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Oesophageal squamous cell carcinoma (ESCC) remains a clinically challenging disease
with highmorbidity rates and poor prognosis. ESCC is also themost common pathological
type of oesophageal cancer (EC) in China. Ras-related genes are one of the most
frequently mutated gene families in cancer and regulate tumour development and
progression. Given this, we investigated the Ras-related gene expression profiles and
their values in ESCC prognosis, using data from the Genotype-Tissue Expression (GTEx)
and The Cancer Genome Atlas (TCGA) databases. We found that we could identify three
distinct oesophageal cancer clusters based on their unique expression profile for 11
differentially expressed Ras-related genes with each of these demonstrating some
prognostic value when, evaluated using univariate Cox analysis. We then used
multivariate Cox analysis to identify relevant independent prognostic indicators and
used these to build a new prognostic prediction model for oesophageal cancer
patients using these three Ras-related genes. These evaluations produced an area
under the curve (AUC) of 0.932. We found that our Ras-related signatures could also
act as independent factors in ESCC prognosis and that patients with low Ras scores
showed a higher overall expression levels of various immune checkpoint genes, including
TNFSF4, TNFRSF8, TNFRSF9, NRP1, CD28, CD70, CD200, CD276, METTL16,
METTL14, ZC3H13, YTHDF3, VIRMA, FTO, and RBM15, as well as a higher CSMD3,
FLG, DNAH5, MUC4, PLCO, EYS, and ZNF804B mutation rates, and better sensitivity to
drugs such as erlotinib, paclitaxel, and gefitinib. In conclusion, we were able to use the
unique expression profiles of several Ras-related genes to produce a novel disease
signature which might facilitate improved prognosis in ESCC, providing new insight
into both diagnosis and treatment in these cancers.
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INTRODUCTION

Ras proteins are a class of GTPase that function as molecular
switches in various signalling pathways regulating cellular
proliferation, differentiation, survival, migration, and
cytoskeletal dynamism. It has been shown that Ras-related
genes are the most commonly mutated gene family in cancer,
and Ras activation resulting from mutations in Ras genes or their
regulators promotes the development and progression of a variety
of cancers. (Pylayeva-Gupta et al., 2011; Simanshu et al., 2017;
Moore et al., 2020). Oesophageal carcinoma (EC) is the seventh
most common cancer globally with the sixth worst prognosis.
Oesophageal squamous cell carcinoma (ESCC) and Oesophageal
adenocarcinoma (EAC) are the two major subtypes of EC and are
classified based on their pathology, showing obvious differences
in incidence, aetiology and clinical characteristics. (Arnold et al.,
2015). ESCC is the most common pathological type of EC in
China, accounting for approximately 90% of all cases. Most
patients are clinically diagnosed at an advanced stage and
present with a very poor prognosis, with a 5-years overall
survival (OS) of only 18.8%. (Abnet et al., 2018; Arnold et al.,
2015). The effect of surgery alone for advanced ESCC is far from
satisfactory, because of its high recurrence rates and poor
survival. (Bray et al., 2018). Therefore, multidisciplinary
treatment is highly recommended to improve prognosis and
several recent studies have shown that the Ras signalling
pathway plays an important role in the pathogenesis of EC.
To the best knowledge of our, few studies have explored the
relationship between Ras and ESCC.

Here, we systematically profiled the genomic information
from both ESCC and normal samples using their clinical
outcomes from the Genotype-Tissue Expression (GTEx) and
Cancer Genome Atlas (TCGA) databases. This study was
designed to investigate Ras gene expression profiles and their
value in ESCC prognosis. We then used this information
construct a novel prognostic prediction model for oesophageal
cancer patients based on their Ras-related gene profile, providing
a new tool for the diagnosis and treatment of ESCC.

METHODS AND MATERIALS

Oesophageal Cancer Dataset Source and
Pre-Processing
Transcriptome gene expression, mutation frequency of
transcriptome genes, and clinical data from ESCC patients
were downloaded from the GTEx (https://commonfund.nih.
gov/gtex) and TCGA databases (https://portal.gdc.cancer.gov/).
We then controlled for bias by excluding, patients with missing
genetic data in the GTEx database and five patients without
sufficient clinical follow-up information from the TCGA
database. Finally, we downloaded the original “CEL” files for
the microarray data from Affymetrix, and applied a robust
multiarray averaging method to produce our data set and then
downloaded, the “limma” file and completed a robust multiarray
averaging method to produce the dataset needed to complete the
necessary background adjustment and quantile normalization of

this datest in R version 4.0.2. We then downloaded the
standardised matrix files directly for microarray data from
other platforms and all data were quantile-normalized using a
log2-scale transformation to ensure standardisation. Any gene
symbols detected using more than one probe were evaluated
using their mean expression levels.

Differential Expression Analysis and
Enrichment Analysis of Oesophageal
Cancer and Oesophageal Tissue
We merged 650 normal oesophageal tissue samples from the
GTEx database and 77 oesophageal cancer samples from the
TCGA-ESCC dataset using normalisation via R package “limma”.
We then identified the differentially expressed Ras-related genes
by comparing the tumour and precancerous tissue using a
threshold false discovery rate (FDR) of <0.05, along with |log2
FC (fold-change) | > 2. GO and KEGG enrichment analyses were
used to investigate the biological processes implicated by these
differentially expressed genes using R package “clusterProfiler”
were significance was set at p <0.05.

Identification of Ras-Related Prognostic
Genes
We used the data from previous studies to identify 180 critical
Ras-related genes based on their KEGG database evaluations, of
which 161 were included in the TCGA expression microarray
data and thus used in our subsequent analysis. We then narrowed
this to 11 genes which were shown to have some prognostic value
based on a univariate Cox analysis with a threshold of p <0.05.

Ras-Related Cluster and Clinical
Correlation Analysis
We used the K-means algorithm to classify ESCC patients into
different clusters based on 11 Ras-related prognostic genes
expression (Hartigan and Wong, 1979), and the results
showed that K = 3 was the best classification for all 77 TCGA
patients in our cohort, producing Clusters 1 (n = 37), 2 (n = 21),
and 3 (n = 19). The R package “ConsensusClusterPlus” was then
applied to perform the above steps 1,000 times to guarantee the
stability of the classification and we also verified the
discriminatory power of these clusters using Kaplan-Meier
survival analysis (Wilkerson and Hayes, 2010) and performed
a correlation analysis with clinical features, which was visualized
by R package “pheatmap”.

Gene Set Variation Analysis and Functional
Annotation
We then used Gene Set Variation Analysis (GSVA) enrichment
analysis to investigate differences in these clusters across
biological processes, using the “GSVA” R software package.
GSVA is a non-parametric, non-supervised method commonly
used to estimate changes in the activity of pathways and biological
processes in samples from expression datasets. (Hänzelmann
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et al., 2013). The “c2.cp.kegg.v6.2.-symbols” gene sets were used
to run these GSVA analyses, and were downloaded from the
MSigDB database. Statistical significance was set at p <0.05.

Investigation of Tumor Immune
Microenvironment and Check Point Genes
We used CIBERSORT (http://cibersort.stanford.edu/) to evaluate
the immune infiltration status of each of these three clusters, and
the differences in their immune infiltration were then analysed
using the Wilcoxon signed-rank test. At the same time, the
ESTIMATE algorithm (R package “ESTIMATE”) was used to
detect the activity of immune and stromal cells and evaluate
tumour purity. (Yoshihara et al., 2013). We also performed a
systematic search for immune checkpoint blockade gene
expression profiles, such as PD-1, PD-L1, and CTLA-4 using
the R packages “limma” and “ggpubr”.

Establishment and Validation of
Ras-Related Risk Assessment Model
To quantify the Ras modification pattern of individual tumours,
we constructed a scoring system to assess the risk of ESCC
patients, which we called the Ras Score. First, we
performed multivariate Cox regression analysis with a
threshold of p < 0.05 in 11 Ras-related prognostic genes,
subsequently performed differential analysis of gene
expression between the tumour and precancerous tissue
with |log2 FC (fold-change) | > 2, in which three genes
(EGFR, RAP1B, and PDGFRA) were identified for model
development. The formula used to calculate the Ras score
can be described as follows:

Ras Score � ĥ0(t)∑k

i�1βiSi

βi was the expression quantity of three genes (EGFR, RAP1B,
and PDGFRA) and Si was coefficient of correlation of three genes.
We selected the median value as the grouping criterion for the
model to differentiate patients into high - and low-score groups.

We then validated this model by splitting the score
distribution and survival status dot plots. At the same time,
we used Kaplan-Meier survival analysis curves to evaluate
differences in the survival statistics for the high and low Ras-
score groups. This process was visualised using R packages
“survival”, “glmnet”, “pbapply”, “survivalROC”, and
“survminer”. The Ras-score was dichotomised by repeating the
test on all possible cutpoints to find the surv-cutpoint function of
the maximum rank statistic, and the patients were divided into
high and low Ras-score groups according to the median to reduce
the calculated batch effect.

ROC Curves
The specificity and sensitivity of the Ras-score were assessed
using a receiver operating characteristic (ROC) curve, and the
area under the curve (AUC) was quantified using the pROC R
package. The AUC for the ROC ranged from 0 to 1, with close to
one indicating perfect predictive ability and 0.5 indicating no

predictive ability, less than 0.5 indicating worse than random
guesses.

Chemotherapeutic Sensitivity Scoring
We then went on to explore the differences in chemotherapeutic
sensitivity in the high- and low-score groups using “pRRophetic”
in R to predict the half-maximal inhibitory concentration (IC50)
of different chemotherapeutic drugs in each patient. This package
predicts IC50 by creating statistical models based on drug
sensitivity and RNA-Seq data based on the Genomics of Drug
Sensitivity in Cancer (GDSC) (www.cancerrxgene.org/) database.

Statistical Analysis
Analysis of the correlation coefficients between Ras and tumour
microenvironment (TME)-infiltrating immune cell expression
was performed using Spearman’s method and distance
correlation analysis, respectively. One-way analysis of variance
(ANOVA) and the Kruskal–Wallis test were used to compare the
differences between three or more groups. (Hazra and Gogtay,
2016).

Univariate and multivariate Cox regression analyses were used
to evaluate the correlations between various factors, including
Ras-score and clinical characteristics. The log-rank test was used
to compare survival differences between different groups and the
waterfall function in the “maftools” package was used to
visualized the mutation landscape in patients with high and
low Ras-score subtypes in the TCGA-ESCC cohort.
(Mayakonda et al., 2018). All Statistical p values were set at
p < 0.05 and all data processing was performed using R
version 4.0.2.

RESULTS

Differential Expression of Genes and
Functional Enrichment Analysis
A total of 649 normal and 77 ESCC appropriate samples were
retrieved from the TCGA and GTEx datasets. Our evaluation
identified 4,568 significantly differentially expressed genes
between the normal and ESCC samples which are represented
in a heat- and volcano map (Figures 1A,B), respectively. These
genes were then subjected to functional enrichment analysis
designed to elucidate the biological functions and pathways of
these differentially expressed genes. The GO results showed they
were almost all enriched in cell-substrate junctions and focal
adhesions (Figure 1C) and KEGG analysis showed that they were
closely enriched in neurodegeneration-multiple diseases
(Figure 1D).

Genetic Expression of Ras-Related Genes
in ESCC and Functional Enrichment
Analysis
Our study cohort was made up of a single TCGA dataset (TCGA-
ESCC) which included both the gene expression profile of these
samples but also the relevant OS and clinical data needed for this
kind of evaluation. We used this data in our univariate Cox
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regression evaluation of 161 Ras-related genes and identified
11 Ras-related genes with probable prognostic value when
screened using a p of <0.05 (Figure 2A). We then performed
functional enrichment analysis to elucidate the biological
functions and pathways of 11 prognostic Ras-related genes.
GO results showed that ERK1 and ERK2 cascade, cell
adhesion molecule binding, and transmembrane receptor
protein tyrosine kinase were significantly enriched
(Figure 2B). Ras signaling pathway, MAPK signaling
pathways, Rap1 signaling pathways, and EGFR tyrosine kinase
inhibitor resistance were significant KEGG enrichment items
(Figure 2C).

Ras Modification Patterns Are Predicted by
11 Ras-Related Prognostic Genes
We used the Unsupervised clustering analysis to categorise
patients into different Ras-related gene clusters within the
TCGA-ESCC cohort based on their expression of each of the
11 Ras-related prognostic genes. The change curve of the
consensus cluster cumulative distribution function from k = 2
to nine showed that the area under the curve was the largest when
k = 3 (Figure 2D), so we produced three different modification
patterns, including Ras-cluster 1 (n = 37), Ras-cluster 2 (n = 21),
and Ras-cluster 3 (n = 19) (Figure 2E). Prognostic analysis of
these three clusters revealed an obviously significant survival

advantage for Ras-cluster 3, and the worst survival for Ras-
cluster 2 (Figure 2G). There was also a significant difference
in the Ras gene expression profile among the three clusters
(Figure 2F). Ras-cluster one was characterised by the
increased expression levels of PLCG3, RAP1B, and PAK4, and
presented with variable decreases in other Ras-related prognostic
genes; Ras-cluster two showed high expression levels of HGF,
GNGT2, and CSF1R and Ras-cluster three exhibited a significant
increase in the expression of RAC3, PDGFRA, EGFR, PTPN11,
and NF1.

Gene Set Variation Analysis and Differences
in Immune Characteristics Between
Clusters
Given these outcomes we then used GSVA to explore differences
in the biological behaviours of these three clusters. These results
showed that all three clusters were all using dramatically different
immune signalling pathways. Ras-cluster two presented with in
enrichment in the pathways associated with full immune
activation, including the activation of the chemokine and
T cell receptor signalling pathways, cytokine-cytokine receptor
interaction, and Toll-like receptor signalling pathways
(Figures 2H–J).

Thus, we went on to compare the expression of the immune
checkpoint genes in these three clusters and found significant

FIGURE 1 | (A) Volcano map of different expressed genes between normal and ESCC samples. (B) Heatmap of different expressed genes between normal and
ESCC samples. (C–D) Bubble plots of GO analyses (C) and KEGG analyses (D). The larger bubble indicates the more obvious enrichment.
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differences in PD-1, PD-L1, and CTLA4 expression in each. The
expression level of PD-1, PD-L1, and CTLA4 was significantly
higher in the Ras-cluster2 (Figures 3A–C) as were the number of
immune and stromal cells when comparing Ras-cluster two and
Ras-clusters one and 3 (Figures 3D–F). The purity of the cancer
cells in Ras-cluster2 was low and immune cell infiltrations with
M1 and M2 macrophages and T cells was significantly higher in
Ras-cluster 2. These data were all consistent with the immune
checkpoint expression and immune scores for these pathological
groups (Figures 3G–I).

Reliability of the Novel Three
Ras-Associated Gene Signature
We performed multivariate Cox regression analysis and
differential analysis of gene expression between the tumour
and precancerous tissue on 11 prognostic Ras-related genes,
and we got three differently expressed prognostic Ras-related

genes (EGFR, RAP1B and PDGFRA) (Figure 4A). We then went
on to build a Ras-related risk assessment model for predicting the
OS of ESCC patients. We did this by constructing a set of scoring
systems based on the three most relevant Ras-related prognostic
genes (EGFR, RAP1B and PDGFRA) and use these to quantify
the Ras modification pattern of individual patients giving them a
Ras-score. The formula for calculating the Ras-score for each
ESCC patient is as follows: Ras − score �
−0.027390631097796pEGFR − 0.250341831449203pPDGFRA +
0.0669651154761456pRAP1B.

We then went on to evaluate the value of these Ras-scores in
predicting specific patient’ outcomes, and these evaluations
identified that patients with a low Ras-score experienced
significantly better survival rates (Figure 4B). We then used
ROC analysis to determine the credibility of our model for
predicting prognosis. Our ROC AUC values for the one-, two-
, and 3-year survival of our TCGA-ESCC cohort were determined
to be 0.827, 0.773, and 0.932, respectively, (Figure 4C). This same

FIGURE 2 | (A) Forest plot of hazard ratios exhibiting the prognostic worth of eleven Ras-related genes. (B,C) Bubble plots of GO analyses (B) and KEGG analyses
(C). (D,E) Unsupervised clustering of 11 Ras-related prognostic genes in the TCGA-ESCC cohort. (F) Heatmap of Ras-related genes. Blue represents down-regulation
and red represents up-regulation of genes. (G) Kaplan–Meier survival curve. (H–J) GSVA enrichment analysis showing the activation states of biological pathways in
distinct Ras modification patterns. The heatmap was used to visualize these biological processes, and red represented activated pathways and blue represented
inhibited pathways. (H) Ras-cluster1 vs Ras-cluster 3; (I) Ras-cluster1 vs Ras-cluster 2; (J) Ras-cluster3 vs Ras-cluster two.
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analysis was then conducted within the cohort, and the AUC
values for stage, T, M, and N in 3-year survival were 0.640, 0.367,
0.545, and 0.624, respectively, (Figure 4D).

We then tested whether the Ras-score could serve as an
independent prognostic biomarker for ESCC. We
demonstrated that stage [p = 0.04, HR = 1.872, 95%CI
(1.030–3.402)], T stage [p = 0.923, HR = 1.03 1, 95% CI
(0.551–1.804)], N stage [p = 0.007, HR = 2.035, 95% CI
(1.210–3.421)], M stage [p = 0.087, HR = 3.007, 95%CI
(0.853–10.595)], and Ras-score [p = 0.001, HR = 1.044, 95%
CI (1.017–1.071)] showed significant differences in univariate
Cox regression analysis (Figure 4E), whereas only N stage [p =
0.009,HR = 2.800, 95% CI (1.290–6.082)], M stage [p = 0.042,HR
= 46.214, 95% CI (1.145–1864.590)], Ras-score (p <0.001, HR =
1.053, 95% CI (1.025–1.081)] presented as independent
prognostic predictors in multivariate Cox regression analysis
(Figure 4F). Multivariate Cox regression model analysis
confirmed that the Ras-score could act as an independent and
robust prognostic biomarker for evaluating patient survival in

ESCC. We classified the ESCC patients into low- and high-Ras
score groups based on the median Ras score (Figure 4G) and the
predictive performance of our Ras score model for predicting
patient OS is shown in Figure 4H.

Differences in Mutated and Key Gene
Expression Between High and Low
Ras-Score Groups
Given these outcomes, we further explored the relationship
between the important immune-gene predictors and the two
Ras-score groups using differentiation analysis. In this
evaluation, we compared the expression levels of several
critical immune checkpoint genes, including TNFSF4,
TNFRSF8, TNFRSF9, NRP1, CD28, CD70, CD200, CD276,
METTL16, METTL14, ZC3H13, YTHDF3, VIRMA, FTO, and
RBM15 in each of the Ras-score groups (Figures 5A,B) and
found that each of these genes were significantly upregulated in
the low-Ras-score group when compared to the high-Ras score

FIGURE 3 | Differential expression of immune checkpoints in Ras-cluster1 vs Ras-cluster 2 vs Ras-cluster three patients. The upper and lower ends of the boxes
represented interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. The asterisks represented the statistical p
value (ns P > 0.05; *p < 0.05; **p < 0.01): (A) PD-1, (B) PD-L1, (C) CTLA4, (D) Immune score, (E) Stromal score, (F) ESTIMATE score, (G) Macrophages M1, (H)
Macrophages M2, (I) T cells regulatory.
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group, while LGALS9 was enriched in the high-Ras-
score group.

We also used the gene mutation data from the 77 ESCC
patients in our dataset to analyse the difference in gene mutations
between these two groups, and the genes with the top 20mutation
rates are shown in Figures 5C,D. The results showed that
CSMD3, FLG, DNAH5, MUC4, PLCO, EYS, and ZNF804B
experienced significantly higher mutation rates in the low-Ras-

score group, whereas MUC16, KMT2D, FAT3, and NFE2L2 were
highly mutated in the high-Ras-score group.

Correlation Analysis Between Ras-Score
and Chemosensitivity
We then evaluated the utility of this score in predicting drug
sensitivity in ESCC patients in the high and low-Ras groups.

FIGURE 4 | (A) The prognostic Ras-related genes extracted by multivariate Cox regression analysis. (B) Kaplan-Meier analysis on high-Ras score and low-Ras
score patients. (C) Time-dependent ROC curve analyses of Ras score. (D) ROC curve analyses of TNM status, stage and Ras score. (E,F) Uni- and multi-Cox analyses
of clinical factors and risk score with OS. (G) Ras score distribution of high-Ras and low-Ras score patients. (H) Survival status of high- and low-Ras score patients.
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These results showed that there was no significant difference in the
sensitivity of these samples to traditional chemotherapeutic drugs
such as cisplatin, gemcitabine and docetaxel between the high and
low Ras-score groups (Figures 5E–G), while paclitaxel had better
sensitivity in the high Ras-score group. It is worth noting that
targeted drugs such as erlotinib and gefitinib also had better
sensitivity in the high Ras-score group (p <0.05) (Figures 5H–J).

DISCUSSION

ESCC is a progressive disease with a poor prognosis. At present,
clinicians primarily use the TNM staging system to evaluate the

prognosis of patients with cancer. However, most studies have
revealed heterogeneity in the prognosis of tumours at the same
stage. Accumulating evidence suggests that the Ras mutation rate
can regulate the process of tumour development and progression,
and is also involved in regulating the immune response to these
tumours. (Masliah-Planchon et al., 2016; Ryan and Corcoran,
2018; Zhang et al., 2018; Chen et al., 2019; Prior et al., 2020).
However, systematic analysis of RAS in ESCC is still rare, and the
underlying mechanism remains unclear. (Feng et al., 2018; Li
et al., 2019; Feng et al., 2020).

Our initial investigation identified 11 special survival-related
Ras-associated genes which could be used to classify three distinct
Ras modification patterns. There was a significant difference in

FIGURE 5 | (A,B) The expression of 30 immune checkpoints genes in high-Ras and low-Ras score patients. The upper and lower ends of the boxes represented
interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. The asterisks represented the statistical p value (ns P >
0.05; *p < 0.05; **p < 0.01). The one-way ANOVA test was used to test the statistical differences among high-Ras score and low-Ras score patients. (C,D) The waterfall
plot of tumor somatic mutation established by those with low Ras-score (C) and high Ras-score (D). (E–J) The sensitivity to drugs in high-Ras and low-Ras score
patients: (E) Docetaxel, (F) Cisplatin, (G) Gemcitabine, (H) Erlotinib, (I) Paclitaxel, (G) Gefitinib.
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the Ras gene expression profile between each of these three
patterns and our evaluations revealed that Ras-cluster three
had a particularly significant survival advantage over both Ras-
clusters two and 1. Ras-cluster three exhibited significant
increases in the expression of RAC3, PDGFRA, EGFR,
PTPN11, and NF1. This correlates with the current
therapeutic focus on EGFR which includes clinical trials for
advanced EC with high HER-2 expression, showing the
therapeutic potential of EGFR targets in oesophageal cancer.
(Bang et al., 2010; Yan-Ming Yang et al., 2020; Moehler et al.,
2020). PDGFRA has demonstrated its potential as a therapeutic
target for gastrointestinal stromal tumours (Theiss and
Contreras, 2019) and these studies are consistent with the
results of our study which suggest that the increased
expression of these genes improves the survival potential of
patients in Ras-cluster 3.

PD-1, PD-L1, and CTLA4 expression levels were also all
increased in Ras-cluster three when compared with the others,
while Ras-cluster two had a much higher rate of immune and
stromal cell infiltration than either Ras-cluster one or Ras-cluster
3. This included a significant increase in the number of M1 and
M2 macrophages and T cells in Ras-cluster2, which was
consistent with the immune target expression and immune
scores for these patients. Previous studies have shown that
tumours with an immunoinflammatory phenotype also exhibit
large numbers of stromal and immune cells despite the fact that
stromal activation in the TME is thought to be inhibited by
increased numbers of T-cells. (Chen and Mellman, 2017). Ras-
cluster two was characterised by an immunoinflammatory type,
specifically characterised by adaptive immune cell infiltration and
immune activation, resulting in likely immune depletion in these
patients, which might explain its poor survival potential.

We used the TCGA-ESCC and GTEx-normal sets to identify
differentially expressed genes and then specific prognostic Ras-
related genes using multiple Cox regression analysis and then
used these to build a predictive model for ESCC comprising just
three differentially expressed Ras-associated genes.

Kaplan-Meier curve analysis showed that cases in the high
Ras-score group were associated with reduced OS when
compared with patients in the low Ras-score group. Our ROC
values illustrate the solid performance of this prognostic model,
with the AUC of these curves for 3-years OS in the TCGA cohort
being recorded at 0.932. In addition, we used these ROC curves to
compare the predictive efficacy of our proposed model with other
clinical features and revealed that our model was more predictive
than other prognostic factors for ESCC, such as gender, stage, T
stage, N stage and M stage.

It has been shown that KMT2D mutations are associated with
increased tumour size and unfavorable prognosis in patients with
EC. (Zheng et al., 2021). A phase 3 trial of mantle cell lymphoma
showed that mutations in KMT2Dmutation were associated with
an increased risk of death in these patients. (Ferrero et al., 2020).
FAT3 mutations are related to poor prognosis in oesophageal
cancer, (Guo et al., 2021), while NFE2L2 mutations were
significantly associated with a worse prognosis in ESCC. (Cui

et al., 2020). In patients with oesophageal cancer, metabolic
reprogramming of the glutathione metabolism, as well as
detoxification of ROS by activation of NFE2L2, enhances
cancer progression, leading to poor clinical outcomes. (Kitano
et al., 2018). These results explain why the prognosis of patients
was worse in the high Ras-score group with higher rates of certain
gene mutations, such as KMT2D, FAT3, and NFE2L2, further
confirming the accuracy and effectiveness of the Ras-score model
in predicting patient prognosis. Our results show that the Ras
score is a good prognostic index for ESCC when compared to
traditional staging. The results that paclitaxel, erlotinib and
gefitinib had better sensitivity in the high Ras-score group also
show the capacity of Ras score to predict these drugs treatments
value in ESCC patients. However, this study might still have its
limitations, especially given that the number of training set
samples was relatively small (78 samples) and a validation set
was not available.

In summary, we identified differentially expressed Ras-
related genes that may be involved in ESCC pathogenesis.
These genes are of significant value in predicting OS in ESCC
patients and may provide new options for individualized
therapy. Further studies are necessary to verify the results
of our evaluations and future work should include both in vitro
and in vivo validations.
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