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ARTICLE INFO ABSTRACT

Keywords: The Coronavirus (COVID-19) pandemic has created havoc on humanity by causing millions of deaths and
COVID-19 adverse physical and mental health effects. To prepare humankind for the fast and efficient detection of the
Chest X-Ray images virus and its variants shortly, COVID-19 detection using Artificial Intelligence and Computer-Aided Diagnosis

Deep transfer learning

. has been the subject of several studies. To detect COVID-19, there are numerous publicly accessible datasets
Convolutional neural networks

of Chest X-rays that the researchers have combined to solve the problem of inadequate data. The cause

CovixNet for concern here is that in combining two or more datasets, some of the images might be duplicates, so
a curated dataset has been used in this study, taken from an author’s paper. This dataset consists of 1281
COVID-19, 3270 Normal X-rays, and 1656 viral-pneumonia infected Chest X-ray images. Dataset has been
pre-processed and divided carefully to ensure that there are no duplicate images. A comparative study on
many traditional pre-trained models was performed, analyzing top-performing models. Fine-tuned InceptionV3,
Modified EfficientNet BO&B1 produced an accuracy of 99.78% on binary classification, i.e., covid-19 infected
and normal Chest X-ray image. ResNetV2 had a classification accuracy of 97.90% for 3-class classification i.e.,
covid-19 infected, normal, and pneumonia. Furthermore, a trailblazing custom CNN-based model, CoviXNet,
has been proposed consisting of 15 layers that take efficiency into account. The proposed model CoviXNet
exhibited a 10-fold accuracy of 99.47% on binary classification and 96.61% on 3-class. CoviXNet has shown
phenomenal performance with exceptional accuracy and minimum computational cost. We anticipate that this
comparative study, along with the proposed model CoviXNet, can assist medical centers with the efficient
real-life detection of Coronavirus.
1. Introduction of already being infected and is not a safe option [2]. CT scans and X-
rays are being used instead for this process [3]. The rays emitted in CT

The Covid-19 pandemic has impacted individuals all over the world, scans are extremely harmful to the health and much more dangerous
with more than 350 million cases infected and more than 5 million than those of X-rays [4]. This is why Chest X-rays, in comparison, are
fatalities to far [1]. This also creates a tremendous burden on the a lot more reliable, safe, and efficient.
medical systems when there is a sudden influx of infected patients, Deep learning is a subset of machine learning that exclusively works
making basic healthcare facilities inaccessible to the needy. With its with neural networks (inspired by the working and functioning of
new variants and waves taking over different nations causing wreckage neurons in our brain) [5,6]. Deep learning approaches have gained
every few months, we need a guaranteed and effective method for popularity in recent years as a consequence of their capacity to learn
quick testing to detect the Coronavirus presence in the lungs. Efficient without assistance and develop highly efficient solutions that have
testing will help identify the infected people rapidly and allow for easy =~ never been seen before [7]. As a result, deep learning is being used
tracking and isolation of these persons to avoid more damage. in various industries and areas of academics.

In the initial days, testing for Covid-19 was done using RT-PCR and In medical imaging especially, much relevant research has been
antibody test only. These have various disadvantages, like the shortage done already in predicting pneumonia using Chest X-ray (CXR); also in
of testing kits in times of need. RT-PCR has shown false negatives in analyzing CT scans and MRI images [8-10]. As a result, deep learning
many cases. An antibody test can be done only after a certain period is the most sought-after research area for detecting Covid-19 in chest
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X-rays. The testing of Covid-19 by X-rays images does not require any
new machinery and is efficient, accurate, and feasible.

Viral Pneumonia has also shown symptoms and effects similar to
cases of Covid-19 infected lungs. Due to this, there is often some
parallelism between Viral Pneumonia infected lung images and Coro-
navirus infected lung images. We have considered this and included
CXR images of Viral Pneumonia in the dataset to accurately predict the
presence of Coronavirus and distinguish it from normal and Pneumonia
infected Chest X-ray images.

As of now, the complex patterns of Chest X-ray images can be
understood and analyzed only by specialty radiologists [11]. Unfortu-
nately, these are extremely few, especially in underdeveloped cities,
as compared to the need for testing of Coronavirus, which is humon-
gous [12]. This is why we conducted this research: to assist physicians
and general radiologists in achieving efficient and accurate prediction
of Coronavirus with minimum requirements.

CNNs (Convolutional Neural Networks) have shown to be extremely
successful in computer vision and are frequently used in medical imag-
ing [13,14]. This is because the CNN models have proved to be decisive
when it comes to the prediction of output by analyzing and mapping
the images to the correct output [15]. The proposed algorithm aims
to accurately anticipate variations in complicated patterns of chest X-
ray images between Covid-19 infected, Viral Pneumonia infected, and
healthy individuals that are indistinguishable to the naked eye.

Image preprocessing also plays a significant role in boosting a classi-
fier’s performance. Improving the image quality of the input images in
the training set can assist the machine learning algorithms in increasing
their accuracy. Image quality has been proven to be improved by
several metaheuristic-based optimization techniques [16,17]. In recent
years several types of research have been ongoing in multi-modal
medical image fusion through meta-heuristic-based optimization [18-
20] as it enhances the quality of fused images while preserving critical
information from the input images.

Significant challenges faced in COVID-19 detection are, firstly, find-
ing a dataset that is best suitable for the work. The data should be
abundant and labeled to allow for accurate classification of Covid-19
from the Chest X-ray images. In building a diagnostic method that
is state of the art in terms of accuracy and efficiency. This is vital
for the real-life implementation of this method as the model would
not be feasible if it did not diagnose with appreciable accuracy or
required heavy computational power to function. In this regard, a
curated dataset with a sufficient number of adequately labeled image
data has been used in this paper. Furthermore, a lightweight CNN
architecture CoviXNet has been developed to balance out the issue of
accuracy and efficiency.

The need for computationally efficient methods is essential in the
field of biomedical imaging for producing viable results. However,
deep learning techniques are generally computationally heavy, making
their application in the real world impractical. The pre-trained models
are trained on a large-scale ImageNet dataset [21] which contains
around 14 million images and has 1000 classes. Using transfer learning
with these models produces fruitful results, even on different datasets.
But since we are classifying only between 3 classes, Normal, Viral
Pneumonia, and Covid-19, the need for complex models with a large
number of parameters is not necessary.

In this regard, we propose CoviXNet, a deep learning neural network
architecture, as an alternative efficient screening model for identifying
COVID-19 by evaluating patients’ Chest X-rays and looking for visual
markers in the chest radiography imaging of COVID-19 patients. The
proposed 15-layer CNN architecture shows accuracy compared to the
pre-trained networks and uses 30 times fewer parameters. With the
method proposed, we aim to address this issue and assist radiologists,
medical staff, and patients with accurate and feasible detection of
Covid-19.

Our paper’s main contributions are stated below:
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1. Deep features of input Chest X-ray images were extracted us-
ing various traditional fine-tuned models, pre-trained on the
ImageNet dataset, and a comparative study was conducted to
analyze the best performing models.

2. Both 2-class and 3-class classification was done on top-
performing models to test model robustness.

3. A novel 15-layer CNN architecture—CoviXNet was constructed
taking both efficiency and accuracy into account after experi-
mentation and analysis of pre-trained models. In addition, 10-
fold cross-validation was also performed by splitting the dataset
two times to properly evaluate the CoviXNet model’s robustness.

4. A curated dataset was used in this paper in which the Sait
et al. [22] removed all the duplicate images. Then, the dataset
is carefully pre-processed and partitioned into training, test-
ing, and cross-validation sets to prevent data leakage. In a
pre-processing step, different image sizes were selected in ac-
cordance with different models considering both accuracy and
efficiency. After partitioning, only training data is augmented,
and the model has been validated and tested on the rest of the
data.

The rest of the study’s contents may be summarized as follows. Sec-
tion 2 is dedicated to analyzing the previous work of various scholars
done in the detection of COVID-19. Section 3 deals with the various
Materials and Methods used and also entails dataset and proposed
algorithms. Section 3.4 dives deep into the different deep learning
architectures analyzed and used for the study. Section 3.5 discloses the
model proposed in this research. Finally, Section 4 disclose and cover
experimentation and the results found from the previous experiments.

2. Related works

Ever since the Covid-19 pandemic has taken over the globe, there
has been significant work done for the efficient detection of Coro-
navirus by various medical experts, researchers, and scientists. The
application of deep learning techniques for the quick detection of the
Coronavirus using Chest X-rays has been widely researched. Extensive
research on these works has been taken on.

Jain et al. [23] used 6432 chest X-rays image data from their Kaggle
repository to compare and report the accuracy of InceptionV3, Xcep-
tion, and ResNeXt models. The authors claimed the Xception model
gave the highest accuracy of 97.97%. The author used LeakyReLU
instead of relu as an activation function and claimed it as a novel
approach. Finally, the authors emphasized that the high accuracy found
may be the reason for concern because it might be the consequence
of overfitting. The authors suggested considering large datasets in the
future to validate their suggested model. Basu et al. [24] proposed
Domain Extension Transfer Learning (DETL). The author stated that
training a CNN from scratch requires significant expertise for archi-
tecture to work properly and requires huge data for training. After
performing a 5-fold Cross-Validation, the claimed accuracy was 82.98%
for Alexnet, 90.13% for VGGNet, and 85.98% for ResNet. The author
also used Gradient Class Activation Map (Grad-CAM) idea to see if a
model paid more attention during image categorization. The nCOVnet
model, which is based on transfer learning, was given by Panwar
et al. [25]. The input layer forms the initial layer for the nCOVnet
architecture, followed by 18 layers of convolutional, then ReLU, and
max-pooling layers from the pre-trained VGG16 model. Then in the
2nd algorithm, the author added 5 more custom layers as head layers.
The training accuracy claimed was 93%-97%, and the testing accuracy
was 97.62% when tested on Covid-19 positive patients. The dataset uti-
lized contains 192 covid positive patients’ X-ray scans for 337 images.
The author also took care of the possibility of data leakage, so they
manually split the dataset into training and testing sets.

Ismael et al. [26] used three deep learning CNN approaches for
identifying Covid-19 in chest X-rays. Deep feature extraction, transfer
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learning, fine-tuning approaches, and end-to-end training of a de-
veloped CNN model were among them. Deep feature extraction and
fine-tuning were done using pre-trained deep CNN models such as
VGG16, VGG19, ResNet18, ResNet50, and ResNet101. The deep charac-
teristics are classified using an Support Vector Machine (SVM) classifier
with several kernel functions. A dataset of 180 Covid-19 and 200
normal chest X-ray images were used in the investigation. The deep
features produced from the ResNet50 model had the highest accuracy
score of all the findings, at 94.7%. The fine-tuned ResNet50 model was
92.6% accurate, whereas the built CNN model’s end-to-end training
yielded a 91.6% result. Several local texture descriptors and SVM classi-
fications had been used to compare performance, finding that the deep
approaches were more efficient. Luz et al. [27] used CNN architecture
to detect Covid-19 by CXR. B3-X, from the family of proposed models
based on EfficientNet, has an accuracy—93.9%, COVID-19 sensitivity—
96.8%, positivity prediction of 100 percent (no false negatives) while
requiring 5 to 30 times lesser parameters. A dataset consisting of 13,569
X-ray images of patients classed as healthy, COVID-19 pneumonia,
and non-COVID-19 pneumonia were used to train the recommended
approaches and the other 5 competing architectures. A hierarchical
technique was used, as well as a cross-dataset analysis. The cross-
dataset examination revealed that even the most advanced models lack
generalization capacity. As can be seen, only a small number of images
for Covid-19 positive patients was included in this study. The authors
deployed the recommended models on a broad and varied dataset to
evaluate their performance.

Further, Hussain et al. [28] proposed a 22-layer CNN-based model
named CoroDet and used both Chest X-rays and CT Scan Dataset for 2,
3, and 4 classes, i.e., COVID, Normal, non-COVID bacterial pneumonia
and non-COVID viral pneumonia. With the CoroDet Model on X-ray
Dataset, they could reach an accuracy of 99.1%, 94.2%, and 91.2%
for 2,3 and 4 class classification, respectively. Karakanis et al. [29]
proposed two lightweight models, one for binary classification and
another one for 3-class classification, and they have compared it to
the state of art ResNet8 Pre-trained model. They have also used Condi-
tional Generative Adversarial Networks (cGANs) to generate synthetic
images since there was a shortage of datasets. With the proposed
binary class model, they achieved an accuracy of 96.5% and 94.3%
with the multiclass model. Using cGANSs, their accuracy improved to
98.7% and 98.3%, respectively, for binary and multiclass Models. Khan
et al. [30] presented a CNN-based model called Coronet, which has
been based on Xception. Using X-ray images, the model achieved a
binary classification accuracy of 99% (COVID-19, Normal), 95% for
3-class classification, and 89.6% for four classes (COVID-19, Normal,
Pneumonia-bacterial, and Pneumonia-viral). Ozturk et al. [31] de-
veloped a 17-layer CNN-based model called DarkCovidNet (modified
Darknet model), which obtained an accuracy of 98.08% for binary
classification (COVID vs. No-Findings) and an accuracy of 87.02%
for three-class classification (COVID vs. No-Findings vs. Pneumonia).
DarkCovidNet was built using the Darknet-19 classification model (the
backbone of YOLOV2) as a starting point. Hammoudi et al. [32] sug-
gested Tailored deep learning algorithms to detect pneumonia infected
patients from chest X-rays. The author said that viral pneumonia cases
discovered during COVID-19 had a high likelihood of becoming COVID-
19 infections. DenseNet169 achieved the highest accuracy of 95.72%,
outperforming other models such as ResNet34 (90.54%) and ResNet50
(90.54%) (93.92%).

Further, in some recent studies, Ayalew et al. [33] propose a
method, DCCNet, for quick detection of Covid-19 using Chest X-ray
images. This is a hybrid CNN and HOG (Histogram of Oriented Gradi-
ents) based approach using an SVM classifier which produces a testing
accuracy of 99.67% on only binary classification. Before classification,
object detection was done using YOLO to verify if the lung images
were of a human being. The dataset used consisted of 2500 images
divided into the classes—Normal and Covid-19 infected CXR images.
The results were compared to those obtained by implementation on
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AlexNet; an improvement of over 6% was observed. Khan et al. [34]
propose two deep learning frameworks, Deep Hybrid Learning (DHL)
and Deep Boosted Hybrid Learning (DBHL), to detect Covid-19. The
dataset utilized in this work consisted of 3224 Covid-19 and 3224
Normal Chest X-ray images for binary classification. The proposed DHL
framework uses COVID-RENet 1&2 models to extract deep features and
individually passed through an SVM classifier for Covid-19 detection.
In the COVID-RENet models, the edge and region-based operations
are applied to extract region and boundary features. In the proposed
DBHL framework, COVID-RENet models are fine-tuned by concatenat-
ing the feature spaces. The authors claim that the proposed methods
significantly reduce the number of false negatives and false positives
compared to previous work done. Muhammad et al. [35] introduce
a feature augmentation mechanism using reconstruction independent
component analysis (RICA) to deal with the lack of sufficient labeled
data available. A CNN-BiLSTM method was proposed for the detection
of Covid-19. The CNN assists with the high-level features extracted,
while the augmentation mechanism provides the most relevant low-
dimensional features. BILSTM is then used to classify the information
processed. Experiments on this proposed technique were conducted
on three Covid-19 datasets, proving excellent performance compared
to previous methods used. PCA and t-SNE plots were used for the
visualization of the results.

The thorough and beneficial work done so far has one common de-
nominator, it has been implemented on datasets that were inadequate
in size due to the unavailability of appropriate data. This gives way
for error in real-life implementation, even if the performance achieved
was excellent. In other cases, if the dataset was large enough, the
accuracy and efficiency of the model were not correctly balanced. We
have analyzed all these parameters and introduced a well-constructed
architecture with phenomenal and efficient performance on an ex-
tremely well-curated and processed dataset. The primary motivation
for proposing a new architecture—CoviXNet is that some give excellent
results but are computationally costly. And, if it is very efficient, then it
does not perform very well on 3-class classification, where we have to
classify COVID-19 when both pneumonia infected and normal Chest X-
ray images are present. The proposed architecture is explained in detail
in further sections.

3. Materials and methods

In the proposed method, Chest X-ray images are used for COVID-
19 detection, as represented in Fig. 1. The input X-ray images are
scaled at first to comply with CNN models. The three deep learning
strategies explored were deep feature extraction utilizing pre-trained
networks, fine-tuning the pre-trained CNN models, and end-to-end CNN
model training. Various pre-trained networks were employed for deep
feature extraction. The deep features were trained using the softmax
classifier [36] for classification purpose. In addition, a 15-layer CNN-
based model was developed and trained end-to-end. In Section 3.5, this
proposed model, CoviXnet, is further illustrated.

3.1. Dataset formation

The dataset used in our work is collected from a paper titled
“Curated Dataset for COVID-19 Posterior-Anterior Chest Radiography
Images (X-rays)” [22]. Since there were many CXR Datasets available
publicly for COVID-19 Detection, Sait et al. [22] have combined 15
different publicly available datasets of CXR [37-53]. The authors have
curated this combined dataset of Covid-19 CXR images, consisting of
4558 COVID-19 X-rays, 5768 bacterial pneumonia X-rays, 4497 Viral
pneumonia X-rays, and 5403 Normal X-rays. In these 15 publicly avail-
able repositories, there were many duplicate images found, which can
impact the training process. The proper evaluation of models cannot
be done properly if there is a leakage in training and testing data. Data
leakage has been explained further in Section 3.1.1.
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Fig. 2. Visualization of Normal, Covid-19 infected and Pneumonia infected Chest X-ray.

Sait et al. [22] removed those duplicate images by the use of
Inception V3 architecture followed by cosine similarity distances based
on unsupervised learning algorithms. After the cleaning process, the
final curated dataset was prepared, containing 1281 COVID-19 X-rays,
3001 bacterial pneumonia X-rays, 1656 viral pneumonia X-rays, and
3270 Normal X-rays.

Since our work primarily uses 2-class and 3-class classification,
i.e., COVID-19 Infected, Pneumonia Viral, and Normal X-ray images,
we have used 1281 Covid-19 CXR, 1656 viral-pneumonia CXR, and
3270 Normal CXR images as our final dataset. The dataset used in our
research has been visualized in Fig. 2.

3.1.1. Data leakage
Data Leakage is a widespread problem that occurs while training
a deep learning model [54]. While training a model, it may achieve

an accuracy of 99%, but when tested on real-world images, it fails
to classify them accurately. The most common cause of this is having
duplicate images in the dataset or leakage of data while pre-processing.

In some publicly accessible data sets, the authors enlarge the
database by augmenting it. This dataset contains many repeated im-
ages. If we divide these images into training, validation, and testing
sets, the images may then repeat in the testing and validation sets.
Suppose an image is further augmented into six images, three of which
stay in the training set while the others are split between the validation
and testing sets; accuracy might be deceptive. The model can easily
classify those images as it has already seen them in the training set. But
in this scenario, the model will fail when tested on real-world images.

To tackle this issue and ensure that there is no data leakage dur-
ing training and evaluation of our models, we have used a Curated
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Dataset [22] in which Sait et al. have confirmed that there are no
duplicate CXR images in the dataset. Further, we have carefully divided
the dataset into training, cross-validation, and final testing/model eval-
uation data. We first split the data and augmented only training data
to ensure no data leakage.

3.1.2. Dataset preprocessing and augmentation

We transformed all X-ray images into a common size of 256 x 256
pixels as a preprocessing step before training because the dataset’s X-
ray images are not homogeneous and come in various sizes. Images
were RGB reordered, and the final input for the proposed model was
delivered as a 256 x 256 x 3 image. For other models like EfficientNet,
and VGG16, the images are resized to 224 x 224 also. This was
done according to the model requirements. For our proposed Model
CoviXNet, we have resized the images to 64 x 64 taking both accuracy
and efficiency into account. After applying RGB ordering, the final
input was 64 x 64 x 3. This resizing has been done after performing
experiments and achieving the best results. The images have also been
scaled, i.e., all the pixels from 0 to 255 are normalized.

In the case of most real-life problems, there is hardly ever an
abundance of data, especially for medical imaging. To overcome the
shortage, we should expand the training dataset by data augmenta-
tion [55], in such a manner that important information is not lost. Data
augmentation functions as a regularizer and aids in the management of
data overfitting. It can increase the robustness of the model by creating
more training data and exposing the model to diverse versions of data.

In the used dataset [22], even though it contains an adequate
amount of images, we cannot directly say that it is sufficient for training
a deep learning model, particularly when it comes to end-to-end CNN
training. As a result, we performed our experiments on both the original
and augmented datasets. In the augmented dataset, we have applied
horizontal flip and scaling the dataset to best fit the models trained.
We augmented our dataset with a sheer range of 20 and a zoom range
of also 20. The images were also flipped horizontally to increase the
heterogeneity of the dataset remarkably.

3.2. Deep learning

Techniques for deep learning are extensively used in processing
and recognizing images from datasets efficiently [5]. We can use these
equations to summarize how deep learning methodologies work.

First and foremost we compute z using the inputs x; as shown
in Eq. (1),

2= w xx+b @
i

where, w; are the weights, b is the bias
Secondly we compute a, which is equal to y at the output layer,
using z as shown in Eq. (2),

a=y(z) (2)

Combining equation (1) and (2) we get Eq. (3),

I I gl
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where, w; are the weights, b is the bias and y is said to be the activation
function.

3.2.1. Deep transfer learning

The technique of obtaining deep features and fine-tuning pre-
trained CNN models is known as deep transfer learning [56]. Transfer
learning aids the deep learning process for this suggested method’s
image classification problem when there are a limited amount of
training images [57]. The weights from a pre-trained network can be
utilized to speed up or improve the learning process instead of training
a model from scratch. The model’s first layers may be thought of as
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descriptors of image features, while the latter levels are related to
particular categories. As a result, several layers may be utilized in
numerous applications. Following that, the task of transfer learning is
to determine how and which layers of a pre-trained model should be
employed [58]. Even when transferring weights from entirely unrelated
domains, this strategy has proven to be helpful in a variety of computer
vision applications. After changing the architecture to suit the chosen
problem, we initialize a new layer and define the learning process.
We trained the model using this Deep Transfer Learning process and
updated the weights using the appropriate optimizer and Softmax
function for classification [36].

3.2.2. Fine tuning

Fine-tuning is the process of making slight modifications to the
existing approach to achieve the desired results. In deep learning, we
use fine-tuning to significantly reduce the time and resources used to
improve the model’s efficiency. We do this by utilizing the initial layers
of pre-trained models and their weights on our dataset, provided they
have a similar input, like a dataset consisting of images. Deep learning
models require substantial data for training, which creates much hassle.
This can be solved by altering specific parameters of an already trained
model to perform a new similar task. We have fine-tuned various pre-
trained models to do a comparative study analyzing top-performing
models on our dataset.

3.3. Convolutional neural networks (CNNs)

Convolutional Neural Network (CNN), a class of artificial neural
networks popular for such Computer Vision functions, is being used
extensively for biomedical imaging and has been primarily used in our
work. CNN has been modeled to learn and process different features
and patterns automatically. Convolutional, pooling, and fully connected
layers are the three layers or building elements that make up the
system. The first two layers, the convolutional and pooling layers, are
employed to extract features. Fully connected layers, the last layer, do
classification, which is mapping to the final output [36].

The first layer of a CNN network is the convolutional layer, the core
building block which is responsible for the majority of the computa-
tional work [59]. The use of kernels and filters does this. The input is
the image. So for an image whose RGB value is of depth n, a filter of
depth n would only be applied. The output would be a 2-dimensional
matrix for convolution with a 3-dimensional filter.

In addition to CNNs, kernel convolution is a critical component of
various other computer vision technologies. It is a technique in which
we apply a small number matrix called a kernel or filter on our image,
then transform it using the filter’s values. For example, this formula is
used to compute feature map values as shown in Eq. (4).

Glm.nl = (f  Wm,nl =Y ¥ hlj,kIfTm— j,n— k] O
k

J

where, f stands for the input image and h stands for our kernel.
The result matrix’s row and column indexes are denoted by m and n,
respectively.

We had created an output feature map using a convolution method.
In the convolution layer, each output feature map is blended with many
input feature maps, as shown in Eq. (5).

x! =f( > Xl k{.j+b§> (5)

ieMj

where, x! is the current layer’s output, x/~' is the previous layer’s

output, kij is the current layer’s kernel, and b’ are the current layer’s bi-
ases. A collection of input maps is represented by M;. The convolution
results are then processed by a nonlinear activation function.

The second layer is Pooling layer, as shown in Eq. (6). It is respon-
sible for lowering the number of parameters by downsampling feature
maps. It is applied throughout the layers in the 3D volume. A popular
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Table 1

Modified EfficientNet architecture.

Layer name Layer type Input Output
efficientnet-b0_input Input Layer (None, 224, 224, 3) (None, 224, 224, 3)
efficientnet-b0_input Model (None, 224, 224, 3) (None, 7, 7, 1280)
avg_pool Global Average Pooling 2D (None, 7, 7, 1280) (None, 1280)
batch_norm Batch Normalization (None, 1280) (None, 1280)
dropout Dropout (None, 1280) (None, 1280)
dense Dense (None, 1280) (None, 512)
batch_norm_1 Batch Normalization (None, 512) (None, 512)
activation Swish Activation (None, 512) (None, 512)
dropout Dropout (None, 512) (None, 512)

dense Dense (None, 512) (None, 128)
batch_norm_2 Batch Normalization (None, 128) (None, 128)
activation_1 Swish Activation (None, 128) (None, 128)
dense_2 Dense (None, 128) (None, 2)

pooling layer employs a non-overlapping 2 cross 2 max filter with a
stride of 2. The maximum value in the features inside the region would
be returned by a max filter.

I_1
xi. = down (xj’ ) 6)
where the down-sampling is represented by the down(.) function.

The fully connected layer, which includes Flattening, is the last
layer. The whole pooling feature map matrix is then transformed into
a single column and input into the neural network. We create a model
by combining these characteristics using fully connected layers. Finally,
the output is classified using the softmax activation function as shown
in (7).

e

i €

o(2); = @
where, ¢ = softmax, Z = input vector, e = input’s standard exponential
function, K = number of output classes in a multi-class classification,
e% = output’s standard exponential function.

3.4. Deep feature extraction

In the feature extraction method, we remove the fully connected lay-
ers of a pre-trained CNN model while keeping the remaining network of
convolution and pooling layers, which act as a feature extractor. Any
machine learning classifiers and fully connected layers can be added
to the feature extractor. This enhances the network’s performance on
our chosen dataset as it is better suited for our model. By eliminating
the dataset’s final fully connected layer, we extracted features using
pre-trained models. After that, we employed a fully connected layer
of two neurons with the Softmax Activation function as a classifier
to accomplish the classification task. Following three standard models
pre-trained on ImageNet were used for feature extraction.

3.4.1. InceptionV3

The inception block is the central concept of the inception net-
work [60]. In a traditional or convolutional neural network layer, the
previous layer’s output would be used as the input for the following
layer, and so on until the prediction. However, the inception block
separates the individual layers. Instead of passing it through one layer,
it concatenates the outputs from all of these distinct procedures after
passing the previous layer input through four separate operations in
parallel. In addition, internal layers can determine which filter size is
necessary to learn the required information, thanks to the Inception
layer. As a result, the layer adapts even if the image’s size varies.

Inception net V3 is a 48 layers deep convolutional neural network
and uses the inception module [61]. An Inception Module consists of
an Input layer, 1 x 1 3 x 35 x 5 convolution layer, Max pooling layer,
and Concatenation layer [62].

3.4.2. DenseNet169

DenseNets has based on the premise that the next layer’s input
is the concatenation of all the preceding layers’ inputs [63]. It is
a convolutional neural network that connects all the layers directly
(with identical feature-map sizes), resulting in dense connections be-
tween them [64]. To retain the feed-forward nature, each layer gets
fresh inputs from all preceding levels and delivers its feature maps
to all following layers [65]. With multi-layer feature concatenation,
DenseNet has a larger capacity. However, dense concatenation intro-
duces a new problem: it necessitates more GPU memory and training
time. DenseNet-169 was chosen despite its 169 layer depth since it has
a less number of parameters compared to other models and the design
handles the vanishing gradient problem adequately [66].

3.4.3. EfficientNet

EfficientNet is a convolutional neural network scaling and design
method that consistently scales all depth, breadth, and resolution pa-
rameters using a compound coefficient [67]. Not only do EfficientNets
increase model accuracy, but they also improve model efficiency by
decreasing parameters and FLOPS (Floating Point Operations Per Sec-
ond) [68]. Luz, E. [27] modified EfficientNets by adding some batch
normalization, dropout, activation, and dense layers. In this work, the
same architecture has been used. Detailed Architecture of modified
EfficientNet is shown in Table 1.

3.5. Proposed model—CoviXNet

After experimenting on all the pre-trained models, a novel CNN
model CoviXNet was constructed for COVID-19 detection. A CNN com-
prises two essential components: feature extraction and classification.
The model’s initial layers may be thought of as descriptors of image
features, while the latter levels are related to particular categories.
Several convolution layers are used in feature extraction, followed by
max-pooling and an activation function. The classifier is typically made
up of fully connected layers and a softmax activation function. If there
are more no. of classes in the dataset, there will be more no. of features
for a model to learn. So the feature extraction component of a CNN
should be deeper and more complex to learn the complex features.
Since there are only 3 classes, a model has to discriminate between
them, so we have used 3 convolutional, max pooling, and activation
layers consisting of 32, 32, and 64 neurons. These parameters, such
as no. of layers and no. of neurons, are determined by performing
experiments balancing efficiency and accuracy.

After flattening, the feature vector consists of 4096 neurons, and
then for classification, the network has been scaled down by adding
a dense layer of 64 neurons. Unlike the networks pre-trained on Ima-
geNet Dataset, where the model has to classify between 1000 classes,
we have only 3 classes in our dataset. So, scaling down the dimensions
of the classification layer does not hamper the performance much.
We have also determined these parameters by performing a set of
experiments balancing both efficiency and accuracy.
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Table 2

Table describing the model architecture of the proposed model CoviXNet and its various parameters.
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Layer name Layer type Input shape Output shape Parameters
input Input Layer 64 x 64 x 3 images (64, 64, 3) (64, 64, 3) 0
conv2d-1 Conv2D 32 Filters, S = (3, 3) (64, 64, 3) (62, 62, 32) 896
activation-1 Activation ReLU (62, 62, 32) (62, 62, 32) 0
max_pooling2d-1 MaxPooling2D pool size = (2, 2) (62, 62, 32) (31, 31, 32) 0
conv2d-2 Conv2D 32 Filters, S = (3, 3) (31, 31, 32) (29, 29, 32) 9248
activation-2 Activation ReLU (29, 29, 32) (29, 29, 32) 0
max_pooling2d-2 MaxPooling2D pool size = (2, 2) (29, 29, 32) (14, 14, 32) 0
conv2d-3 Conv2D 64 Filters, S = (3, 3) (14, 14, 32) 12, 12, 64) 18496
activation-3 Activation ReLU 1z, 12, 64) (12, 12, 64) 0
max_pooling2d-3 MaxPooling2D pool size = (2, 2) 1z, 12, 64) (6, 6, 64) 0
flatten Flatten Flatten layer (6, 6, 64) (2304) 0
dense-1 Dense Dense Layer of 64 units (2304) (64) 147520
activation-4 Activation ReLU (64) (64) 0
dropout Dropout 0.5 (64) (64) 0
dense-2 Dense Dense Layer of 2 units (64) 2 130
64x64x3 64 x 64 x 32
32x32x32
| 16 x 16 x 64
G 8x8x64 1x1x4096 1x1x64 1x1x2

&
N
\\&&

4

convolution

q activation ( ReLU )
( [ max pooling

‘ fully connected

7

dropout

Fig. 3. 3-Dimensional Architecture of CoviXNet.

The proposed model has 15 layers, beginning with the input layer
and continuing with 3 convolutional layers, 3 ReLU layers, and 3 max-
pooling layers. The first two convolutional layers consist of 32 neurons,
and the third convolutional layer is of 64 neurons, each of filter size
3 * 3. The HeUniform kernel is used to initialize the weights of each
convolutional layer. A ReLU activation layer follows each convolutional
layer, followed by max-pooling layers of pool size 2 * 2. Then a flatten
layer is used to transform all data into a 1-dimensional array. Then
a Dense layer consisting of 64 neurons is used, and after that, there
is a ReLU activation layer. Then a dropout layer eliminating 50%
neurons in every iteration is used to take care of overfitting issues. The
layer is then mapped with a two-neuron output layer, one for covid-
19 positive images and the other for regular CXR images, using the
softmax function for classification purposes. Detailed architecture with
a description of each layer is shown in Table 2 whereas 3-Dimensional
visual representation is shown in Fig. 3.

3.6. Model training

This algorithm is based on end-to-end training of the proposed
model CoviXNet. The notations used in Algorithm 1 are described
here, with 61 and 62 referring to the training and validation data
sets, respectively. u is the model’s learning rate, which indicates how
rapidly it adapts to the problem. It usually has a value close to zero.
e is the total number of iterations (also known as epochs) for which
the CNN model has been trained. Finally, § is another customizable
hyper-parameter that usually has the form of 2n.

The algorithm starts by establishing the model’s top input layer
(refer to 1st step of Algorithm 1) and adding it as the head layer
to the remaining 5 layers (refer to 2nd step of Algorithm 1). Then a
for loop with several iterations ranging from 1 to the total number

of iterations (¢) to train and update the weights using forward and
backward propagation (refer to steps 6-8 of Algorithm 1).

The end to end training of the proposed model CoviXNet has been
done for 100 epochs (¢), and Adam Optimizer has been used with a
learning rate () of 0.001, #1 - 0.9, $2 - 0.999 and an e value of le-
07. In addition, the loss function Categorical Cross Entropy has been
employed.

3.6.1. Loss function

Loss function is used in helping the model measure how far an
estimated value is from the true value [69]. This assists in defining
what a good prediction is for the model to achieve. Cross entropy loss
as shown in Eq. (9) is the loss function used for the work.

J(W)=—% [vilog (9;) + (1 = y;) log (1 = 3;)] )

N
i=

1

where, model parameters, such as the neural network’s weights, are
denoted by w, y; is actual output label and j; is predicted output label.

4. Experimental results
4.1. Dataset division

To avoid overfitting and model selection bias, it is ethical to divide
the dataset into three sections—training, validation, and testing set.
Our parameter estimates have more variance when we have less train-
ing data. Likewise, our performance metric will have more variance if
we have less testing data. Therefore, we should divide the data in such
a way that none of the variances is excessive. As a starting point and
Pareto’s 80-20 Split intuition [70], we chose the training set as 80% of
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Algorithm 1 Training Procedure of the Proposed Model

Input : Training and Validation Set (51 & §2)

Output : CNN weights

begin;

1. Set the input layer of the CNN architecture and feed the input size.
2. Set the head layers, CNN (Conv2D, Maxpooling2D, Flatten, Dense,
Dropout)

3. Initialize the CNN parameters : u (learning rate), ¢ (no. of epochs),
B (batch size)

4. Resize each image in accordance with the model’s required input
shape.

5. Train the CNN and compute the initial weights

forn =1 to ¢ do

6. Randomly select a mini batch from (size : #) from training set (1)

7. Forward propagation and compute the loss. The loss function used
is described in Section 3.6.1.

8. Back propagate the error and update the weights using equation 8.

aJ

W, (C))

W,=W,—nx

where, W, is the new updated weight, W, is the original weight, 7 is the
learning rate, and % is the partial derivative of the original weight.
end !

Table 3
Table depicting the data distribution of Database-1.

Normal Covid-19 infected Pneumonia infected
Training Set 2616 1025 1326
Validation Set 327 128 165
Testing Set 327 128 165

Table 4
Table depicting the data distribution of Database-2.

Normal Covid-19 infected Pneumonia infected
Training Set 2289 897 1159
Validation Set 327 128 165
Testing Set 654 256 332

the whole data and the remaining 10%-10% for validation and testing,
respectively.

To test the robustness of CoviXNet architecture properly when lesser
data is provided for training, we have also evaluated CoviXNet on 70%
training, 10% validation, and 20% testing data. Allocating more data
in the final testing set ensures the robustness of the model and reduces
possible failure in real-world testing.

Even though the final dataset contains adequate data, we cannot
say that it is sufficient for training a deep learning model, particularly
when it comes to end-to-end CNN training. As a result, we performed
our experiments on both the original and augmented datasets. Table 3
shows the distribution of the Covid-19 Infected, Pneumonia Infected
and Normal CXR images for training, validation and testing set for
80-10-10 split whereas Table 4 shows distribution for 70-10-20 split.
After Performing Data Augmentation on Training set we have generated
a total of 15,691 Normal CXR, 6148 Covid-19 Infected and 7951
Pneumonia Infected images as shown in Table 5. These are the total
no. of images roughly generated after performing data augmentation.
We have generated 6 times the original no. of images from the original
training set.

4.2. Experimental setup

All the pre-trained models and our proposed Model were imple-
mented with Tensorflow in python. The training is performed for minor
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Table 5
Table depicting the number of Chest X-ray images in the dataset after data augmentation.

Normal Covid-19 Infected Pneumonia infected
Training Set 15691 6148 7951
Validation Set 327 128 165
Testing Set 327 128 165

Table 6
Table depicting the experimental results obtained on pre-trained networks VGG16 and
VGG19 with Adam and SGD optimizers on Database-1 and Database-2.

No. Name Optimizer VA -1 TA-1 VA-2 TA-2 Parameters
1 VGG16  Adam 98.46 98.02 99.11 99.01 14,715,714
2 VGG16  SGD 98.46 98.46 98.45 98.68 14,715,714
3 VGG19  Adam 99.12 98.46 98.45 98.25 20,025,410
4 VGG19  SGD 97.8 98.24 97.56 98.68 20,025,410

epochs on a personal computer with Intel(R) Core(TM) i7-6500U CPU
2.50 GHz, Nvidia 940M GPU with compute capability 5.0, and 16 GB
RAM. The whole training part is done on Kaggle with GPU Tesla P100-
PCI-E-16GB compute capability: 6.0 and 16 GB GPU RAM. Each Model
was trained for 100 epochs to obtain the best training, validation, and
testing accuracy.

4.3. Results

We Experimented with various available pre-trained deep learning
models for our dataset and use case. Based on their analysis, various
optimizers have been experimented on and used for better performance
in different models. We first implemented VGG16 and VGG19 with
other optimizers as shown in Table 6. This showed good accuracy
but with many parameters. We then implemented the Inception and
InceptionResNet family models, which are very popularly used; results
are shown in Table 7 : Inception Networks. Then the DenseNets and
the ResNets (Residual Networks) were implemented with Adam and
SGD optimizers, the results of which are shown in Tables 8 and 9
respectively. Modified EfficientNet and Efficient family (B1-B7) were
then implemented, and their comparative results are shown in Table 10.
Finally, Xception and AlexNet were also implemented with the most
commonly used optimizers, the results of which are shown in Table 11.
These were experimented on, as they have demonstrated excellent
performance in recognizing medical images before.

4.3.1. Top performing models

Our primary focus was binary classification, i.e., determining if a
particular image was infected with covid-19 or not. However, viral
pneumonia cases detected during a COVID-19 pandemic are thought
to have a significant chance of developing COVID-19 infections, too, as
stated in [32]. As a result, we also performed 3-class classification on
our top-performing models, i.e., classifying the given image as covid-19
infected, pneumonia infected, or normal.

With InceptionV3 on 2-class classification, we achieved an accu-
racy of 99.78%, a sensitivity of 100%, and a specificity of 99.21%.
The DenseNet169 model shows an accuracy of 99.56%, a sensitiv-
ity of 100%, and specificity of 98.43%. Both Modified EfficientNet
BO and Modified EfficientNet B1 models demonstrated an accuracy
of 99.78%, a sensitivity of 100%, and specificity of 99.21%. On 3-
class classification we achieved an accuracy of 96.45%, 96.13% and
95.97% with InceptionV3, DenseNet169 and modified EfficientNetB1
respectively. ResNet50V2 achieved a remarkable accuracy of 97.9% on
3-class classification.

In the case of medical datasets, it is recommended to use the
original dataset if there is no shortage of datasets. Also, using fabricated
images is not recommended in the medical field as they impact the
model performance in real-world testing. Further to properly evaluate
the robustness of proposed models when lesser data is provided for
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Table 7
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Table depicting the experimental results obtained on pre-trained networks InceptionV3 and InceptionResNetV2 with Adam,

SGD, and RMSProp optimizers on Database-1 and Database-2.

No. Name Optimizer VA -1 TA - 1 VA - 2 TA - 2 Parameters

1 InceptionV3 Adam 98.68 98.9 98.89 99.23 21,806,882

2 InceptionV3 SGD 98.68 99.78 99.78 99.34 21,806,882

3 InceptionResNetV2 Adam 96.05 95.82 99.11 98.68 54,339,810

4 InceptionResNetV2 RMSProp 99.12 98.9 98.23 98.90 54,339,810

5 InceptionResNetV2 SGD 99.12 99.56 99.11 99.56 54,339,810
Table 8

Table depicting the experimental results obtained on pre-trained networks DenseNet121, DenseNet169, and DenseNet201 with
Adam and SGD optimizers applied on Database-1 and Database-2.

No. Name Optimizer VA -1 TA -1 VA - 2 TA - 2 Parameters
1 DenseNet121 Adam 99.34 98.24 99.78 99.23 7,039,554
2 DenseNet121 SGD 99.34 99.34 100 99.34 7,039,554
3 DenseNet169 Adam 99.34 99.56 98 99.56 12,646,210
4 DenseNet169 SGD 99.12 99.24 99.11 99.01 12,646,210
5 DenseNet201 Adam 99.56 99.34 99.11 98.58 18,325,826
6 DenseNet201 SGD 99.34 98.9 99.78 99.23 18,325,826
Table 9

Table depicting the experimental results obtained on pre-trained networks ResNet50 and ResNet152 with Adam and SGD

optimizers applied on Database-1 and Database-2.

No. Name Optimizer VA -1 TA -1 VA - 2 TA - 2 Parameters

1 ResNet50 Adam 97.36 98.46 99.78 99.02 23,591,810

2 ResNet50 SGD 95.82 95.16 99.11 99.23 23,591,810

3 ResNet152 Adam 96.92 97.58 99.33 99.56 58,375,042

4 ResNet152 SGD 97.36 97.14 99.11 99.34 58,375,042
Table 10

Table depicting the experimental results obtained on pre-trained networks EfficientNet BO-B7 and modified versions, Modified EfficientNet BO-B7

with Adam optimizer on Database-1 and Database-2.

No. Name Optimizer VA -1 TA - 1 VA - 2 TA - 2 Parameters
1 EfficientNetBO Adam 98.9 99.34 97.34 98.80 4,052,126
2 Modified EfficientNetBO Adam 99.12 99.78 98.67 98.25 4,779,038
3 EfficientNetB1 Adam 98.9 98.9 98.45 99.01 6,577,794
4 Modified EfficientNetB1 Adam 99.34 99.78 98.67 99.01 7,304,706
5 EfficientNetB2 Adam 99.12 99.56 98.45 99.01 7,771,380
6 Modified EfficientNetB2 Adam 99.12 99.56 98.45 98.25 8,564,084
7 EfficientNetB3 Adam 99.47 98.46 98 98.46 10,786,602
8 Modified EfficientNetB3 Adam 99.34 99.12 98 98.03 11,645,098
9 EfficientNetB4 Adam 98.68 98.24 98.89 99.34 17,677,402
10 Modified EfficientNetB4 Adam 99.34 99.34 98.23 99.13 18,667,482
11 EfficientNetB5 Adam 99.12 99.34 99.56 98.91 28,517,618
12 Modified EfficientNetB5 Adam 99.12 99.78 99.56 99.34 29,639,282
13 EfficientNetB6 Adam 99.12 97.8 97.78 98.46 40,964,746
14 Modified EfficientNetB6 Adam 99.12 99.34 98.67 99.02 42,217,994
15 EfficientNetB7 Adam 98.46 98.24 98.89 99.01 64,102,802
16 Modified EfficientNetB7 Adam 98.9 98.9 98.45 99.23 65,487,634

training, we have also evaluated them on 70% training, 10% validation,
and 20% testing data. Allocating more data in the final testing set
ensures the robustness of the model and reduces possible failure in real-
world testing. In Tables 6-11 there is two databases, Database-1 and
Database-2. In Database-1 the images are augmented and the split done
is 80% training, 10% validation and 10% testing whereas in Database-2
the images are not augmented and the split done is 70% training, 10%
validation and 20% testing data.

4.3.2. Proposed model

On 2 class classification, our proposed model (CoviXNet) demon-
strated an accuracy of 99.56%, a sensitivity of 99.7%, and specificity of
99.15% on a 90% training and 10% testing dataset Split. We also did an
80% training and 10% testing dataset split, and the accuracy came out
to be 100% on the training set and 99.23% on the testing set, as shown
in Table 12. Although accuracy is not fluctuating much still, it ranged
from 98.90% to 100%. So to ensure we are getting correct accuracy,
we did a 10 cross-fold validation, shuffling the training and testing
data on each fold. We got an accuracy of 99.47% (+/-0.36%). To test

this on more images, we increased cross-validation data by 10% and
again performed 10 cross-fold validation and got an accuracy of 99.39%
(+/-0.27%) which is more or less the same as shown in Table 13. On
3 class classification, also CoviXnet achieved an accuracy of 96.61%.
CoviXNet Model worked exceptionally well in our study, and it has a
total of 176 K Parameters, which is approximately 124 times less than
InceptionV3, 72 times than DenseNet169, 23 times EfficientNetBO0, and
37 times than EfficientNetB1.

The accuracy of the developed models is related to the number of
epochs, as shown in Fig. 4. When the number of epochs is increased
from 1 to 200, the accuracy value rises and falls unevenly. Around
epoch 200, the accuracy of various implemented models appears to be
constant. As seen in Fig. 5, the magnitude of loss is also dependent on
the number of epochs. When the number of epochs increases from 1
to 35, the value of loss increases and decreases unevenly. At epoch 35,
the loss value appears constant for various implemented models. The
accuracy and loss curves of CoviXNet on 3-class classification are shown
in Figs. 6 and 7.

We employed a variety of metrics to properly evaluate the proposed
model, which is described below.
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Fig. 6. Accuracy curve of CoviXNet on 3-class classification.
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Fig. 7. Loss curve of CoviXNet on 3-class classification.
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Fig. 8. Figure showcasing the Confusion Matrices of best performing models and CoviXNet.

. Confusion Matrix : This is a visualization approach for the
model’s performance in classification tasks. This is used to ac-
curately and easily depict how the machine learning model is
classifying the positive and negative cases compared to the real
data. Here the rows depict instance classes, and the columns
depict actual classes. From Fig. 8 we can see that the model
classifies covid-19 infected images correctly. At the same time,
it makes mistakes on 1-2 images when classifying normal im-
ages, whereas CoviXNet classified one image of each class incor-
rectly. Fig. 9 represents the CoviXNet confusion matrix on 3-class
classification

. AUC - ROC curve : This tells us how well the model can

differentiate between the classes. The AUC ROC curve is utilized

at various threshold values to solve classification problems. It is

a critical statistic for assessing the model’s performance. From

Fig. 10 we can see the area under curve for InceptionV3 and

Modified EfficientNetBO is 1.00 whereas for DenseNet169 and

CoviXNet is 0.99 on 2-class classification. The area under curve

for CoviXNet on 3-class classification is also shown in Fig. 11.

. Precision : It is also an important metric to analyze the model

performance which shows how precise the model was for the

given classification. It is a proportion of accurately predicted
positive instances by the model to the total number of posi-
tive cases anticipated. This is represented by a formula shown

in Eq. (10).

.. True Positives
Precision = — — (10)
True Positives + False Positives

. Recall : This allows us to compare our model’s effectiveness in
predicting true positives vs total positive instances. It is the ratio
of accurately anticipated positive results by our model to the
total number of positive cases in reality as shown in Eq. (11).

Sensitivity = True Positives an
¥ True Positives + False Negatives

. Specificity : This allows us to compare our model’s performance
in predicting true negatives to the overall number of negative
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Fig. 9. Figure showcasing the Confusion Matrix of CoviXNet on 3-class classification.

cases in the output. It is the ratio of accurately predicted COVID
negative findings by our model to the total number of negative
instances in reality as shown in Eq. (12).

True Negatives
True Negatives + False Positives

Specificity = 12)
These metrics of top performing models and CoviXNet model is
shown in Table 14.

4.4. Comparison with other models

There are numerous publicly available datasets in this COVID-
19 classification. Different authors have implemented and claimed
their models’ performance on different datasets. Some of them also
merged various datasets and used them to evaluate their models and
approaches. As a result, we cannot directly compare our model to
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Fig. 10. Figure showcasing the ROC Plots of all top performing models and CoviXNet.
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Fig. 11. Figure showcasing the ROC Plot of CoviXNet on 3-class classification.

Table 11

Table depicting the experimental results obtained on pre-trained networks Xception and
AlexNet with Adam and SGD optimizers on Database-1 and Database-2.

No. Name Optimizer VA -1 TA-1 VA-2 TA-2 Parameters
1 Xception ~ Adam 99.12 99.12 99.56 98.91 20,865,578
2 Xception  SGD 99.34 98.90 98.89 99.13 20,865,578
3 AlexNet ~ Adam 98.02 97.8 99.56 99.67 24,740,610
4 AlexNet  SGD 98.68 98.9 98.89 99.34 24,740,610

those studies. Still, to obtain a better sense of our proposed model’s

accuracy, we compare it to previous works with their used datasets and

accuracies on 2-class and 3-class classification on Chest X-ray images.
Table 15 shows that InceptionV3, ResNet50V2, and our proposed model
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Table 12

Table depicting the experimental results obtained on Proposed model CoviXNet on

different Dataset splitting.

Split Training Testing
accuracy accuracy

90% Training and 100% 99.56%

Cross validation data

and 10% Testing Data

80% Training and 100% 99.23%

Cross validation data
and 20% Testing Data

Table 13

Table depicting the experimental results obtained on Proposed model CoviXNet on

performing 10 Folds.

No. of Shuffling Split K fold

folds (K) data accuracy

10 True 90% Training and 99.47%
cross validation data (+/-0.36%)
and 10% testing Data

10 True 80% Training and 99.39%

cross validation data
and 20% testing data

(+/-0.27%)

CoviXNet outperformed many of the state-of-the-art models proposed in

other research.
5. Discussion

In this paper, experimentation on various pre-tr
performed, with the results of the best-performing

ained models was
models explained

in Section 3. With InceptionV3 and Modified EfficientNetBO & B1, an
accuracy of 98.78% was achieved in detecting Covid-19 from CXR
images. With ResNet50V2, 97.90% accuracy was observed on 3-class
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Table 14
Table depicting classification report of the top performing models and the Proposed model CoviXNet.
Model Accuracy Precision Sensitivity/Recall Specificity F1
InceptionV3 99.78 1.0 1.0 0.9921 1.0
DenseNet169 99.56 0.99 1.0 1.0 1.0
Modified EfficientNetBO 99.78 0.99 1.0 0.9921 1.0
Modified EfficientNetB1 99.78 1.0 1.0 0.9921 1.0
CoviXNet 99.56 1.0 0.997 0.9915 1.0
Table 15
Comparison of our result with some other studies.
Author Models Covid-19 Pneumonia Normal 2-class accuracy 3-class accuracy
images images images (%) (%)
Panwar et al. [25] nCOVnet Model 192 - 337 88.10 -
Ismael et al. [26] ResNet50 + SVM 180 - 200 94.7 -
Luz et al. [27] EfficientNet B3-X 183 5521 8066 - 93.9
Hussain et al. [28] CoroDet Model 2843 1439 3108 99.1 94.2
Ozturk et al. [31] DarkCovidNet 127 500 500 98.08 87.02
Our Study InceptionV3 1281 1656 3270 99.78 97.90
ResNet50V2
Our Study CoviXNet 1281 1656 3270 99.47 96.61

classification. With the proposed CNN model CoviXNet, which aims
to detect Covid-19 from Chest X-ray images, a 10-fold accuracy of
99.47% was achieved on 2-class classification and 99.61% on 3-class
classification.

The numerous beneficial studies conducted on the subject so far
have mostly faced the lack of adequate labeled and heterogeneous data
for the proper evaluation of the model performance. This is generally a
common problem in medical imaging. Many of the earlier works on
Covid-19 detection were unable to find appropriate data, especially
for Covid-19 positive lung images, as it had relatively been a much
newer disease. The other issue researchers faced was finding a balance
between accuracy and computational cost. Many of the state-of-the-
art models implemented in previous studies were either trading off
on feasibility and computational power by using very deep neural
networks to achieve remarkable performance in terms of accuracy or
were unable to justify the precision of their methods by using smaller
CNN models.

The method proposed, CoviXNet, is a lightweight CNN-based ar-
chitecture that has shown substantial ability to detect Covid-19 using
Chest X-ray images on both binary and 3-class classification. Further-
more, it has demonstrated performance comparable, and in some cases,
even better than that achieved by state-of-the-art models on the same
dataset while using lesser parameters. This makes the proposed method
computationally efficient and increases its feasibility for real-world
application.

6. Conclusion and future directions

In this paper the work has explored the utilization of Chest X-ray
images which are a feasible, efficient and cost effective method of
testing, for the efficient and accurate detection of COVID-19 in patients.
We have experimented and analyzed many of the pre-trained models on
our dataset and also performed 3-class classification on top performing
models. All duplicate images and data leakage issues encountered when
training a CNN were addressed in our study.

Furthermore a novel 15 layer CNN architecture CoviXNet has been
constructed which has shown a remarkable performance in terms of
both accuracy and efficiency. CoviXNet performed extremely well on
a diverse and well processed dataset which we believe, outperforms
many of the previous proposed models in terms of both accuracy and
efficiency.

In the future, this comparative study can help researchers assess the
top performing models in recognizing the complex pattern of Chest
X-ray. Proposed CoviXNet architecture can also be helpful in other
classification tasks in Bio-medical imaging. The CoviXNet model can
also be experimented for detection of other lung abnormalities.
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We also believe the facilitation of this model in medical equipment
and GUI will be extremely helpful for the hospitals and doctors for
efficient detection of COVID-19.
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