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Abstract: Cancer is fast becoming the most important cause of death worldwide, its mortality being
mostly caused by late or wrong diagnosis. Novel strategies have been developed to identify early
signs of cancer in a minimally obtrusive way, including the Electronic Nose (E-Nose) technology,
user-friendly, cost- and time-saving alternative to classical approaches. This systematic review,
conducted under the PRISMA guidelines, identified 60 articles directly dealing with the E-Nose
application in cancer research published up to 31 January 2020. Among these works, the vast majority
reported successful E-Nose use for diagnosing Lung Cancer, showing promising results especially
when employing the Aeonose tool, discriminating subjects with Lung Cancer from controls in more
than 80% of individuals, in most studies. In order to tailor the main limitations of the proposed
approach, including the application of the protocol to advanced stage of cancer, sample heterogeneity
and massive confounders, future studies should be conducted on early stage patients, and on larger
cohorts, as to better characterize the specific breathprint associated with the various subtypes of cancer.
This would ultimately lead to a better and faster diagnosis and to earlier treatment, possibly reducing
the burden associated to such conditions.
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1. Introduction

Cancer is fast becoming the leading cause of death in higher income countries, with its mortality
quickly reaching that of cardiovascular diseases [1]. Recent data from the US government estimated
that more than 1.7 million new cases of cancer, with more than 600,000 deaths, could have occurred in
2018, with an estimated national expenditure for cancer care in the US reaching USD 147.3 billion in
2017 [2].

The magnitude of the problem has driven the scientists from all over the world to face the
implementation of new strategies and tools for the detection, even at early stages, of various types
of cancer from biological samples. This would ultimately facilitate early diagnosis, enabling the
adoption of treatment strategies tailored at fighting the disease as fast as possible, thus increasing
the possibility of success. One of such strategies is based on the development of the so-called
“Electronic Nose” (E-Nose) systems, tools mimicking the functioning of the biological sense of smell
whose first prototypes dated back to early 1980s [3]. Recently, such devices have been entering the
universe of translational and clinical research as a useful alternative for analyzing gaseous samples

Biosensors 2020, 10, 84; doi:10.3390/bios10080084 www.mdpi.com/journal/biosensors

http://www.mdpi.com/journal/biosensors
http://www.mdpi.com
https://orcid.org/0000-0002-5487-0277
https://orcid.org/0000-0001-8335-5541
http://www.mdpi.com/2079-6374/10/8/84?type=check_update&version=1
http://dx.doi.org/10.3390/bios10080084
http://www.mdpi.com/journal/biosensors


Biosensors 2020, 10, 84 2 of 21

to traditional, laboratory-based methodologies, including gas chromatography/ mass spectrometry
(GC-MS), given their good portability, high customizability, quick response and relatively low cost [4,5].

Indeed, despite their effectiveness, sensitivity and, often, specificity, GC-MS technologies are
time consuming, expensive and difficult to use in daily medical practice, as well as featuring low
portability, making their employment feasible just in structured laboratory settings. Conversely, cheaper,
portable E-Nose instruments are capable of detecting low concentrations of, and discriminating between,
complex mixtures of volatile metabolites associated to several conditions without necessarily identifying
individual chemical species [6,7].

Such negative sides of those more traditional methods paved the way to a broader development
of E-Nose systems in several ways, including the study and design of new nanomaterials able to
detect target chemical species (biomarkers) at very low concentrations in complex experimental
settings (extremely high humidity, quick temperature variation, etc.). Within the framework of
cancer research, E-Nose tools are commonly employed to look for a typical “breathprint”, capable
of discriminating, at first level, patients suffering from cancer with respect to healthy controls and,
if successful, to investigate the differences in the exhaled breath composition between categories of
subjects with cancer based on the disease severity [8]. Finally, and most importantly from a clinical
perspective, this approach could be used to diagnose cancer early, investigating breath composition
unbalance at preliminary stages, paving the way for an unobtrusive alternative to expensive, poorly
portable, invasive tools currently used for this aim [9].

Exhaled breath collection is normally performed by asking the individual to exhale within a hose,
directly connected to a collection bag, usually made up of Tedlar. In order to minimize the influence
of environmental compounds eventually present at the acquisition, the patient’s nose is often closed
by means of a clip, and the portion of the exhaled breath to be analyzed is often represented by the
sole measurement portion, previously separated by the dead space, being more important, as directly
flowing from the lungs, thus containing all the compounds to be analyzed (see [10] for more details).

Once filtered, the sample is pushed within a measurement chamber by a pump, in order to interact
with the sensors.

The measurement is performed on Volatile Organic Compounds (VOCs), being natural markers of
pathophysiological mechanisms in the human body [11]. They are normally generated by biochemical
processes, including oxidative stress and lipid metabolism, or can be absorbed from the external world
through ingestion, inhalation or skin contact [12]. Once the VOCs are bounded to the detector, it is
possible to obtain and analyze the associated electronic signal with specific software tools (Figure 1).
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Finally, the breathprint of selected patients is compared with that from control subjects to compute
sensitivity and specificity of the considered solution.
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Taking into account the existing recent reviews dealing with the use of E-Nose in cancer diagnosis,
the majority of them feature a deep focus on Lung Cancer (LC) [13–15] or are too widespread into
medical diagnostics [16]. On the other hand, to the best of our knowledge, no recent reviews have
summarized the use of E-Nose tools in the various types of cancer, therefore leaving a significant gap
in the scientific literature.

Therefore, the aim of this systematic literature review is to provide an overall view on the
state-of-the-art E-Nose systems to detect cancer from the exhaled breath of patients with various
kinds of tumors, including, but not limited to, LC, head and neck squamous cell carcinoma (HNSCC),
bladder cancer (BlC), colon or colorectal cancer (CRC). In addition, given the literature’s recently
published findings, and taking into account the quick development of Information and Communication
Technologies, we also tried to hypothesize some future development possibly making the E-Nose
approach at the clinical forefront in next years.

After this introductory section, Section 2 will focus on the methods used for this literature search,
Section 3 will briefly present the main results obtained, and will discuss the results based on the
different types of tumors actually studied. Finally, Section 4 briefly outlines some conclusions and
future developments, with practical messages addressed to the reader.

2. Materials and Methods

A systematic literature review was conducted, following the PRISMA guidelines [17], on PubMed
database, according to the following terms: ((“E-nose” OR “Electronic nose” OR “Olfaction technology”
OR “Odor detection”) AND (“Cancer” OR “Carcinoma” OR “Adenocarcinoma” OR “Tumor” OR
“Malignancy” OR “Malignant disease”)).

The records included were related to articles published up to 31 January 2020 in English language,
excluding systematic reviews, meta-analysis and case report studies.

Each article was analyzed in terms of disease investigated, technology employed, sensitivity and
specificity or accuracy.

3. Results

Figure 2 displays the flowchart related to the literature review.
Of the 268 articles initially retrieved, based on the inclusion and exclusion criteria applied, 60

records have been retained for inclusion in the qualitative synthesis foreseen by the systematic review.
The majority of such works dealt with lung cancer, the recognized major cause of death for cancer
around the world for both men and women [18]. Other records included studies dealing with HNSCC,
CRC, OC, prostate cancer (PC), gastric cancer (GC), bladder cancer (BlC), malignant melanoma (MM),
breast cancer (BrC), kidney cancer (KC).

The included articles are displayed in Table 1.
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Table 1. Studies included in the literature review (AC: adenocarcinoma, AEx: asbestos-exposed, ALC: advanced lung cancer, ARD: asbestos-related diseases, BC:
bronchogenic carcinoma, BlC: bladder cancer, BrC: breast cancer, CC: colon cancer, COPD: chronic obstructive pulmonary disease, CRC: colorectal cancer, ELC: early
lung cancer, GC: gastric carcinoma, GC-MS: gas chromatography–mass spectrometry, GNP: gold nanoparticles, HNC: head and neck squamous cell carcinoma, IBS:
irritable bowel syndrome, KC: kidney cancer, LC: lung cancer, MM: malignant mesothelioma, MOS: Metal Oxide Semiconductor, N/A: (quantitative) data not available,
NSCLC: non-small cell lung cancer, OC: ovarian cancer, PC: prostate cancer, QMB: quartz microbalance, SAW: Surface Acoustic Wave, SCC: squamous cell carcinoma,
SCLC: small cell lung cancer, TCC: transitional cell carcinoma) (* data depending on the validation model used).

Study Participants Cancer Type Groups Aim Device Sensitivity (%) Specificity (%) Accuracy (%)

[19] N = 60 LC LC (n = 42), controls (n = 18) LC (a) and controls (b)
classification LibraNose 100 (a)

94 (b)

[20] N = 50 LC
LC (n = 24), other non-cancer

chronic lung conditions (n = 8),
healthy controls (n = 18)

Discrimination between LC and
controls SAW-based eNose N/A N/A N/A

[21] N = 135 BC BC (n = 28), healthy controls
(n = 107)

To discriminate between cancer
and controls Cyranose 320 71.4 91.9

[22] N = 101 LC LC (n = 43), controls (n = 58) Correct classification between LC
and controls

MOS sensors-based
eNose 95.3 90.5 92.6

[23] N = 143 NSCLC

NSCLC (n = 49), COPD (n = 18),
idiopathic pulmonary fibrosis

(n = 15), pulmonary artery
hypertension (n = 20), sarcoidosis
(n = 20), healthy controls (n = 21)

Prediction of lung cancer Colorimetric sensor
array 73.3 72.4

[24] N = 32 LC
LC (n = 15), other non-cancer

chronic lung conditions (n = 7),
healthy controls (n = 10)

Discrimination between LC and
controls SAW-based eNose N/A N/A N/A

[25] N = 30 NSCLC NSCLC (n = 10), COPD (n = 10),
healthy controls (n = 10)

Discrimination between: NSCLC
and COPD (a) and between

NSCLC and controls (b)
Cyranose 320 85 (a)

90 (b)

[26] N = 92 LC LC (n = 28), other lung diseases
(n = 28), controls (n = 36)

To discriminate between LC and
controls (a) and between LC and

other lung diseases (b)
LibraNose 85 (a)

93 (b)
100 (a)
79 (b)

[27] N = 177 LC, CC,
BrC, PC

LC (n = 30), CC (n = 26), BrC
(n = 22), PC (n = 18), healthy

controls (n = 81)

Discrimination between cancer
and controls, and between the

different types of cancer

Nanosensors based
on organically

functionalized GNP
coupled with

GC-MS

N/A N/A N/A

[28] N = 89 LC

LC (n = 16), other respiratory
disorders (n = 11), smokers

(n = 18), ex-smokers (n = 11),
non-smokers (n = 33)

Discrimination between LC
and controls ENS Mk 3

p-values of 0.045, 0.025
and 0.001 for

discrimination according
to the different
eNose channels
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Table 1. Cont.

Study Participants Cancer Type Groups Aim Device Sensitivity (%) Specificity (%) Accuracy (%)

[29] N = 87 LC, HNC LC (n = 25), HNC (n = 22), healthy
controls (n = 40)

Discrimination between: LC and
controls (a), HNC and controls (b),

LC and HNC (c)

Nanoscale
NA-NOSE 100 (a, b, c) 92 (a, b)

100 (c)

[30] N = 18 LC LC (n = 9), controls (n = 9) Discrimination between cases and
controls

Semiconductor and
electrochemical-based

CN e-Nose II
100 88.9 94.4

[31] N = 229 LC LC (n = 92), controls (n = 137) Discrimination between cases and
controls

Colorimetric sensor
array 81.1

[32] N = 72 LC LC (n = 53), controls (n = 19)

Discrimination between: LC and
controls (a), adeno and squamous
carcinoma (b) and between early
and advanced stage of disease (c)

Nanoscale
NA-NOSE, coupled

with GC-MS
88 (a, b, c)

[33] N = 30 LC
LC (n = 20), of which AC (n = 10)

and SCC (n = 10); healthy controls
(n = 10)

Discrimination between cases and
controls (a), and between cancer

subtypes (b)
QMB-based eNose 97.5 (a) 75 (a) 90 (a)

75 (b)

[34] N = 89 LC LC (n = 47), healthy controls
(n = 42)

Discrimination between cases and
controls

MOS-SAW-based
eNose 93.62 83.37

[35] N = 17 LC LC (n = 12), healthy controls (n = 5) Discrimination between cases and
controls

Nanomaterial-based
eNose 100 80

[10] N = 64 LC LC (n = 27), healthy controls
(n = 37)

To discriminate between LC and
controls (a), LC and healthy
smokers (b), LC and healthy

never-smokers (c). Then, LC and
controls were compared at higher
expiratory rate (d), and after 10s of

breath hold (e)

Cyranose 320

63 (a)
96 (b)
67 (c)
81 (d)
78 (e)

78 (a)
40 (b)
81 (c)
76 (d)
65 (e)

72 (a)
81 (b)
74 (c)
78 (d)
70 (e)

[36] N = 30 LC LC (n = 20), other lung diseases
(n = 10)

Discrimination between LC
and controls

QMB-based eNose
coupled with

GC-MS
90

[37] N = 77 LC LC (n = 38), COPD controls
(n = 39)

To discriminate between LC
and controls Cyranose 320 80 48

[38] N = 144 LC LC (n = 31), COPD (n = 31),
asthma (n = 37), controls (n = 45)

Discrimination between: COPD vs.
LC (a), asthma vs. LC (b), controls

vs. LC (c)
SpiroNose 87(a), 68 (b), 88 (c)

[39] N = 191 LC
LC (n = 25), current or former

heavy smokers without LC
(n = 166)

To discriminate between LC
and controls Cyranose 320 88 81.3

[40] N = 100 LC LC (n = 23), controls (n = 77) Discrimination between LC
vs. controls BIONOTE 86 95
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Table 1. Cont.

Study Participants Cancer Type Groups Aim Device Sensitivity (%) Specificity (%) Accuracy (%)

[29] N = 87 LC, HNC LC (n = 25), HNC (n = 22), healthy
controls (n = 40)

Discrimination between: LC and
controls (a), HNC and controls (b),

LC and HNC (c)

Nanoscale
NA-NOSE 100 (a, b, c) 92 (a, b)

100 (c)

[30] N = 18 LC LC (n = 9), controls (n = 9) Discrimination between cases
and controls

Semiconductor and
electrochemical-based

CN e-Nose II
100 88.9 94.4

[31] N = 229 LC LC (n = 92), controls (n = 137) Discrimination between cases
and controls

Colorimetric sensor
array 81.1

[32] N = 72 LC LC (n = 53), controls (n = 19)

Discrimination between: LC and
controls (a), adeno and squamous
carcinoma (b) and between early
and advanced stage of disease (c)

Nanoscale
NA-NOSE, coupled

with GC-MS
88 (a, b, c)

[41] N = 146 LC LC (n = 70), controls (n = 76) Discrimination between LC
vs. controls LibraNose 81 91

[42] N = 39 LC LC (n = 39)

Discrimination based on disease
progression: disease control vs.
baseline (a), disease control vs.

progressive disease (b)

Nanoscale
NA-NOSE, coupled

with GC-MS

93 (a)
28 (b)

85 (a)
100 (b)

89 (a)
92 (b)

[43] N = 37 LC

Treatment naïve LC (n = 12),
former or current smokers with

COPD (n = 12), healthy
never-smoking controls (n = 13)

To discriminate between LC and
controls (a), to identify LC in

current and former smokers (b), to
identify LC in non-smokers (c)

Chemiresistor-based
alkane eNose

83 (a)
86 (b)
80 (c)

88 (a)
80 (b)
93 (c)

[44] N = 84 HNC and LC HNC (n = 52), LC (n = 32) Discrimination between HNC
vs. LC Aeonose 85 84

[45] N = 129 LC LC (n = 57), controls (n = 72) Discrimination between LC
vs. controls zNOSE4200 76 94

[46] N = 52 LC

LC (n = 24), other respiratory
conditions (n = 5), healthy smokers

(n = 10), healthy non-smokers
(n = 13)

Discrimination between LC vs.
healthy subjects Different sensors 91.58 91.72

[47] N = 813

LC, CRC,
HNC, OC,

BlC, PC, KC,
GC, other

non-cancer
conditions

LC (n = 45), CRC (n = 71), HNC (n
= 22), OC (n = 48), BlC (n = 73), PC
(n = 11), KC (n = 33), GC (n = 99),

other non-cancer conditions
(n = 411)

Correct discrimination between
the conditions

Au nanoparticles
and single-walled
carbon nanotubes

86 (average accuracy of
all classifiers)

[48] N = 119 LC ELC (n = 16), ALC (n = 73), benign
nodules (n = 30)

Discrimination between ELC vs.
benign nodules

Nano-materials-based
sensor array 75 93.3



Biosensors 2020, 10, 84 7 of 21

Table 1. Cont.

Study Participants Cancer Type Groups Aim Device Sensitivity (%) Specificity (%) Accuracy (%)

[49] N = 335 LC LC (n = 165), non-cancer (n = 91),
controls (n = 79)

To discriminate between: cancer
and non-cancer (a); cancer and

healthy controls (b); lung cancer
stages (c)

Cyranose 320 87.3 (a) 71.2 (a) 93 (b)
78.5 (c)

[50] N = 244 LC LC (n = 56), controls (n = 188) LC detection Carbon nanotubes
sensor array From 75 to 100 * From 86.2 to

96.6 * From 85.4 to 92.7 *

[51] N = 290 LC LC (n = 144), healthy controls
(n = 146)

Prospective, multi-centre study, to:
early discriminate patients with
NSCLC and healthy subjects (a);

discriminate between subtypes of
NSCLC, notably: AC (b), SCC (c),

NSCLC (d)

Aeonose

94.4 (a)
81.5 (b)
80.8 (c)
88.9 (d)

32.9 (a)

[52] N = 145 LC LC (n = 52), benign disturbances
(n = 93)

Discrimination between LC vs.
benign disturbances Aeonose 83 84

[53] N = 16 LC LC (n = 6), controls (n = 10)
Classification of the two classes of

subjects: LC (a), controls (b),
overall (c)

MOS sensor array 85.7 (a) 100 (b) 93.8 (c)

[54] N = 475 LC LC (n = 252), non-cancer controls
(n = 223)

Discrimination between LC and
controls among smokers (a) and

non-smokers (b)
Cyranose 320 95.8 (a)

96.2 (b)
92.3 (a)
90.6 (b)

[55] N = 87 HNC HNC (n = 68), healthy controls
(n = 19)

Discrimination between: HNC and
controls (a), HNC and benign
tumor (b), HNC at larynx and

pharynx (c), early and late stage (d)

Nanoscale
NA-NOSE, coupled

with GC-MS
77 (a, b) 90 (a, b)

83 (a, b)
90 (c)
95 (d)

[56] N = 59 HNC HNC (n = 36), controls (n = 23) Discrimination between cases and
controls MOS-based eNose 90 80

[57] N = 168 HNC, BlC and
colon cancer

HNC (n = 100), bladder (n = 40),
colon (n = 28)

Discrimination between: HNC vs.
colon cancer (a), HNC vs. bladder

cancer (b), colon vs. bladder
cancer (c)

Aeonose 79 (a), 80 (b), 88
(c)

81 (a), 86 (b), 79
(c)

[58] N = 40 HNC Recurrent HNC (n = 20), not
recurrent HNC (n = 20)

Discrimination between recurrent
and non-recurrent HNC Aeonose 85 80 83

[59] N = 130 GC GC (n = 37), ulcers (n = 32), less
severe conditions (n = 61)

Discrimination between: GC and
benign conditions (a), early and
late stage GC (b), ulcers and less

severe conditions (c)

Nanoscale
NA-NOSE, coupled

with GC-MS

89 (a, b)
84 (c)

90 (a)
94 (b)
87 (c)

[60] N = 103 GC GC (n = 30), controls (n = 73)
Discrimination between cases and
controls (a) and between different

cancer levels (b)

Silicon nanowire
field effect transistor

71 (a)
92 (b)

89 (a)
67 (b) 85 (a)
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Table 1. Cont.

Study Participants Cancer Type Groups Aim Device Sensitivity (%) Specificity (%) Accuracy (%)

[61] N = 484 GC GC (n = 99), other conditions
(n = 385)

Discrimination between GC and
controls

Nanoscale
NA-NOSE, coupled

with GC-MS
73 98 92

[62] N = 44 GC GC (n = 16), controls (n = 28) Discrimination between GC vs.
controls Aeonose 81 71

[63] N = 157 CRC CRC (n = 40), advanced adenoma
(n = 60), healthy controls (n = 57)

Discrimination between: CRC and
controls (a), advanced adenoma

and controls (b)
Cyranose 320 85 (a)

62 (b)
87 (a)
86 (b)

[64] N = 92 CRC CRC (n = 39), IBS (n = 35), controls
(n = 18) CRC vs. IBS identification WOLF 78 79

[65] N = 209 CRC CRC (n = 65), adenomas (n = 22),
controls (n = 122)

Discrimination between: CRC and
controls (a), advanced and non

advanced adenoma (b), advanced
adenoma and controls (c)

Cross-reactive
nanoarrays- based

eNose

85 (a)
88 (b)

100 (c)

94 (a)
100 (b)
88 (c)

91 (a)
94 (b)
94 (c)

[66] N = 182 OC OC (n = 48), benign neoplasia (n =
86), healthy controls (n = 48)

Discrimination between: OC and
other groups (a), OC and controls
(b), neoplasia and controls (c), OC
stages (d), early OC and controls

(e)

Nanoscale
NA-NOSE, coupled

with GC-MS

71 (a)
79 (b)
72 (c)

71 (a)
100 (b)
64 (c)

71 (a)
89 (b)
69 (c)
72 (d)
75 (e)

[67] N = 69 OC
OC (n = 51) of which: benign OCs
(n = 18), malignant OCs (n = 33),

controls (n = 18)

Discrimination between: benign vs.
malignant tumors (a), malignant

tumors vs. controls (b)
FAIMS 91.5 (a), 91.2 (b) 51.4 (a), 63.1 (b)

[68] N = 80 MM, ARD MM (n = 20), ARD (n = 18),
controls (n = 42)

To discriminate between patients
and controls (a) and between MM,

ARD and controls (b)
Cyranose 320 90 (a)

90 (b)
91 (a)
88 (b)

[69] N = 39 MM
MM (n = 13), professional asbestos
exposure (n = 13), healthy subjects

(n = 13)

To discriminate between MM and
asbestos exposed (a) and between

MM and controls (b)
Cyranose 320 92.3 (a) 85.7 (a) 80.8 (a)

84.6 (b)

[70] N = 64 MM, ARD
MM (n = 14), benign ARD (n = 15),
asymptomatic former AEx (n = 19),

healthy controls (n = 16)

To discriminate between: MM and
controls (a), MM and asbestos

exposed without cancer (b), MM
and benign ARD (c), MM and

asbestos exposed without cancer +
ARD (d), asbestos exposed without

cancer and ARD (e)

Cyranose C320, Tor
Vergata

ENose, Common
Invent Enose,

Owlstone Lonestar

67 (a)
80 (b)
75 (c)
82 (d)
58 (e)

64 (a)
64 (b)
64 (c)
55 (d)
47 (e)

[71] N = 131 BlC, PC

BlC (n = 25), PC (n = 12), benign
prostatic hypertrophy (n = 29),
various urological conditions

(n = 33)

Classification into the categories
of cancer

ENQBE Enose,
based on

eight QCMs
100
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Table 1. Cont.

Study Participants Cancer Type Groups Aim Device Sensitivity (%) Specificity (%) Accuracy (%)

[72] N = 60 BlC TCC (n = 30), controls (n = 30) Discrimination between BlC and
controls Cyranose 320 93.3 86.7

[73] N = 41 PC PC (n = 14), controls (n = 27) Diagnostic concordance between
eNose and prostate biopsy

eNose based on
eight non-selective
gas sensors, each

coated with
different

metallo-porphyrins

85

[74] N = 65 PC PC (n = 50), benign prostatic
hyperplasia (n = 15)

Discrimination between cancer
and controls

MOS-based
ChemPro®100-eNose 78 67

[75] N = 41 PC PC (n = 14), controls (n = 27) Discrimination between: PC and
controls QMB-based eNose N/A 93 N/A

[76] N = 85 PC PC (n = 32), controls (n = 53) Discrimination between PC and
controls Aeonose 84 70 75

[77] N = 36 BrC
Malignant BrC (n = 13), benign

breast conditions (n = 16), healthy
controls (n = 7)

Discrimination between the
different groups

Nanoscale
NA-NOSE 88.9
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3.1. Lung Cancer

As reported in the table, and visually displayed in Figure 3, the majority of the studies retrieved
in the present literature review concern LC, appearing to be the main cause of death from cancer
worldwide [18]. Overall, the literature confirms the good detection ability of the majority of E-Nose
systems for LC, although still displaying wide heterogeneity mainly due to: (i) acquisition protocol,
(ii) tool employed and, (iii) sample size, open issues for the majority of studies dealing with E-Nose in
all cancer types.
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Regarding technologies, out of 37 articles about LC, 13 have used nanosensors, both embedded
into commercial devices, like the popular Cyranose 320 (Sensigent, Baldwin Park, CA, USA), and put
as a non-commercial products and prototypes. Indeed, nanosensors offer many advantages over
other technologies, including a fast response time, reasonable detection limits, high portability and
scalability, good sensitivity and resolution, eventually high selectivity [78]. In the majority of the studies
employing such technology, results in terms of sensitivity, specificity and accuracy were satisfying
(mostly above 80% of correct accuracy in discriminating between LC and controls and between LC and
other cancer types), still considering the low specificity of E-Nose systems in general.

Among the first articles published with this approach on this specific population was the one
by Machado et al. in 2005 [21], discriminating LC and controls by mean of Cyranose 320 with
a 71.4% of sensitivity and 91.9% of specificity. The Cyranose 320 is a portable chemical vapor
detector, consisting of 32 composite carbon black polymer sensors. VOCs in exhaled air bind to the
polymers, generating a reversible change in the electrical resistance of the sensors. Together, all sensor
deflections form a specific ‘breathprint’. Here, discrimination analysis was performed using a prior
filter, followed by Principal Component Analysis (PCA) to reduce data complexity, classes’ separation
computation via Mahalanobis distance and, finally, Support Vector Machine (SVM) analysis for
classification. VOCs investigated included Isobutane, Methanol, Ethanol, Acetone, Pentane, Isoprene,
Isopropanol, Dimethylsulfide, Carbon disulfide, Benzene and Toluene, representing a quite complex
mixture of volatiles eventually present in the exhaled breath of diseased individuals. Some of those
compounds were also studied by Di Natale et al. [19], using aniline, alkanes, and benzene derivatives,
by D’Amico et al. and Tran et al. [26,28], using aniline, o-toluidine and cyclopentane, and by Peng
and colleagues [27], in turn employing isoprene, alkanes, methylalkanes and benzene derivatives as
disease biomarkers.

However, with the technological scaling-up taking place, the results obtained with nanosensors
also progressively improved. Indeed, just a few drawbacks were noticed throughout the years,
with poor performances and tricky airflow control in some specific tasks observed in the study by
Bikov et al. [10], evaluating VOCs applying PCA for discriminating between classes, where just 40%
of specificity in discriminating between LC and healthy smokers was obtained, or in the article by
Hubers et al. [37], that failed to retrieve good results in terms of specificity to discriminate between
patients with LC and controls with COPD. The features were reduced by means of a PCA with 6
components, one of which (PC4) performed statistically better in discriminating categories, therefore
it was used to construct a Receiver Operating Characteristic (ROC) curve to calculate sensitivity
and specificity.

Thanks to the feedbacks obtained in such trials, and taking advantage of new technological
advances, Sensigent developers have obtained continuously better performances by their product,
as demonstrated by the large-scale studies published by Tirzı̄te et al. in 2017 and 2019 [49,54]. Here,
the Cyranose 320 showed its ability to discriminate between LC and controls as well as between
different stages of LC, using Support Vector Machine (SVM) and Logistic Regression Analysis (LRA),
respectively, with a good performance in terms of accuracy.

The improvement of Cyranose 320 performances foreseen in the near future should mainly regard
the optimization of specificity, reducing the false positive still noticed. In addition, as observed by
Huang and colleagues [50], that used Linear Discrimination Analysis (LDA) and SVM for classification,
temperature and humidity should be considered carefully and maintained fixed at least within the
testing room.

Another frequently used technology in the E-Nose applications specifically designed for LC
discrimination is represented by MOS sensors, still being, after many years, among the leading
technologies in the specific field. MOS ensure a wide range of response, high sensitivity, low cost,
fast response time, small size, easy fabrication, long-lasting life and wide temperature operating range.
Nevertheless, they appear to be highly selective, quite power expensive, poorly stable, and highly
sensitive to environmental conditions, making the control of such variable particularly critical [79].
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Within the cancer research, this approach was first used in 2007 by Blatt and colleagues [22],
using non-parametric LDA and several supervised pattern classification techniques, with satisfying
results in terms of correct classification between LC and controls on a quite large population, accounting
for N = 101 subjects divided into the two groups, correctly classified in more than 90% of cases.
More recently, large studies were published using commercial devices relying on this driving principle,
including the Aeonose (The eNose Company, Zutphen, The Netherlands), employed by most Dutch
studies published (e.g., those by van Hooren, Kort and van de Goor [44,51,52]), discriminating between
LC and controls, as well as between LC and other non-cancer disturbances, based on VOCs, in more
than 80% of cases. More specifically, the Aeonose consists of three micro hotplate metal oxide sensors.
During the measurement, the hotplates are periodically heated and cooled between 260 and 340 ◦C in
32 steps, during which they are exposed to the exhaled breath. The redox reactions of the VOCs at the
surface of the MOS result in a change in conductivity of the sensors, creating a unique pattern of redox
reactions of the VOCs.

Van Hooren and colleagues discriminated between LC and controls after a processing for data
compression and Artificial Neural Networks (ANN), followed by Matthews Correlation Coefficients
(MCC) to measure the quality of binary classifications. A best-fit model of the data was then calculated.
Finally, to predict the fit of a model for future undefined breath samples, cross-validation of the data
was performed using leave-one-out.

A very similar approach was applied by Kort et al. [51] and van de Goor and colleagues [52],
using the ad-hoc software for data processing Aethena (The eNose Company, Zutphen,
The Netherlands), performing pre-processing of data, data compression, leave-10%-out cross-validation,
model selection, and combining prediction models with promising AUCs.

As in the case of the previously described Cyranose 320, some issues have been noticed,
with Aeonose failing to reach a satisfying result in terms of specificity in early discriminating
LC and controls, but representing, to date, the only evidence of MOS sensors failure in the specific field
of LC.

Quartz microbalance (QMB) technologies were also used in a few articles dealing with LC, mostly
by Italian groups, displaying satisfying results.

A handful studies also employed other, mixed approaches.
Shlomi et al. [48] have applied a unique set of 40 sensors, particularly chemiresistors, based on two

types of nano-materials (i.e., GNPs, Graphene Nanoplatelets and SWCNTs, Single-Wall Carbon
Nanotubes). The sensors used were either based on (i) organically stabilized spherical GNPs
(core diameter 3–4 nm), or (ii) SWCNTs capped with polycyclic aromatic hydrocarbon (PAH) or
hexabenzocoronene (HBC). Such sensors typically feature a fast, reversible response when exposed to
typical breath VOCs.

One hundred and nineteen individuals were enrolled for the study, 16 of which with Early Lung
Cancer (ELC), 73 with Advanced Lung Cancer (ALC) and 30 with benign nodules. ELC patients were
identified with respect to individuals with benign nodules with a sensitivity of 75% and a specificity of
93.3% using Discriminant Function Analysis. The main limitations of the approach proposed reside in
the relatively low sample size, in the consideration of benign nodules after 2 years of stable X-rays
analysis and in possible “recall biases” to which the smoking history condition can be subjected.

Li et al. [46] investigated the usefulness of E-Nose systems in the field of LC using a 14-sensor
array, of which eight were MOS, four electrochemical sensors and two temperature/humidity detectors.
The gas reaction chamber, made of aluminum alloy, with a volume of about 220 mL, hosted sensor
probes. When the gas to be tested passes through the gas chamber, the sensor array responds in
terms of voltage (or current) signals. After initial processing (filtering, amplification, etc.), signals are
sent to the main control chip (STM32F10) for analog-to-digital conversion and temperature/humidity
compensation, and finally to the computer through USB for display and storage. Twenty-four patients
with LC, 5 subjects with respiratory conditions, 10 healthy smokers and 13 healthy non-smokers were
enrolled. After elimination of the 5 patients with respiratory conditions, the 47 remaining subjects were
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divided into LC and controls, and the discrimination analysis between those two classes provided
a 91.58% of sensitivity and 91.72% of specificity. This analysis was performed, after an initial data
pre-processing, by using different dimension reduction methods, including PCA, LDA, Laplacian
Eigenmap (LE), local linear embedding (LLE), and t-Stochastic Neighbor Embedding (tSNE). Finally,
classification was done with fuzzy k-NN and SVM.

Overall, research on LC using E-Nose systems, populated by a growing number of studies,
displayed satisfying results even with different technologies, making it a field where such
approach can be used more largely even in clinical practice, with slight technological development
eventually desirable.

3.2. Head and Neck Carcinoma

LC was the most frequently analyzed type of cancer, although different tumors are taken into
account in studies employing the E-Nose, as well.

Among them, HNC was studied in seven articles retrieved in this review, some of which not
specifically dealing with HNC but taking into account this kind of tumor together with other ones.

Here, probably due to their wider spread within the scientific community and to their low cost,
MOS sensors are mostly used, with four out of seven articles following this approach, especially
using the commercial Aeonose. Good sensitivity, specificity and accuracy are displayed, with values
somewhat similar to what is obtained in LC.

For example, among them, van Hooren et al. [44] used E-Nose to characterize the exhaled breath
of 52 patients with HNC and 32 individuals with LC, distinguished with 85% sensitivity and 84%
specificity, although wider groups are desirable to allow conducting analyses on subgroups based on
the disease severity.

Similarly, van de Goor and colleagues [57] used 5 Aeonose tools to distinguish between various
types of cancer (N = 100 HNC, N = 28 colon cancer, N = 40 bladder cancer). Data analysis was
performed with the proprietary software package Aethena with results presented in a scatter plot and
a ROC curve. Matthews correlation coefficients were calculated to determine the quality of the binary
classifications and 95% confidence intervals were given. This approach revealed a 79% sensitivity
and 81% specificity between HNC and colon cancer, an 80% sensitivity and 86% specificity between
HNC and bladder cancer, and an 88% sensitivity and 79% specificity between bladder cancer and
colon cancer. The main confounding factor is that most patients with HNSCC were heavy smokers
with advanced stage tumors, whereas patients with bladder or colon cancer were not diagnosed to
exclude HNC.

Nanosensors were used in two out of seven papers, both published by Israeli groups and
displaying excellent performances of the NA-NOSE device. Hakim and colleagues [29] collected
exhaled alveolar breath and analyzed it with an array containing five sensors based on spherical gold
nanoparticles (GNPs) with tert-dodecanethiol, hexanethiol, 2-mercaptobenzoazole, 1-butanethiol, and
3-methyl-1-butanethiol ligands. The NA-NOSE data were analyzed by PCA and, in a complementary
approach, SVM was used to classify the principal component data and cross-validation was applied
to evaluate the sensitivity and specificity obtained. With such approach, the authors obtained 100%
sensitivity in discriminating HNC and controls (with 92% specificity) and 100% of both sensitivity and
specificity when trying to differentiate HNC from LC.

Later on, Gruber et al. [55], on a larger cohort made up of 68 patients with HNC and 19 healthy
controls, distinguished, via DFA, between HNC and controls with 77% sensitivity and 90% specificity
and between different sites of the tumor (larynx vs. pharynx) with 90% accuracy. Finally, early and late
stage tumors were stratified with 95% accuracy, fostering the application of this tool in the specific field.

As for LC, also for HNC results obtained are satisfying, suggesting a step forward towards the
use of E-Nose technology even in clinical practice.
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3.3. Prostate Cancer

Prostate cancer was also investigated in seven articles retrieved in the present review. Among
them, both MOS sensors and QMB-based tools were applied twice, with satisfying results,
somewhat comparable to those obtained in LC and HNC. Concerning the biomarkers studied,
2,6-dimethyl-7-octen-2-ol, pentanal, 3- octanone and 2-octanone were mostly used [26,73,74], but Peng
and colleagues also used Toluene, 2,3,4-trimethyl decane, pxylene and 2,2-dimethyl decane [27]. In order
to get more reliable results, the investigation of wider cohorts is needed, aiming at understanding
whether this approach could be translated into the clinics.

3.4. Colorectal Cancer

Colorectal adenocarcinoma was studied in six articles, three of which were conducted with
nanosensors. In terms of sample size, the study by Amal and colleagues [65] resulted to be the largest,
performed on 65 patients with CRC, 22 with adenomas and 122 control subjects. Breath samples were
analyzed through a system composed of six sensors either based on (i) organically stabilized spherical
GNPs, with a 3–4-nm core diameter, and (ii) SWCNTs. Four different organic functionalities of the
GNP sensors and two for the SWCNT contributed to the chemical diversity of the sensors. The organic
ligands of the GNPs provided broad cross-reactive absorption sites for the common breath VOCs.
In the study, the accuracy of discrimination was 91% between CRC and controls, with 85% sensitivity
and 94% specificity.

Satisfying results were also obtained by Westenbrink et al. [64] using WOLF eNose
(composed of 13 sensors, of which eight amperometric electro-chemical sensors, two non-dispersive
infrared optical devices and a single photo-ionization detector) for discriminating levels of
2-methyl-3-phenyl-2-propenal, pcymene and anisole, and by de Meji and colleagues [63], taking
advantage of the good performances of the Cyranose 320 in discriminating CRC and controls based on
VOCs profile (85% and 87% of sensitivity and specificity, respectively). The relatively low number of
studies published to date suggests that the use of E-Nose technologies in the clinical practice appears
still premature; however, if confirmed on further studies, possibly on larger cohorts, such findings
could pave the way for the preliminary adoption of such approach within screening studies and to
control disease progression.

3.5. Gastric Carcinoma

The use of E-Nose technology is particularly important in those conditions where early detection is
crucial to decrease the cancer mortality. Among them, gastric carcinoma is considered among the main
fields of application, being the fourth most common type of tumor [80] and featuring high mortality
due to its late identification [81].

In terms of E-Nose tools, GC was commonly studied with nanosensors, appearing in three out of
the five studies published to date, using both self-made and commercial devices. Among the latter,
Schuermans et al. [62] applied the E-Nose technology to this field, specifically using the Aeonose
to classify breath samples from 16 patients with GC and 28 controls. The ROC curve derived from
the analysis and obtained with the Aethena tool, revealed 81% sensitivity and 71% specificity for
the abovementioned discrimination, highlighting as main limitations the small sample size and the
specificities of the Chinese population on which the investigation has been carried out.

Given the importance of early detection in general within oncology, but in particular as concerns
GC, future studies dealing with E-Nose systems should be more focused on the early identification of
this kind of tumors, evaluating their efficacy and potential transferability into the practice.

3.6. Other Conditions

A handful studies also dealt with the use of E-Nose technology in other cancer conditions.
They include Bladder Cancer (BlC), displaying four studies using QCM, nanosensors, MOS and carbon
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nanotubes; Ovarian Cancer (OC), investigated in three studies with heterogeneity in terms of the
method employed; Malignant Melanoma (MM), where the Cyranose 320 was the sole device applied;
Breast Cancer (BrC), where nanosensors were applied; and Kidney Cancer (KC), with the use of
carbon nanotubes.

All those works reported satisfying results, except for some specific comparisons performed by
Lamote et al. [70], where Cyranose 320 was far from being optimal in discriminating MM and controls,
probably due to the small sample size, and for some clinical characteristics of OC deeply investigated
by Amal and colleagues [66] where the NA-NOSE needed some improvement in discriminating,
for example, OC stages, possibly due to the complexity of the task demanded.

4. Major Issues

E-Nose systems also account for a number of issues, mostly depending on the nature of the
detectors constituting the sensing part of the device.

At first, such systems report troubles when asked to discriminate and quantify odors in very small
concentrations. This fact can be related either to technological constraints, with limits of detection not
reached by eventually low concentrations of the target molecule, or to customization issues, with a
strong need for tailoring the selection of sensors to be employed for the array constituting the E-Nose
that is not always optimally matched. In both cases, such limits bring to low-amplitude or noisy
signals, which might be confounded from other signals with similar amplitudes, increasing the need
for an improvement in sensor fabrication and pattern recognition algorithm definition, topics of great
interest in this specific field in recent years [82].

Second, the response characteristics of sensors composing the E-Nose systems should be carefully
taken into account, including the significant sensor drift, especially when exposed repeatedly to gas
mixtures within short time frames, or in the presence of extremely high humidity conditions or sudden
temperature variations. Such issues could lead to false diagnostics, significantly decreasing the reliability
of E-Nose-produced data. Therefore, a careful control of airflow, as well as of other environmental
variables including temperature and humidity, is mandatory and is commonly employed in current
research protocols in order to achieve reliable data, cleaned from those, non-desirable external factors.

Additionally, the employment of single-use discardable sensors could be a solution, somewhat
helping to promote standardization for volatilome databases to be created [83]. Otherwise, every
single system would need to have its exclusive training algorithm, and renewed constantly due to
sensor decay, making this technology too demanding to implement in clinical practice.

Another issue of such tools includes the need for realizing E-Nose devices with wireless capabilities,
in order for them to be included within large wireless sensor nodes. This would allow such devices to
be provided by hospitals and healthcare providers to the patients for their self-monitoring at home,
within the framework of patient empowerment and p4 medicine, granting to the medical doctors a
continuous control to the health status of a patient and allowing, at the same time, the achievement of
an uniform measurement protocol, overtaking one of the major issues actually present with E-Nose
devices [15]. This step is characterized by the need for controlling total power consumption, complexity,
costs and data acquisition rate, current issues actually in the process to be solved by manufacturers
and developers [84,85].

Finally, a further key-point for the good success of E-Nose systems is represented by their
wearability, allowing them to be used for real time monitoring of breath and sweat while embedded
into the textiles. Despite being hard to achieve, this characteristics has been largely taken into account
in recent times, making the integration within garments easier than before, driving E-Nose tools
to be part of complete health care systems, especially for several groups of patients and athletes in
general [86].
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5. Conclusions and Future Developments

In light of the evidence in the literature, breath analysis represents a promising alternative to
traditional methods within the framework of cancer diagnosis, being fast, unobtrusive and practical.

Taking into account the results of the studies retrieved in the present investigation, promising
data were observed when distinguishing patients with LC and controls. The main confounders in
this analysis were related to the device used, the population studied concerning age and ethnicity,
the sample size, which accounts for being one of the major limitations of the studies retrieved, making
the management of data mining quite tricky, the statistical methods used and eventual habits, including
smoking. In fact, the latter factor is known to significantly alter the VOC composition, as happens with
diet and drugs use.

Concerning the E-Nose technology, the most widely used tools are based on nanosensors, QMB
and MOS sensors, overall displaying good performances in discriminating cancer patients and controls.
Such data are particularly true when investigating large-scale cancer groups, including LC, HNC or
PC, and should be further confirmed on less prevalent tumors. In addition, other technologies can
flank such tools with the aim of improving E-Nose discriminatory capabilities.

The main limitation of the different studies published to date is that some of them take into
account patients with late stages of cancer, whereas the early diagnosis is not always investigated, and
often not exhaustively. This should be carefully overcome in future research to further highlight the
pivotal contribution eventually borne by the E-Nose approach.

Finally, more studies are needed, especially on larger cohorts, to better investigate the most
suitable E-Nose tools for identifying the various types of cancer, in order to standardize breath analysis
with this method and to avoid confounders that could negatively affect the integrity of data. Such a
point should be solved, since the E-Nose technology exists since many decades ago and it is widely
employed within this field since 2003 at least; however, despite the promising results reported in the
scientific literature, and mentioned in the present work, its use in clinical practice is still extremely
limited. The development of small, wireless E-Nose tools, easy to use, economically viable and with
little power consumption, possibly interfaced to smartphones, could allow patients to be self-monitored
and continuously tracked at their home, detecting unbalance related to the VOC composition that
might possibly trigger an alarm for doctors and caregivers, suggesting the need for more frequent visits
and medical check-ups. This would enable large-scale screening on the overall population eventually
at risk for cancer due to particular conditions (i.e., when exposed to pollutants or radiations, when
displaying risky behaviors like being heavy smokers, when having familiarity for cancer, etc. [87–90])
and more precise control of the disease progression in patients with early stages of cancer.

In this overall framework, the solution proposed, probably solving some of the issues still present,
would enable the large-scale employment of the E-Nose technology and the delivery of fast, reliable
and economically viable results of some clinical analysis involving breathomics. Indeed, optimized
solutions, based on such technology, could bring to a better, earlier cancer diagnosis, decreasing at the
same time the misdiagnosis and the mortality associated with cancer.
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