable and robust performance in predicting HCV
linear T-cell epitopes. As an ensemble classifier, ET is
particularly effective at handling data impacted by noise, high
dimensionality, and highly correlated features, all without
overfitting.

Regarding MCC values, SVM and KNN outperform other
classifiers across most feature encodings. For example, SVM-
DDE and KNN-DDE achieve MCC values of 0.431 and 0.434,
respectively, which are higher than those of other classifiers.
Although PLS and LR show average performance across other
feature encodings, they perform comparably to SVM and KNN
under the TPC encoding. Specifically, PLS-TPC and LR-TPC
achieve MCC values of 0.426 and 0.435, respectively (Table
1). Figure 3 illustrates the MCC values for the top six machine
learning models across different feature encodings.

In terms of computational efficiency, we employed mRMR
to reduce the 8000D TPC feature encoding to 650D before
training six models (i.e., ET, KNN, NB, SVM, LR, and PLS),

while recording their cross-validation and parameter optimiza-
tion times (Figure 4). The results indicate that KNN and SVM
require significantly more time for parameter optimization
compared to other classifiers. Specifically, SVM need 89.98
min, whereas ET requires only 2.01 min. PLS have the shortest
total time, at just 2.421 min (Figure 4A). Figure 4B,C further
reveal that ET consumed the most computational resources
during training, while SVM have the highest computational
cost during parameter optimization. Overall, PLS emerges as a
promising model due to its low computational cost and strong
performance.

4.1.2. Optimal Feature Combination Strategies for
Enhancing HCV Linear T-Cell Epitope Prediction. The AUC
values of the top 30 base classifiers (Figure 2C,D) reveal that
among the six classifiers achieving an AUC of 0.78 or higher
during cross-validation, four were with the TPC features, with
three ranking in the top three. This highlights TPC as one of
the most effective feature encodings. Specifically, SVM-TPC
achieves an AUC of 0.786, LR−TPC reaches 0.787, and PLS−
TPC attains 0.794 (Figure 2C). Additionally, other global
sequence encoding features, such as DDE and DPC, also
perform well across various metrics, further demonstrating the
strengths of global sequence features. For example, SVM−
DDE achieves an AUC of 0.785, and KNN−DDE reaches
0.773 (Table 1). In contrast, local sequence encodings perform
well only with the ET model, showing mediocre results with
other classifiers. For instance, ET−AAC achieves an AUC of
0.764, with no other classifier exceeding 0.76 using this
encoding (Table 1). Despite generally weaker performance
when used individually, composition-transition-distribution
descriptors, protein language models, and physicochemical
descriptors exhibit notable improvements when physicochem-
ical descriptors are combined. For instance, ET−PCP yields an
AUC of 0.729, whereas integrating features as in LGBM-
Group_4 raises the AUC to 0.795 (Figure 2). This
demonstrates that while physicochemical features like AAI
and PCP may perform moderately on their own, their
combination can substantially enhance predictive accuracy.

The key advantage of feature integration lies in its
comprehensive utilization of information across different levels,
providing a holistic representation of HCV T cell epitopes.
Accurate prediction of these epitopes requires not only
consideration of the local arrangement and sequence
information on amino acids but also a deeper understanding
of their biological functions and interactions. By amalgamating
multiple feature sets, the model constructs a comprehensive
representation of T cell epitopes across various layers, which is
crucial for improving predictive performance.

In the context of HCV vaccine development, feature fusion
serves as a potent strategy by integrating diverse layers of
biological information to enhance the accuracy and reliability
of T cell epitope predictions. This approach effectively
addresses the complexity of HCV, whose genome varies
significantly among different genotypes and subtypes,
complicating the design of a universally effective vaccine.
Consequently, feature fusion plays a central role in enhancing
both the predictive capability and biological relevance of T cell
epitope prediction models for HCV vaccine development. By
combining multiple sources of information�from sequence
data to structural insights�feature fusion enables the
identification of epitopes with improved binding affinity,
stability, and cross-genotype coverage. This approach not
only elevates the performance of prediction models but also

Table 2. Performance Comparison of Various Classifiers on
the Training Data via 10-Fold Cross-Validation (Based on
Group Features)a

feature classifier ACC SN SP MCC AUC

Group_1 ET 0.691 0.673 0.709 0.378 0.781
LGBM 0.68 0.652 0.71 0.36 0.752
XGBoost 0.683 0.65 0.715 0.364 0.745

Group_2 ET 0.707 0.697 0.717 0.410 0.767
LGBM 0.702 0.675 0.731 0.403 0.756
RF 0.673 0.677 0.671 0.336 0.752

Group_3 ET 0.702 0.675 0.733 0.406 0.794
LGBM 0.722 0.701 0.742 0.44 0.786
SVM 0.724 0.716 0.739 0.447 0.785

Group_4 LGBM 0.717 0.699 0.734 0.43 0.795
ET 0.711 0.694 0.728 0.419 0.793
ADA 0.705 0.698 0.714 0.406 0.778

Group_5 ET 0.684 0.677 0.691 0.36 0.771
LGBM 0.677 0.658 0.695 0.348 0.755
SVM 0.689 0.678 0.701 0.374 0.754

aNote: Group_1, local sequence encoding (AAC, PAAC, APAAC);
Group_2, composition-transition-distribution descriptors (CTDC,
CTDD, CTDT); Group_3, global sequence encoding (DDE, DPC,
TPC); Group_4, physicochemical properties (PCP, AAI); Group_5,
embeddings from protein language models (ESM, PortT5).
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holds the potential to drive the development of more effective,
broad-spectrum vaccines, thereby making a significant impact
on HCV prevention.

Consequently, we are motivated to explore further feature
combinations, such as integrating TPC with Group_1. Figure 5
presents the ROC curves for six classifiers (i.e., ET, NB, LR,
SVM, PLS, and KNN) across different features. It is evident
that Group_3 and Group_4 outperform others, while
Group_1, Group_2, and Group_5 demonstrate relatively
weaker performance.

While previous studies have demonstrated that combining
physicochemical descriptors can improve AUC values, the
overall performance across the five feature groups (Table 2)
suggests that simple feature fusion does not significantly
enhance model performance or fully exploit the features’
potential. Notably, Group_3 shows relatively strong results
compared to other groups, but the performance gains over the
single TPC feature are minimal and, in some cases, even
decline in specific metrics. For instance, the AUC for SVM−
TPC is 0.786, whereas the SVM combination in Group_3
achieves an AUC of 0.785. This indicates that TPC remains

Figure 2. ACC and AUC values of the top 30 base classifiers, evaluated through 10-fold cross-validation and independent testing. (A, B) The ACC
values for these classifiers in both 10-fold cross-validation and independent tests. (C, D) The AUC values for the same classifiers under the same
evaluation conditions.
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the dominant feature even after fusion, with the final predictive
outcome largely reliant on it. Consequently, we opted to
combine the strongest TPC feature with each of the other four
feature groups separately, employing mRMR for feature
selection.

The analysis and comparison of classifier performance in
Tables 1 and 2 lead to several key insights: First, the
performance difference between single features and feature
combinations shows that feature fusion does not substantially
improve model performance, particularly for TPC feature,
where the enhancement is limited. Second, the optimal
strategy involves combining the strongest TPC feature with
other features and applying mRMR for feature selection, which
maximizes the exploitation of feature potential and further
enhances model performance. Finally, the importance of
feature selection lies in mRMR’s ability to effectively remove
redundant information, especially in high-dimensional feature,
thereby improving classifier performance.

4.2. Impact of Dimensionality Reduction on Model
Performance. The initial dimensions of the DDE, ESM,
PortT5, and TPC features are 400, 1280, 1024, and 8000,
respectively. These high-dimensional features not only
consumed substantial memory during classifier training but
also significantly increased the time required for parameter

optimization and model training. To address these challenges,
we employed PCA and mRMR for feature selection, aiming to
simplify the model, reduce computational costs, and eliminate
noise and redundant information. We reduced the feature
dimensions to 50, 100, 150, 200, 250, 300, and 350, and
compared these dimensions with the original features.

Figure 6 illustrates that PCA is less effective at retaining key
information, especially for TPC and CTDD features, leading to
inferior performance compared to the original features. For
instance, the MCC value for TPC is substantially lower with
PCA (Figure 6B). In contrast, mRMR outperforms the original
features, particularly for TPC, where feature selection enhances
performance by approximately 30% (Figure 6A). This
highlights mRMR’s capability to effectively select informative
subsets from the 8000-dimensional TPC features, reducing
noise and redundancy for improved classifier modeling. Figure
6A shows mRMR performance across various feature
dimensions, Figure 6B presents PCA results, and Figure 6C
compares the performance of feature subsets selected by
mRMR and PCA.

Based on these comparisons, we draw the following
conclusions: First, PCA is inadequate in preserving key
information when dealing with high-dimensional features
such as TPC and CTDD, resulting in diminished performance.
Second, mRMR generally outperform the original features
across most encodings, particularly in handling high-dimen-
sional features like TPC, significantly enhancing classifier
performance. Finally, mRMR proves effective in selecting the
most informative subset from high-dimensional features,
removing noise and redundancy, simplifying the model, and
reducing computational costs. Therefore, mRMR is a superior
tool for feature selection, especially when dealing with high-
dimensional data, as it significantly improves both classifier
performance and efficiency.

4.3. Refining Predictive Models with Soft Voting-
Based Ensemble Learning. Our extensive cross-validation
results demonstrated that the ensemble model utilizing soft
voting consistently delivered robust and enhanced perform-
ance. The complementary strengths of the individual classifiers
augmented the model’s predictive capabilities, significantly
improving performance without introducing unnecessary
complexity. In this section, we evaluated optimal strategies

Figure 3. MCC values of the top six classifiers on the training data
with different features via 10-fold cross-validation.

Figure 4. Comparison of CV and tuning times across different classifiers in 10-fold cross-validation. (A): Compares the training times for each
classifier using TPC features, reduced to 650 dimensions with mRMR, including both parameter tuning and CV. (B, C): the proportional
breakdown of parameter tuning and CV times for ET and SVM, respectively. Note: All experiments were performed on a Windows 10 operating
system using Python version 3.8. The hardware configuration comprised an Intel(R) Core (TM) i5-7300U CPU and 8 GB of memory.
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Figure 5. ROC curves of six classifiers with different features. (A) SVM, (B) PLS, (C) KNN, (D) NB, (E) LR, and (F) ET. Note: Group_1, local
sequence encoding (AAC, PAAC, and APAAC); Group_2, composition/transition/distribution descriptors (CTDC, CTDD, and CTDT);
Group_3, global sequence encoding (DDE, DPC, and TPC); Group_4, physicochemical properties (PCP, AAI); Group_5, embeddings from
protein language models (ESM, PortT5).
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for feature fusion and model integration by analyzing cross-
validation results after feature selection. As detailed in Table 3,
the 8000-dimensional TPC feature emerged as the most
effective single feature, achieving the highest AUC of 0.794,
which underscores its superior predictive power.

Moreover, the combined feature sets {1, 2, 3, 9} and {4, 5, 6,
9} demonstrate strong performances, with AUC of 0.938 and

0.932, respectively. Although the feature set {10, 11, 9} slightly
surpass these with an AUC of 0.943, its MCC is less stable,
suggesting potential variability in model reliability. To further
investigate the performance of various classifiers, Table 4
compares both single and ensemble models. The ensemble
model {a, b, c}, which integrates LR, SVM, and PLS classifiers,
exhibited the best overall performance, achieving an AUC of

Figure 6. Feature selection using PCA and mRMR. (A) Comparison of performance across different dimensions selected by mRMR for six
features. (B) Performance comparison of PCA-selected feature vectors across different dimensions. (C) Comparative analysis of the performance of
feature subsets selected by mRMR and PCA.
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0.953 and an MCC of 0.803. This comparison highlights that
ensemble models, particularly those utilizing soft voting
strategies, can significantly enhance predictive accuracy and
robustness compared to individual classifiers.

Additionally, Figure 7 presents the ROC curves for both
single and combined features based on PLS. When evaluating
the performance of individual models using different features
(Figure 7A), the single TPC feature emerges with the highest
AUC of 0.78, outperforming other features. Subsequently, the
impact of feature combinations on model performance is
assessed (Figure 7B). Notably, Group_3 exhibits strong
performance among the five groups. However, the improve-
ment over the single TPC feature is minimal. Further analysis
of Table 2 indicates that the AUC for Group_3 is 0.794,

identical to that of the single TPC feature, confirming that
TPC remains the dominant feature even after fusion.

To further enhance predictive performance, the strongest
TPC feature is combined with each of the other four feature
groups separately, followed by mRMR. The experimental
results show that the combined feature sets {1, 2, 3, 9} and {4,
5, 6, 9} perform optimally, achieving AUCs of 0.938 and 0.932,
respectively. Although the {10, 11, 9} combination reaches an
AUC of 0.943, its MCC exhibits greater variability, indicating
instability (Table 3). In contrast, the {1, 2, 3, 9} combination
exhibits strong performance with excellent generalization
capabilities. Lastly, the performance of ensemble classifiers is
further investigated. Table 4 reveals that the ensemble model
{a, b, c} achieves the highest performance in terms of ACC,
MCC, and AUC. By integrating the ensemble model {a, b, c}
with the {1, 2, 3, 9} feature combination, the constructed
TCellPredX demonstrate outstanding predictive performance,
significantly improving prediction accuracy.

In conclusion, combining features alone provides limited
improvement in model performance, particularly when TPC is
the predominant feature. However, when TPC is integrated
with additional features and optimized through mRMR feature
selection, the full potential of these features is realized, leading
to notable performance gains. Additionally, mRMR effectively
reduces redundancy, particularly in high-dimensional scenarios,
thereby further enhancing classifier performance.

4.4. Comparative Analysis of TCellPredX against
Existing Methods. To assess TCellPredX, we conducted a
comparative analysis against the TROLLOPE and other
classifiers, including weighted voting and Boosting algorithms.
In weighted voting approach, prediction probabilities from
PLS, LR, and SVM were combined, while the boosting
algorithm utilized LR as a weak classifier. We also compared

Table 3. Performance Evaluation of Single and Combined Features Using PLS on Training Data via 10-Fold Cross-Validation

featurea feature dimension ACC SN SP MCC AUC

1. AAC 20 0.579 0.550 0.599 0.146 0.620
2. PAAC 23 0.655 0.642 0.664 0.299 0.725
3. APAAC 26 0.583 0.554 0.605 0.154 0.632
4. CTDC 39 0.579 0.549 0.600 0.145 0.622
5. CTDD 195 0.642 0.627 0.658 0.279 0.669
6. CTDT 39 0.629 0.600 0.654 0.252 0.642
7.DDE 400 0.639 0.607 0.670 0.276 0.660
8. DPC 400 0.682 0.673 0.691 0.357 0.736
9. TPC 8000 0.715 0.720 0.716 0.426 0.794
10. AAI 80 0.643 0.614 0.667 0.280 0.701
11. PCP 30 0.598 0.580 0.610 0.183 0.637
12. ESM 1280 0.680 0.654 0.708 0.359 0.740
13. PortT5 1024 0.615 0.584 0.642 0.224 0.660
{1, 2, 3} 69 0.631 0.605 0.653 0.255 0.696
{4, 5, 6} 273 0.606 0.577 0.631 0.206 0.638
{7, 8, 9} 8800 0.702 0.684 0.722 0.402 0.779
{10, 11} 110 0.664 0.640 0.687 0.324 0.735
{12, 13} 2304 0.629 0.596 0.663 0.257 0.682
{1, 2, 3, 9} 500 0.844 0.932 0.798 0.698 0.938
{4, 5, 6, 9} 500 0.845 0.917 0.806 0.697 0.932
{10, 11, 9} 600 0.843 0.895 0.814 0.689 0.943
{12, 13, 9} 500 0.782 0.806 0.772 0.565 0.871
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 1500 0.800 0.802 0.803 0.599 0.891

aNote: The “feature dimension” column indicates the number of dimensions after mRMR feature selection. The “feature” represents either a single
feature or a combination of multiple features. For example, “1. AAC” indicates a model trained using AAC encoding, while {1, 2, 3} refers to a
feature set that combines AAC, PAAC, and APAAC encodings.

Table 4. Performance Evaluation of Classifiers on the
Training Data via 10-Fold Cross-Validation

classifiera ACC SN SP MCC AUC

a.LR 0.836 0.935 0.788 0.685 0.935
b.SVM 0.878 0.892 0.869 0.755 0.883
c.PLS 0.832 0.934 0.784 0.675 0.942
d.ET 0.781 0.824 0.756 0.562 0.859
e.NB 0.847 0.975 0.787 0.713 0.846
f.KNN 0.796 0.815 0.785 0.590 0.790
{a, b} 0.892 0.925 0.870 0.785 0.945
{a, b, c} 0.900 0.946 0.871 0.803 0.953
{a, b, c, d} 0.860 0.937 0.816 0.727 0.945
{a, b, c, d, e} 0.853 0.963 0.799 0.721 0.947
{a, b, c, d, e, f} 0.854 0.955 0.803 0.722 0.938

aNote: Each term in the “classifier” represents either a single classifier
or an ensemble classifier with group feature {1, 2, 3, 9}. Ensemble
classifier {a, b, c} refers to an ensemble classifier integrating with
“a.LR”, “b.SVM”, and “c.PLS”.
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the top 5 classifiers with TCellPredX, as depicted in
Supporting Figures S1 and S2.

As demonstrated in Table 5, TCellPredX outperformed both
TROLLOPE and other machine learning methods, particularly
in 10-fold cross-validation. TCellPredX achieves ACC, SN, SP,
and AUC values of 0.900, 0.946, 0.871, and 0.953, respectively,
significantly surpassing TROLLOPE’s scores of 0.745, 0.686,
0.795, and 0.808. Additionally, the MCC improves from 0.487
to 0.803, marking a 31.6% increase. While TCellPredX is
slightly outperformed in certain metrics by the weighted
average voting method, its superior MCC indicates greater
stability and predictive capability. While in the independent
test, TCellPredX demonstrates outstanding performance, with
ACC, SN, SP, and AUC values reaching 0.897, 0.946, 0.866,
and 0.951, respectively, all surpassing TROLLOPE’s corre-
sponding values of 0.747, 0.742, 0.752, and 0.827. The MCC
also increases significantly from 0.493 to 0.796. Compared to
other methods, TCellPredX shows a marked improvement in
MCC over both Boosting and weighted average voting
algorithms, further highlighting its robust predictive accuracy.

Overall, TCellPredX consistently outperformed TROL-
LOPE and other ensemble methods across all metrics in
both 10-fold cross-validation and independent test, with
particularly strong results in MCC. By integrating TPC with

other features and applying mRMR for feature selection,
TCellPredX significantly enhanced predictive performance,
reinforcing its superiority in identifying HCV linear T-cell
epitopes.

4.5. Enhancing Epitope Identification in HCV through
Feature Integration and t-SNE Analysis. We present a
detailed analysis of linear T-cell epitopes in HCV.
Experimental findings revealed that although the physicochem-
ical descriptors AAI and PCP performed moderately when
used individually, their combined application markedly
enhanced feature effectiveness. To further validate the utility
of these features, we employed t-SNE to examine the spatial
distribution of four feature sets: Group_4, TPC, DDE, and
DPC. As shown in Figure 8, the t-SNE distributions indicate
that AAI and PCP are particularly effective in distinguishing
between TCE−HCV and non-TCE−HCV, corroborating
previous studies that identified AAI and PCP as critical for
analyzing and characterizing various protein functions.42

Figure 8A illustrates the t-SNE distribution of Group_4
features, while Figure 8B−D show the distributions for TPC,
DDE, and DPC, respectively. The data points corresponding to
Group_4 features are more densely clustered, resulting in a
better distinction between TCE−HCV and non-TCE−HCV

Figure 7. ROC curves for single and combined feature sets using PLS. (A) ROC curves for single features. (B) ROC curves for combined features.
Note: the label “PLS_[Feature]” corresponds to independent test results for PLS using the specified features, while “PLS_G1-G5” illustrates the
results for feature Groups 1 through 5. Additionally, “PLS_T_G1”, “PLS_T_G2”, “PLS_T_G4”, and “PLS_T_G5” present the outcomes when
TPC is combined with Group_1, Group_2, Group_4, and Group_5, respectively.

Table 5. Comparison Results of TCellPredX with Existing Methodsa

evaluation strategies method ACC SN SP MCC AUC

10-fold cross-validation TCellPredX 0.900 0.946 0.871 0.803 0.953
TROLLOPE 0.745 0.686 0.795 0.487 0.808
Boosting 0.803 0.938 0.747 0.628 0.925
Weighted voting 0.871 0.953 0.826 0.751 0.955

independent test TCellPredX 0.897 0.946 0.866 0.796 0.951
TROLLOPE 0.747 0.742 0.752 0.493 0.827
Boosting 0.795 0.940 0.739 0.612 0.923
Weighted voting 0.865 0.944 0.822 0.736 0.956

aNote: TCellPredX integrates the TPC, AAC, PAAC, and APAAC features, reduces them to 500D using mRMR, and then employs PLS, LR, and
SVM classifiers within an average voting ensemble. “Weighted voting” combines the prediction probabilities of PLS, LR, and SVM, while
“Boosting” uses LR as a weak classifier to construct an ensemble model..
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samples. This suggests that Group_4 features have a high
discriminative ability in identifying HCV linear T-cell epitopes.

Moreover, the physicochemical properties of TCE−HCV
are critical in the binding between MHC molecules and T-cell
epitopes. For a T-cell epitope to be presented in complex with
MHC class I molecules, it must exhibit sufficient affinity and
stability. Once presented, the complex must remain on the cell
surface for an adequate duration. If the affinity is low, the
peptide may not effectively bind to MHC-I molecules,
resulting in inefficient antigen presentation.43,44 MHC class
II molecules possess an open binding groove that can
accommodate peptides of varying lengths. While MHC class
I molecules typically bind peptides ranging from 8 to 14 amino
acids, MHC class II molecules can accommodate longer
peptides. Numerous studies have shown that, within a certain
range, extending peptide length may enhance affinity for MHC
class II molecules, with optimal peptide-MHC affinity often
occurring around 18−20 amino acids.45,46 Therefore, focusing
on the length of linear T-cell epitopes of the Hepatitis C virus
is significant for peptide-MHC interactions, offering new
avenues for vaccine design and development.

In summary, the visual analysis provided by t-SNE reinforces
the effectiveness of AAI and PCP features in identifying HCV
linear T-cell epitopes. These findings not only offer theoretical
support for HCV vaccine development but also highlight the
potential of combined features in bioinformatics applications.

4.6. Case Study. To validate the clinical applicability of
TCellPredX, we conducted predictive analyses on peptide

sequences documented in the literature as having potential
benefits for vaccine development (see Figure 9). In the study
by Timothy Donnison et al., a mouse model was utilized to
develop a vaccine capable of inducing virus-specific B cell and
T cell responses.47 Their research identified the epitopes listed
in Figure 9 as playing a critical role in vaccine development.
Figure 9 presents the prediction results for six peptide
sequences using TCellPredX, TROLLOPE, and five other

Figure 8. t-SNE visualization. (A−D) show the t-SNE plots for Group_4, TPC, DDE, and DPC, respectively.

Figure 9. Upset plot comparing the prediction accuracy of
TCellPredX with other classifiers for vaccine-relevant HCV epitopes.
Note: 408−428_H77c, KQNIQLINTNGSWHINSTALN; 408−
428_S52, KQKLQLVNTNGSWHINSTALN; 430−451_H77c,
NESLNTGWLAGLFYQHKFNSSG; 430−451_S52, NESINTG-
F I A G L F Y Y H K F N S T G ; 5 2 3 − 5 4 9 _ H 7 7 c , G A P T Y S W -
GANDTDVFVLNNTRPPLGNW; 523−549_S52, GRPTYNWGE-
NETDVFLLESLRPPSGRW.
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top classifiers (LR−TPC, SVM−TPC, ET−TPC, PLS−TPC,
KNN−DDE). Notably, TCellPredX accurately identified all six
peptide sequences as TCE−HCV, fully aligning with the actual
experimental outcomes. This result underscores the high
efficiency and reliability of TCellPredX in identifying TCE−
HCV.

In contrast, KNN−DDE incorrectly classified the ID:523−
549_H77c and ID:523−549_S52 peptide sequences as non-
TCE−HCV, highlighting the superior accuracy of TCellPredX.
Although other classifiers such as TROLLOPE, LR−TPC,
SVM−TPC, ET−TPC, and PLS−TPC correctly predicted
TCE−HCV in most cases, the errors made by KNN−DDE
emphasize TCellPredX’s robustness as a more reliable tool.
Collectively, these findings strongly support the potential of
TCellPredX in vaccine development, demonstrating its high-
precision predictive capability as a valuable asset for
formulating vaccine development strategies and conducting
clinical trials.

5. CONCLUSIONS
Rapid and accurate identification of linear T-cell epitopes in
HCV is crucial for understanding antigen presentation by
MHC molecules in the immune process and has a significant
impact on advancing vaccine development. In this study, we
investigated 13 diverse feature encoding schemes, including
local and global sequence encodings, physicochemical proper-
ties, composition-transition-distribution descriptors, and em-
beddings from two protein language models. These features
were integrated with 12 machine learning classifiers to
construct TCellPredX, aimed at assessing its effectiveness in
predicting HCV linear T-cell epitopes. Our findings revealed
that PLS, SVM, KNN, LR, ET, and NB models consistently
outperformed others, with PLS emerging as the most effective
model. Furthermore, feature fusion techniques outperformed
single-feature approaches, with TPC identified as the most
influential feature among the 12 individual encodings,
significantly enhancing the performance of integrated models.
Additional analysis showed that the mRMR feature selection
method was more effective than PCA in eliminating redundant
information and noise.

Despite TCellPredX’s strong performance, it has several
limitations. First, the mRMR feature selection method may
discard valuable features, potentially affecting the model’s
ability to capture relevant T-cell epitope patterns. Second, the
model’s complexity reduces interpretability, limiting its
practical use for vaccine developers who need insights into
individual feature contributions. Furthermore, TCellPredX is
specifically tailored for HCV and may require significant
adjustments, along with pathogen-specific data sets, to
generalize to other pathogens�particularly when facing
scalability challenges with larger data sets. Moreover, the
limited availability of high-quality data sets for less-studied
pathogens constrains the model’s generalization across
diseases. To address these issues, future research should
prioritize: (1) enhancing interpretability through explainable
AI techniques, (2) exploring feature selection methods that
retain more informative features, (3) expanding the model’s
applicability to other pathogens, (4) incorporating detailed
physicochemical properties, and (5) improving scalability
through efficient algorithms.
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