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MicroRNAs (miRs) are short non-coding RNAs, typically 18-25 nucleotides in length, that
are critically important, through their direct effects on target mRNAs, in a variety of cellular
processes including cell differentiation, proliferation and survival. Dysregulated miR
expression has been identified in numerous cancer types including acute myeloid
leukemia (AML). From a clinical standpoint, several miRs have been shown to associate
with prognosis in AML patients. Furthermore, they also carry the potential to be used as
biomarkers and to inform medical decision making. In addition, several preclinical studies
have provided strong rationale to develop novel therapeutic strategies to target miRs in
AML. This review will focus on potential clinical applications of miRs in adult AML and will
discuss unique miR signatures in specific AML subtypes, their role in prognostication and
response to therapy, as well as miRs that are promising therapeutic targets and ongoing
clinical trials directed towards targeting clinically relevant miRs in AML that could allow for
improvements in current treatment strategies.
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INTRODUCTION

Acute myeloid leukemia (AML) is a clinically and biologically heterogeneous disease characterized
by a number of recurring, sequential genetic alterations that result in a block in differentiation and
expansion of immature myeloid precursors. In addition to the cytogenetic and molecular changes
that are common in AML (1, 2), dysregulated microRNAs (miRs) have also been identified to play a
critical role in leukemogenesis (3–5).

MicroRNAs are small non-coding RNAs, typically 18-25 nucleotides in length that affect the
post-transcriptional function of specific mRNAs and their resultant protein targets (6, 7). Previous
work has revealed that dysregulated expression of even of a single miR targets multiple mRNAs and
modulates the function of numerous cellular pathways (8). Clinically, miR expression patterns have
the potential to inform medical decision making. For example, miR expression can be used to
differentiate between acute leukemias of ambiguous lineage (9, 10), refine current AML prognostic
classification systems (5, 11), potentially detect progression of myelodysplastic syndrome (MDS) to
AML (12) and to detect measurable residual disease (MRD) (13, 14).
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Over the past decade, several miRs have been shown to be
aberrantly under or overexpressed in AML. Although miR
expression signatures have been shown to be distinct in specific
subtypes of AML and to correlate with prognosis (5, 11, 15–18),
miR expression profiling is not yet incorporated into routine clinical
practice (19). Additionally, several pre-clinical studies have provided
proof-of-concept that miRs are actionable therapeutic targets.
However, while miR-directed therapies have proven to be
successful in other disease types, most notably in hepatocellular
carcinoma (20), cutaneous T-cell lymphoma (21) and diffuse large
B-cell lymphoma (22), these therapies remain in an early stage of
translation in AML. This review will summarize key clinical
Frontiers in Oncology | www.frontiersin.org 2
applications of microRNAs as they pertain to the management of
patients with AML (Table 1) and will also discuss the current status
of miR-directed therapies and barriers to implementation.
MicroRNAs AND THEIR KEY FUNCTIONS
IN ACUTE MYELOID LEUKEMIA

MicroRNAs modulate a large variety of cellular pathways that are
critical for leukemogenesis such as cell differentiation, proliferation,
epigenetic regulation, and stem cell function and survival (6). MiRs
exert their effects at the post-transcriptional level by binding to the
TABLE 1 | Key microRNAs and their roles in AML.

MicroRNAs with context-dependent roles

miR Significance Reference
no.

miR-9a Overexpression in KMT2A-rearranged AML associates with oncogenic role (23)
Overexpression in pediatric AML with t(8;21) associates with tumor suppressor role (24)

miR-125b Level of expression (high vs low) promotes either lymphoid or myeloid malignancies (25)
miR-126 (26)
miR-155 High level of over expression (>10-fold) associates with tumor suppressor role. Low or intermediate levels of

overexpression associate with tumor promotor role.
(27)

MicroRNA expression patterns in specific AML subtypes
miR(s) Significance Reference

no.

miR-10a, miR-10b, miR-196a and miR-
196b (HOX cluster)

Upregulated in NPM1-mutated AML (28)

miR-155, miR-144 and miR-451 Overexpression of miR-155 and lower expression of miR-144 and miR-451 observed in CN-AML with FLT3-
ITD.

(29)

MicroRNAs that associate with response to chemotherapy or transplant
miR(s) Significance Reference

no.

miR-29b High pre-treatment expression levels associate with improved responses to decitabine (30)
miR-29c Low expression levels predict for improved response to azacitidine and high levels associate with relapse. (31)
miR-126 Low expression associates with worse response rates to azacitidine. (32)
miR-99a High expression associates with worse survival post-transplant (33)
miR-425 High expression associates with improved response to consolidation chemotherapy and low expression

associates with better response to transplant.
(34)

MicroRNAs with prognostic relevance
miR Significance Reference

no.

miR-155 High expression in CN-AML associates with lower complete remission rates and overall survival (35)
miR-181 High expression in CN-AML associates with higher remission rates and overall survival, especially in patients

with NPM1 mutations and FLT3-ITD.
(36, 37)

miR-25 Higher levels associated with improved survival (37)
miR-362 Higher levels associated with worse overall survival (37)

MicroRNAs that have been studied as therapeutic targets
miR Significance Reference

no.

miR-126 Targetable with nanoparticle compound antagomiR-126 (38–40)
miR-29b Transferrin-conjugated nanoparticle drug delivery system shown to increase miR-29b levels to enhance

responses to treatment
(41)

miR-155 Targetable with NEDD8 inhibitors and Silvestrol (42)
miR-150 Targetable with FLT3 guided-mmiR-150 nanoparticles (43)
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complementary 3’ untranslated region (3’ UTR) of target mRNAs
and marking them for cleavage or destruction thereby inhibiting
translation (6, 7, 44, 45). Under normal physiological conditions,
miRs are essential for maintaining hematopoiesis (46) including
stem cell function and lineage commitment (47, 48). Thus, it is not
surprising that miR dysregulation plays a critical role in the
initiation and maintenance of leukemogenesis.

Alterations of miR expression in AML result directly from
genomic deletions, translocations, amplifications, and/or from
epigenetic alterations through aberrant transcription factors, or
oncogenic fusion proteins and global/specific chromatin
accessibility changes. Dysregulated miRs can either function as
oncogenes (oncomiRs) or as tumor suppressors. Interestingly, it is
not uncommon for a specific miR to play opposing roles depending
on the cellular context and type of leukemia. In KMT2A-rearranged
AML, for instance, miR-9a overexpression has been reported to act
as an oncogene (23), but, in pediatric patients with t(8;21),
overexpression of miR-9a plays a tumor suppressor role (24).

In addition to this context-dependent duality in function, several
studies have demonstrated that the magnitude of expression levels
of the same miR (high vs low) can lead to different outcomes when
miR expression levels are artificially controlled. For instance, miR-
125b promotes either lymphoid or myeloid malignancies depending
on its level of expression (25) and dysregulated miR-126 has been
shown to promote AML in mouse models due to both over
expression and loss of function in concert with t (8, 21) fusion
genes (26). Additionally, miR-155 has been shown to function as a
tumor suppressor when there is a high level of over expression (>10-
fold) and as a tumor promoter when overexpressed to low (< 5 fold)
or intermediate levels (5-10 fold) (27). Thus, cellular context is an
important consideration when considering the biological functions
of miRs in AML.
MicroRNA EXPRESSION PATTERNS
DEFINE SPECIFIC SUBTYPES OF AML
AND ASSOCIATE WITH OUTCOME

MicroRNA profiling has been assessed in several AML subtypes and
characteristic miR signatures have been observed in specific AML
cytogenetic and molecular subgroups (3, 4, 11, 16, 49). One of the
first studies to perform comprehensivemiR profiling, using amicro-
array based assay, on 122 AML patient samples from specific
cytogenetic and molecular subgroups identified distinct miR
expression profiles associated with cytogenetics and recurrent
molecular alterations. Furthermore, this same study demonstrated
that overexpression of specific miRs (miR-191 and miR-199a)
correlated with prognosis (11). Since then, several groups reported
miR expression signatures in several other cytogenetic or molecular
subgroups. Older (>60 years) and younger AML patients with
NPM1 mutations, displayed upregulation of HOX genes and their
associated miRs embedded within the HOX cluster, including miR-
10a, miR-10b, miR-196a and miR-196b (28). Cytogenetically
normal AML (CN-AML) patients with FLT3-ITD, were also
found to have a distinct miR signature, which included
overexpression of miR-155 and lower expression of miR-144 and
Frontiers in Oncology | www.frontiersin.org 3
miR-451 (29). Another study profiled miRs in 215 newly diagnosed
AML cases using reverse-transcription-polymerase chain reaction
(RT-PCR-based) and identified unique miR expression patterns in
AML patients with t(8;21), t(15;17), inv(16), NPM1, and CEBPA
mutations (3). This, subsequently allowed for identification of
specific miRs that were differentially expressed within these
subtypes, suggesting that miR expression could potentially be
used to classify and characterize AML on a deeper and more
comprehensive level than with cytogenetic or molecular data
alone (3). In a more recent study, approximately 1000 miRs were
sequenced from AML samples and compared to peripheral blood
samples collected from control subjects which revealed a higher
number of aberrantly expressed miRs inNPM1-mutated and FLT3-
mutated AML patients compared to control subjects (50). Several of
these miRs had not been previously described in association with
these leukemia subtypes (50).

It is worth noting that, although the roles of numerous miRs
have been evaluated in AML, only a few have been validated across
multiple studies, such as the upregulation of miR-10a, miR-10b and
miR-155 in NPM1 mutated and FLT3-ITD AML, respectively.
MicroRNAs CAN HELP PREDICT
RESPONSE TO CHEMOTHERAPY

MicroRNA expression has also been used to determine the effects
of response to hypomethylating agents (HMAs) in AML patients
(32, 51). Blum and colleagues, for instance, were able to
demonstrate, in a pivotal phase 2 study, that older AML
patients with higher pre-treatment levels of miR-29b, which is
known to target DNA methyltransferases, were more likely to
achieve a clinical response following induction chemotherapy
with 10 days of the HMA, decitabine (30). A subsequent
preclinical study using the histone deacetylase (HDAC)
inhibitor, AR-42, in combination with decitabine revealed that
AR-42 priming was able to increase miR-29b expression levels
and enhance the antileukemic activity of decitabine in AML cell
lines (52). However, the phase I clinical study that followed was
unable to show improved responses using this approach (53).

Azacitidine, another important HMA employed for the
treatment of AML in older and/or unfit adults has also been
evaluated within the context of miR profiling. Another member
of the miR-29 family, miR-29c, has been reported to be
predictive of favorable responses to azacitidine at low
expression levels, whereas upregulated miR-29c, was associated
with higher rates of relapse (31). Several other groups have
demonstrated that azacitidine responders have differing miR
expression patterns compared to azacitidine non-responders
(32, 51). Solly and colleagues compared differences in
expression between 754 miRs in azacitidine-resistant and
azacitidine-sensitive cell lines and were able to show that low
expression levels of miRs that affected the function of the DNA
methyltransferase, DNMT1, could potentially account for
azacitidine resistance in AML patients. Low expression levels
of miR-126, an anti-DNMT1 miR, were found to have the most
adverse impact on response rates (32).
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In addition, certain miRs have associated with clinical responses
following allogeneic hematopoietic stem cell transplant (alloHSCT).
For example, overexpression of miR-99a, which correlates with
inferior prognosis in AML patients (17) was also studied in 74 AML
patients who received alloHSCT. In this setting, high miR-99a
expression associated with worse event-free survival (EFS) and
overall survival (OS). Furthermore, it was identified as an
independent risk factor for inferior EFS and OS in AML patients
who received transplant, suggesting that miR-99a expression could
be used to predict for unfavorable outcome (33). In another study,
miR-425 expression levels and impact on EFS and OS were studied
in 162 AML patients who received either consolidative
chemotherapy or transplant (34). In this report, AML patients
younger than age 60 years with high miR-425 expression levels had
improved EFS (P=0.001) and OS (P=0.001) compared to low miR-
425 expressers whereas low expressers had improved responses to
alloHSCT (P<0.001), thereby supporting the role of miR-425
expression levels in order to select the most effective consolidation
therapy in younger patients.
MicroRNAs CARRY PROGNOSTIC
RELEVANCE IN AML

Many studies have demonstrated that under or overexpression of
specificmiRs correlates with prognosis in AML patients, particularly
in patients with CN-AML. In a seminal study by Marcucci and
colleagues, microRNA expression profiling in younger (below age 60
years)CN-AMLpatients identified 12miRs,five ofwhichwere in the
miR-181 family, from which a weighted miR summary value could
be derived that inversely associated with EFS (5). In a separate study
of 363patientswithCN-AML,highexpressionofmiR-155correlated
with inferior outcomes compared to patients with low miR-155
expression (35). This study was also the first to demonstrate that
miR-155 overexpressionwas an independent prognostic predictor of
lower complete remission (CR) rate and shorter OS (35). Similarly,
miR-181a expression was also studied in a cohort of younger CN-
AMLpatients andwas found toassociatewith improvedCRrates,OS
and disease-free survival (DFS). Notably, patients with FLT3-ITD or
wild-typeNPM1with highmiR-181a expression experienced higher
CR rates and improved DFS and OS (36). Since these studies were
published, numerous other miRs have been studied and their
prognostic impact has been well described in other reviews (4, 45,
54). In amore recent study,TCGAdatawas analyzed to identifymiRs
with the greatest prognostic value in 179 non-M3AMLpatients. Out
of 705 miRs that were studied, miR-181a-2, miR-25 and miR-362
expression levels correlated the most with prognosis (37).
MicroRNAs AS THERAPEUTIC
TARGETS IN AML

The field of miR therapeutics was originally pioneered in patients
with chronic hepatitis C virus (HCV) infection. Miravirsen, an
anti-miR-122 locked nucleic acid (LNA) naked oligonucleotide
Frontiers in Oncology | www.frontiersin.org 4
was evaluated in a landmark phase 2 study of 36 patients with
chronic HCV and demonstrated a dose-dependent reduction in
viral RNA titers and no evidence of viral resistance (20). These
findings paved the way for miR-directed therapies in cancer. For
example, MRG-106, the LNA miR antagonist to miR-155, was
the first of such therapies to be successfully employed in patients
with cutaneous T-cell lymphoma (21).

In addition, several miRs serve as potential targets for novel
therapeutic approaches in a broad array of diseases. At present, a
review of the ClinicalTrials.gov site shows that over 850 studies
have been registered that incorporate miRs as biomarkers or as
therapeutic targets. Table 2 provides investigational clinical
studies that utilize specific therapeutics to target specific miRs.

There are mainly two strategies to silence an oncogenic
overexpressed miR (oncomiR): 1) utilization of antisense
oligonucleotides (ASOs) and 2) indirect targeting of the
oncomiR by using small molecules or other agents that target
the transcription or processing of the miR itself. With respect to
the first approach, ASOs are oligonucleotides that are
complementary to the target sequence and degrade or block
the transcript by base-pairing. The initial hurdles in ASO
development include the short life, and degradation of ASOs.
To overcome this problem chemical modifications such as the
addition of 2’-O-methyl groups and LNAs have greatly improved
the stability of ASOs as well as their binding affinity and nuclease
resistance. Another important issue is addressing optimal
delivery of the ASOs to the target cells, more specifically, the
AML blasts that are in blood and bone marrow. Over the past
several years there has been a push to develop nanoparticle-based
drug delivery systems for ASOs, with some success, including the
relatively recent Food and Drug Administration approval of the
RNA-inhibitor (RNAi) based therapy patisiran in 2018.

The second approach to target an oncomiR is to use small
molecules or other agents that affect the transcription or stability
of the miR. These indirect strategies are nonspecific since they act
on transcription factors that regulate the miR or the epigenetic
machinery. For example, one approach that our own group
evaluated in a phase 1 study, based on promising pre-clinical
data (55) was to use bortezomib and sorafenib priming prior to
decitabine therapy in order to increase miR-29b expression in
AML blasts to and subsequently improve disease responses
(ClinicalTrials.gov Identifier: NCT01861314).

The strategies to restore the expression of a tumor suppressor
miR include also an indirect approach using small molecules and
other agents and a direct strategy using miR mimics delivered by
adenovirus or nanoparticles. In hepatocellular carcinoma,
peptide-based nanoparticles have been manufactured to deliver
miR-199a-3p, a tumor suppressor, successfully in animal
models (56).

Given their pleotropic nature, miR directed therapies offer an
attractive treatment approach in AML as well. Several pre-
clinical studies have identified candidate miRs that may be
amenable to future targeted therapies. Dorrance and
colleagues, for instance, were able to confirm that high miR-
126 expression levels correlated with adverse outcomes in older
CN-AML patients (38). Additionally, miR-126 overexpression
August 2021 | Volume 11 | Article 679022
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was found to associate with a leukemia stem cell (LSC) gene
expression profile, suggesting that miR-126 directed therapies
contain potential to eradicate LSCs and improve disease
responses (38–40). In vivo studies from the same group
demonstrated the feasibility of direct targeting of miR-126
using the novel nanoparticle compound antagomiR-126 (38).

Similarly, Huang and colleagues, were able to demonstrate
that a novel transferrin-conjugated nanoparticle drug delivery
system could be effectively utilized to increase miR-29b levels
and that priming AML cells with this agent enhanced responses
to decitabine (41).

Preclinical studies evaluating the activity of NEDD8
activating enzyme (NAE) inhibition on miR-155 expression in
AML cell lines demonstrated that miR-155 could be
downregulated through disruption of binding of NF-KB to the
miR-155 promoter, suggesting that NEDD8 inhibitors, such as
pevonedistat, may be novel treatment options for AML
associated with high miR-155 expression (42). Another
preclinical study evaluated the activity of a natural compound,
silvestrol, in FLT3-ITD and FLT3-wild type AML and
demonstrated potent antileukemic activity and marked
downregulation of miR-155, which is typically concurrently
regulated in patients with AML and FLT3-ITD (43).

Another miR that is potentially targetable is miR-150, a
tumor suppressor and negative regulator of FLT3. MiR-150 has
Frontiers in Oncology | www.frontiersin.org 5
also been described as a promoter of myeloid differentiation,
therefore, low or absent expression of miR-150 leads to
maturation arrest in AML cells (57). FLT3 guided-mmiR-150
nanoparticles, in preclinical studies, were able to penetrate the
bone marrow and suppress the growth of FLT3-mutated AML
cells (58).

Taken together, these pre-clinical studies provide important
proof-of-concept that miRs can be targeted and their function
can be altered with miR-directed therapies. However, translation
of these findings to AML patients has been met with
significant challenges.
DISCUSSION

Essentially, over the past 15 years, the discovery of miRs and
their numerous functions under both normal and pathogenic
conditions have provided important biologic insights pertaining
to their roles in the development of both malignant and non-
malignant disease states.

In AML, specifically, several elegant studies have provided
strong rationale to utilize miR expression profiling, in addition to
current genetic and molecular testing, in order to better
characterize an individual’s specific leukemia. Other groups
TABLE 2 | MicroRNA-directed clinical trials.

Study Title (NCT) miR under
investigation

Disease(s) Status

A Multicenter Phase I Study of MRX34, MicroRNA miR-RX34 Liposomal Injection (NCT01829971) miR-34 Primary Liver Cancer, SCLC,
Lymphoma, Melanoma,
Multiple Myeloma, Renal Cell
Carcinoma, NSCLC

Terminated (5
immune
mediated
adverse
events)

A Phase 1, Open-Label Study to Evaluate the Safety, Pharmacodynamics, and Pharmacokinetics of
RG-012 for Injection, Including Its Effect on Renal microRNA-21, in Subjects With Alport Syndrome
(NCT03373786)

miR-21 Alport Syndrome Completed

MesomiR 1: A Phase I Study of Intravenously Administered Epidermal Growth Factor Receptor
-Targeted, EnGeneIC Delivery Vehicle (EDV)-Packaged, miR-16 Mimic (TargomiRs) for Patients With
Malignant Pleural Mesothelioma (MPM) and Advanced Non-Small Cell Lung Cancer (NSCLC) Failing on
Std Therapy (NCT02369198)

miR-16 Mesothelioma and NSCLC Completed

A Phase 1, Randomized, Double-blind, Placebo-controlled, Single and Multiple Ascending Dose-
escalation Study to Investigate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamic
Activity of MRG-110 Following Local Intradermal Injection After Skin Excisional Wound Creation in
Normal Healthy Volunteers (NCT03603431)

miR-92a Normal healthy volunteer Completed

A Phase 2, Double-blind, Placebo-Controlled Study to Investigate the Efficacy, Safety and Tolerability
of MRG-201 Following Intradermal Injection in Subjects With a History of Keloids (NCT03601052)

miR-92 Keloids Active, not
recruiting

A Phase I/II, Randomized, Double-blind, Sham Control Study to Explore Safety, Tolerability, and
Efficacy Signals of Multiple Ascending Doses of Striatally-Administered rAAV5-miHTT Total Huntingtin
Gene (HTT) Lowering Therapy (AMT-130) in Early Manifest Huntington Disease (NCT04120493)

miHTT Huntington’s Disease Recruiting

A Placebo-controlled, Double-blind, Randomized, Single Dose, Dose Escalating Trial in Healthy Men to
Evaluate the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of SPC3649 (Miravirsen)
(NCT00688012)

miR-122 Healthy volunteers Completed

SOLAR: A Phase 2, Randomized, Open-label, Parallel-group, Active Comparator, Multi-center Study to
Investigate the Efficacy and Safety of Cobomarsen (MRG-106) in Subjects With Cutaneous T-Cell
Lymphoma (CTCL), Mycosis Fungoides (MF) Subtype (NCT03713320)

miR-155 CTCL/Mycosis Fungoides Active, not
recruiting

A Multicenter Phase 1B Pharmacodynamics Study of MRX34, MicroRNA miR-Rx34 Liposomal
Injection, in Patients With Advanced Melanoma and Biopsy Accessible Lesions (NCT02862145)

miR-34 Melanoma Withdrawn
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have also aptly demonstrated that specific miRs can help predict
responses to commonly used AML-directed chemotherapy
regimens or allogeneic stem cell transplant (30–34, 51).
Furthermore, Shivarov and colleagues have suggested that
certain overexpressed miRs (miR-19a, miR-181a, miR-17, miR-
181b, miR-221, miR-326, and miR-222) can potentially be used
for PCR-based MRD detection following intensive induction
chemotherapy, though larger studies are needed to validate
these findings (14). Haferlach and colleagues led an in
international effort, through the Microarray Innovations in
Leukemia study, and were able to demonstrate the feasibility of
performing whole genome expression profiling in over 3,000
patients with acute leukemia and MDS and also reported a
median sensitivity exceeding 99% in classifying at least 14
subtypes of leukemia (26).

Despite these results as well as the unequivocally impactful
role of miR expression profiling in the management of AML
patients, this platform is not yet routinely incorporated into
clinical practice, nor has it been included in commonly used
AML risk stratification systems (2, 59). Many of the barriers
precluding widespread use and integration are largely related to
lack of standardized approaches regarding the optimal sample
type as well as the variability in platforms used for miR profiling
(array based, RT-PCR or NGS) and the sensitivity of each of
Frontiers in Oncology | www.frontiersin.org 6
these techniques (13, 60). Novel strategies such as direct
measurement of the miR molecules like nanoString may
circumvent this problem. As miRs continue to be explored and
validated in AML, it is likely that, over time, the most optimal
way to integrate them into clinical management will become
better defined and that miR expression profiling will, at some
point, become a more standard aspect of disease classification.

Unfortunately, although several miRs are promising
pharmacologic targets in AML, miR-directed treatments have
not yet been studied in clinical trials yet for AML patients. There
are still several barriers to drug development in this area
including concerns for off target effects, toxicity and target
delivery to blasts. Hopefully, with proper design of ASOs or
mimics and with better delivery vehicles there will soon be phase
1 trials in AML targeting miRs.
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