
INTRODUCTION

Visual information is encoded by the retina, in which spiking 
activities of retinal ganglion cells (RGCs) are conveyed to the brain 
[1, 2]. It is well known that RGCs consist of approximately 20 mor-
phological subtypes [3-5] and about 40 physiological subtypes [6-
8]. Each type of RGC shows distinct properties regarding its ON/
OFF response [8-10], direction selectivity [11-14], color vision [15, 

16], contrast adaptation [17-19], intrinsic photosensitive response 
[20], etc. The receptive field (RF) of a retinal ganglion cell (RGC) 
acts as the basic element of the visual information processing in 
the retina [21-23]. The temporal and spatial information of RF 
are important factors in understanding how visual stimulus is en-
coded by RGC activities [24]. The RF is obtained by averaging the 
stimulus patterns eliciting the spikes of a cell. The average of these 
patterns is known as reverse correlation or spike-triggered aver-
age (STA) [25]. Several attempts have been made to use STA for 
investigating various spatiotemporal patterns of RFs [15, 26-31] 
and their implication on retinal circuits [32-34]. However, since 
the STA is the average of the spike-triggered stimulus, potentially 
more complex patterns in the RF features may be missed. Further-
more, STA may not be suitable for identifying certain cell types; for 
instance, ON/OFF cells respond equally to the on- and offset of a 

New Features of Receptive Fields in Mouse Retina through 
Spike-triggered Covariance

Jungryul Ahn1, Bodo Rueckauer2, Yongseok Yoo3* and Yong Sook Goo1*
1Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea,  

2Institute of Neuroinformatics, ETH Zurich and University of Zurich, Zurich 8057, Switzerland,  
3Department of Electronics Engineering, Incheon National University, Incheon 22012, Korea

https://doi.org/10.5607/en.2020.29.1.38
Exp Neurobiol. 2020 Feb;29(1):38-49.
pISSN 1226-2560 • eISSN 2093-8144

Original Article

Retinal ganglion cells (RGCs) encode various spatiotemporal features of visual information into spiking patterns. The receptive field (RF) of each 
RGC is usually calculated by spike-triggered average (STA), which is fast and easy to understand, but limited to simple and unimodal RFs. As an 
alternative, spike-triggered covariance (STC) has been proposed to characterize more complex patterns in RFs. This study compares STA and 
STC for the characterization of RFs and demonstrates that STC has an advantage over STA for identifying novel spatiotemporal features of RFs in 
mouse RGCs. We first classified mouse RGCs into ON, OFF, and ON/OFF cells according to their response to full-field light stimulus, and then in-
vestigated the spatiotemporal patterns of RFs with random checkerboard stimulation, using both STA and STC analysis. We propose five sub-types 
(T1-T5) in the STC of mouse RGCs together with their physiological implications. In particular, the relatively slow biphasic pattern (T1) could be 
related to excitatory inputs from bipolar cells. The transient biphasic pattern (T2) allows one to characterize complex patterns in RFs of ON/OFF 
cells. The other patterns (T3-T5), which are contrasting, alternating, and monophasic patterns, could be related to inhibitory inputs from amacrine 
cells. Thus, combining STA and STC and considering the proposed sub-types unveil novel characteristics of RFs in the mouse retina and offer a 
more holistic understanding of the neural coding mechanisms of mouse RGCs.

Key words: Receptive fields (RFs), Retinal ganglion cells (RGCs), Spatiotemporal white noise stimulation, Spike-triggered average (STA), Spike-
triggered covariance (STC)

Received July 28, 2019, Revised February 19, 2020,
Accepted February 19, 2020 

*To whom correspondence should be addressed.
Yongseok Yoo, TEL: 82-32-835-8453, FAX: 82-32-835-0774
e-mail: yyoo@inu.ac.kr
Yong Sook Goo, TEL: 82-43-261-2870, FAX: 82-43-272-1603
e-mail: ysgoo@chungbuk.ac.kr

Copyright © Experimental Neurobiology 2020.
www.enjournal.org

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and 
reproduction in any medium, provided the original work is properly cited.

mailto:yyoo@inu.ac.kr
mailto:ysgoo@chungbuk.ac.kr


39www.enjournal.orghttps://doi.org/10.5607/en.2020.29.1.38

New Features of RFs through STC Analysis

light stimulus, resulting in a non-informative STA.
As a first-order statistic, STA captures only a single feature in 

stimulus space. STC on the other hand makes use of the second 
moment to explore directions of differing variance in stimulus 
space [25]. Other groups have studied the theoretical properties 
of STC, its generalization to different stimulus distributions [35], 
and relation to Wiener / Volterra series [36], and demonstrated its 
benefits in previous studies on the V1 complex cells in macaques 
[37] and the H1 neurons in fly visual cortex [38]. As for the retinal 
system, STC analysis on RFs has been applied in salamander [39-
42] and one monkey study [37], but not yet, to the best of our 
knowledge, to the mouse retina. In this study we therefore apply 
both STA and STC analysis to the mouse retina, demonstrating, as 
in the salamander studies, that STC is able to identify novel char-
acteristics of RFs.

MATERIALS AND METHODS

Retinal preparation

Male mice at postnatal Day 56 and later (>P56) (C57BL/6J 
strain; The Jackson Lab., ME, USA) were used for this study (n=4). 
Animal use protocols were approved by the institutional animal 
care committee of Chungbuk National University (approval no. 
CBNUA-1172-18-02). The mice were anesthetized with an intra-
muscular injection of 30 mg/kg tiletamine-zolazepam hydroxide 
(Zoletil 50; Virbac, Sao Paulo, Brazil), 10 mg/kg of zylazine hydro-
chloride (Rumpun; Bayer Korea, Seoul, South Korea), and 5,000 
IU of heparin sodium (heparin; JW Pharmaceutical Corp., Seoul, 
South Korea). The detailed procedures for the preparation of ex 
vivo retinal patches were described in a previous study [43]. Briefly, 
the eye was enucleated and then the retina was isolated from the 
sclera and the retinal pigment epithelium (RPE) and cut into a 2×2 
mm2 patch. The retinal patch was prepared under 4.3 nW/cm2 il-
lumination in an artificial cerebrospinal fluid (ACSF) solution (124 
mM of NaCl, 10 mM of glucose, 1.15 mM of KH2PO4, 25 mM of 
NaHCO3, 1.15 mM of MgSO4, 2.5 mM of CaCl2, and 5 mM of 
KCl) bubbled with 95% O2 and 5% CO2 to maintain a pH of 7.3 to 
7.4 and a temperature of 32℃. The isolated retina was mounted on 
a planar multi-electrode array (MEA) with the RGC layer down 
and continuously perfused with oxygenated solution (flow rate: 
1~3 mL/min).

Multi-electrode recording system and signal processing

The data acquisition system (MEA60 system; Multichannel Sys-
tems GmbH, Reutlingen, Germany) included a planar 64-channel 
perforated MEA (60pMEA200/30iR), an amplifier (MEA1060), 
temperature control units (TC01), data acquisition hardware (Mc_

Card), and software (Mc_Rack). The MEA contained 64 circular 
electrodes in an 8×8 grid layout with electrode diameters of 30 μm 
and inter-electrode distances of 200 μm. The electrodes were coat-
ed with porous titanium nitride (TiN) and embedded in a perfo-
rated polyimide foil that facilitates sufficient oxygen and nutrient 
supply to the retina [44]. Multi-electrode recordings of the retinal 
activity were obtained from 59 electrodes, excluding one reference 
electrode and four inactive electrodes, with a bandwidth ranging 
from 1 to 3,000 Hz at a gain of 1,200. The data sampling rate was 
25 kHz per electrode. After high-pass filtering the raw waveform 
of retinal recording at 100 Hz, RGC spikes were isolated using a 
threshold of four times the standard deviation of the background 
noise. Multiunit activities containing different spike waveforms 
were separated into individual cell activities by principal compo-
nent analysis [45], using the spike sorting software (Offline Sort-
erTM; Plexon Inc., TX, USA). Subsequent analysis was done using 
commercial software (NeuroExplorerTM; Nex Technologies, CO, 
USA) and custom-made MatlabTM (MathWorks, MA, USA) codes.

Light stimulation

Visual stimuli were generated by custom-made software, writ-
ten in MatlabTM with Psychtoolbox [46, 47] and presented using a 
digital light processing (DLP) projector (ep7122; Hewlett-Packard, 
CA, USA) with a maximum resolution of 1,400×1,050 pixels and 
a refresh rate of 60 Hz (Fig. 1A). The visual stimulus was projected 
onto the photoreceptor layer with a size of 1.7×1.7 mm2 through 
the water dipping 20× objective lens (UMPLFLN20XW; Olympus 
Corp., Tokyo, Japan), with a beamsplitter (32-506; Edmund Optics 
Inc., NJ, USA) inserted into the light path for monitoring. Light 
stimuli were attenuated using a neutral density filter (NE220B; 
Thorlabs Inc., NJ, USA). For a characterization of ON or OFF 
RGCs, we applied full-field illumination of 50 repeated trials of 4 
s of a white screen followed by 4 s of a black screen (Fig. 1B). Light 
intensity (40 μW/cm2) corresponding to photopic vision was mea-
sured with a calibrated radiometer (ILT-5000; International Light 
Technologies, MA, USA). To determine RFs of RGCs, we used a 
spatiotemporal white noise stimulation, temporally updated at 
a frame rate of 10 Hz and spatially arranged in a checkerboard 
layout with a pixel width of 215 μm. Each pixel was independently 
modulated according to the Bernoulli distribution with equal 
probabilities for +1 (white) and -1 (dark) (100% contrast and 
a mean intensity of 3.8 μW/cm2). This white noise stimulation 
was applied for 15 min. For temporal resolution of checkerboard 
stimulus, the visual image was updated at a frame rate of 10 Hz. 
In general, mouse RGC reaches the peak of the cone-mediated 
response at 10 Hz [48]. In this study, the mean intensity of each 
checkerboard stimulus was 3.8 μW/cm2 and this light intensity 
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corresponded to the photopic vision, which is considered a cone-
mediated response. Thus, temporal resolution of checkerboard 
stimulus was set to 10 Hz to obtain the strongest light response of 
mouse RGCs.

Spike-triggered average and receptive field estimation

For each light stimulus time bin of 100 ms, spikes from each 
RGC were counted to produce a train of spike counts at 10 Hz. 
The STA was obtained by averaging the stimuli preceding a spike 
with the time window of 900 ms.

(Eq. 1)
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Here, tn is the time of the nth spike, s(tn-t)  is the stimulus at the 
time preceding the spike time tn by t , wn is the number of spikes 
that occur in the time bin tn corresponding to the nth spike, and 
N is the total number of spikes. A temporal profile of the STA was 
analyzed for each pixel.

Spike-triggered covariance

STC analysis is based on the covariance matrix of spike-triggered 
stimuli:

(Eq. 2)
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with the same definitions as in Eq. 1, and [.]T indicating the trans-
pose of the vector. Geometrically, the STC matrix C outlines the el-
lipsoidal region in stimulus space that elicits a spike response. The 
extent of this ellipsoid relative to the Gaussian-distributed region 
of all presented stimuli indicates stimuli that are more or less effec-
tive at modulating the cell’s firing activity. An eigenvector analysis 
of the STC matrix C identifies these directions (via eigenvectors) 
of largest and smallest variance (via eigenvalues). In the following, 
we use the terms “variance” and “eigenvalues” interchangeably. To 

identify statistically significant higher or lower variances, a boot-
strap with nested hypotheses [25] was performed with 99% con-
fidence interval. In brief, variances were harvested with randomly 
shuffled stimuli, therefore these variances indicate the range of 
variances that can be generated randomly. Then, using 99% con-
fidence intervals, statistically significant variances were identified 
and the corresponding eigenvectors further analyzed. To reduce 
the computational complexity of the bootstrap, a stimulus within 
200 μm around each MEA electrode was used as the region-of-in-
terest (ROI) for the STC analysis, which actually covers the area of 
645×645 μm2 (3×3 pixels). Considering spatial (9 pixels) and tem-
poral (10 frames: -900 to 0 ms time duration divided by temporal 
resolution 100 ms) dimension, total 90 stimulus dimensions were 
determined for the STC analysis. Among 90 variances obtained by 
STC analysis, the smallest variance is always zero because the aver-
age (corresponding to the STA) is subtracted out in the covariance 
calculation (Eq. 2). Thus, we report 89 non-zero variances ordered 
by their size (also called as ‘rank’) in eigenvalue spectrum.

Matlab code for processing the experimental data and calculating 
STA and STC is publicly available at https://github.com/ys7yoo/
retina. For calculating the STC, we followed procedures described 
by Schwartz et al. [25] and Simoncelli et al. [49] and modified the 
Pillow lab's STC analysis code available from https://pillowlab.
princeton.edu/code_STC.html.

RESULTS

Typical spatiotemporal profiles of RFs through STA and 

STC

A total of 483 RGCs from four mouse retinal patches were used 
in this study (Fig. 2A). Of these, 358 RGCs (74%) showed light 
response to full-field illumination and random checkerboard 
stimuli. The rest of the RGCs (26%) showed no light response.

With full-field illumination, functional types of RGCs could be 

Fig. 1. Light stimulation. (A) in-
vitro  recording setup in mouse 
retina study. Photoreceptor 
(PR), inner nuclear layer (INL), 
ganglion cell layer (GCL), multi-
electrode array (MEA). (B) Func-
tional classification of mouse 
retinal ganglion cells by full-field 
illumination and random check-
erboard stimulus.
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classified. Fig. 2B shows post-stimulus time histogram (PSTH) 
graphs of the RGC response to full-field illumination of 4 s ON 
and 4 s OFF duration. Cells displaying a significant peak at the on-
set of a flash are considered ON type, cells with a peak at the end 
of the illumination are OFF RGCs. 

For the random checkerboard stimulus, we obtained for all 358 
RGCs the averaged stimulus pattern preceding a spike, using STA. 
In addition, STC analysis revealed statistically significant eigenvec-
tor-eigenvalue pairs in 150 RGCs, suggesting that STC provides 
additional information about RFs for 42% of the light-sensitive 
RGCs.

We further investigated these 150 RGCs with statistically sig-
nificant eigenvector-eigenvalue pairs as follows. From the STA 

analysis, ON and OFF RGCs were classified. The left panel of Fig. 
2C shows a representative STA of an ON RGC. A spatial map of 
8×8 pixels displays clusters of white pixels with positive contrast 
change in time. The temporal response at maximum contrast ap-
pears about 0.2 seconds preceding a spike. On the other hand, the 
OFF RGC shows a pattern with a black pixel cluster and negative 
contrast change (Fig. 2C right). As for the ON cell, the temporal re-
sponse at maximum contrast occurs 0.2 seconds before the spike. 
This spatiotemporal pattern of the STA was evident in the ROI of 
3×3 pixels.

In the STC analysis, significantly lower variances were identified 
(Fig. 2D, red dot in the top panel), and corresponding eigenvectors 
were used to search for spatiotemporal patterns in the covariance 

Fig. 2. Typical spatiotemporal profiles of RFs through STA and STC. (A) The number of RGCs used in every stage of the analysis. (B) PSTH graphs 
of RGC response to full-field illumination of 4 s ON and 4 s OFF duration, respectively (time bin: 50 ms). In the 8×8 grid MEA layout, a yellow circle 
indicates the recording electrode (ON cell: electrode 55, OFF cell: electrode 42). (C) Upper panel: spatial profiles of STA to a pixel width of 215 μm in 
time from -0.9 s to -0.1 s before a spike. Bottom left: spatial patterns in ROI of STA marked with a red dotted square consisting of 9 pixels around the 
recording electrode. Yellow circle indicates the electrode position in the ROI. Bottom right: temporal profile of the one pixel in the 8×8 grid that shows 
maximum contrast (right). (D) STC analysis performed in ROI of 9 pixels. Upper panel: eigenvalue spectrum of the STC analysis. Significantly different 
variances are marked with red dots. Bottom left: Spatial profile of STC -0.2 s before a spike. Bottom right: Temporal profile of the two pixels in the ROI 
with highest absolute contrast (solid line: center pixel; dashed line: bottom center).
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of the spike-triggered stimulus (Fig. 2D, bottom panel). Spatial pat-
terns of the significant eigenvectors exhibit a contrasting pattern 
between the center pixel and a neighboring pixel, with the tempo-
ral profile showing both positive and negative peaks 0.2 seconds 
before the spike, respectively. The spatiotemporal pattern of STC 
was clearly different from that of STA, indicating additional fea-
tures of RFs available through STC.

Temporal pattern classification based on STC

Temporal patterns of those 150 RGCs with statistically signifi-
cant variances and associated eigenvectors were further analyzed 
as follows. Fig. 3 compares STA and STC for the ON (left) and 
OFF (right) RGCs. In Fig. 3, one RGC (cell #1) displays the typical 
temporal pattern of STA. In the STC, one significantly higher and 
two significantly lower variances (red dots in an STC graph) were 
identified. The higher variance shows a biphasic temporal profile, 
the two lower variances   a monophasic pattern along the corre-
sponding eigenvector. One of the lower variances   shows alternat-
ing peaks in the spatial response, represented by spatial patterns 
with the same polarity at different pixels at different times. The 
other variance has the same contrasting pattern as in Fig. 2D. 

A second representative RGC (cell #2) has two low variances, 
one with a monophasic, the other with a biphasic temporal profile 
like the higher variance of cell #1 but a more transient time course.

In the OFF RGC, we can also see contrasting patterns with lower 
variances, as shown in cell #1. Cell #2 includes one higher variance 
and one lower variance, both with a transient biphasic temporal 
profile and a contrasting pattern. These various types of temporal 
patterns have been found in both ON and OFF RGC.

For further understanding of the STC results, we categorized 
shapes of 205 temporal profiles of 150 RGCs into five types as 
follows (Fig. 4A): broad biphasic pattern (T1), transient biphasic 
pattern (T2), contrasting pattern (T3), alternating pattern (T4), 

and monophasic pattern (T5). Both ON and OFF RGCs show five 
temporal patterns (Fig. 4B). For both ON and OFF cells, the con-
trasting pattern (T3) is the most frequently observed (ON: 35.8%, 
OFF: 55.5%).

Next, we repeated the type classification separately for higher 
and lower variances (Fig. 4C). Such a classification is worthwhile 
for two reasons: (1) It may allow associating a pattern with a RGC 
type. For instance, T2 can be seen as a signature of ON/OFF cells, 
as shown in the next section. (2) It sheds light on whether a pattern 
has a tendency to support or suppress a spike response. For these 
reasons, we divided the five temporal patterns into higher and 
lower variances. Biological interpretation on these variances will 
be introduced in discussion.

The broad biphasic temporal pattern T1 seems to occur at higher 
variance   for both ON and OFF RGCs. It is not clear whether the 
T2 pattern has the tendency of higher or lower variances. The 
monophasic groups T3, T4, and T5 tend to coincide with lower 
variances   in both ON and OFF RGCs.

To summarize the finding in Fig. 4C, we observed a tendency of 
the biphasic pattern T1 to occur at higher variance for both ON 
and OFF cells, while the monophasic groups T3-T5 occur more 
often at lower variance in both RGC types. For T2, on the other 
hand, such a trend cannot be drawn conclusively, which leads us to 
a more thorough investigation of this pattern in the next section.

T2 temporal pattern in STC as an indicator of ON/OFF 

RGCs

Unlike the other four temporal patterns, the transient biphasic 
pattern T2 occurred for both ON and OFF cells at both lower and 
higher variances (Fig. 4C). One possible explanation is that T2 is 
in fact associated with neither ON nor OFF, but instead with ON/
OFF cells. To confirm this assumption, we investigated STA and 
STC based on cell types (ON, OFF, and ON/OFF RGC) by PSTH 

Fig. 3. Exemplary temporal pat-
terns of STC responses found in 
ON and OFF RGCs. Red dots 
indicate the significantly higher 
or lower variances shown in 
the eigenvalue spectrum. Each 
temporal profile corresponding 
to the significant variances is 
displayed. Five types of temporal 
profiles are shown in four (2 ON, 
2 OFF) representative RGCs.
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(Fig. 5A). The ratio of ON, OFF, ON/OFF RGC cells were about 1: 
1: 2 (22%: 26%: 52%). The STAs of ON and OFF RGCs showed a 
typical temporal profile with strong peaks as in Fig. 2C. However, 
the STA of ON/OFF RGCs shows weaker peaks in contrast (middle 
of Fig. 5B), which makes STA less suited to identify and character-
ize ON/OFF RGCs.

On the other hand, STCs of ON/OFF cells show distinct patterns. 
We explored spatiotemporal patterns of STC eigenvectors associ-
ated with significantly higher or lower variances (Fig. 5C). Specifi-
cally, we determined the five temporal patterns of the higher or 
lower variances separately for ON, ON/OFF, and OFF cells (Fig. 
5D). For lower variance, the temporal patterns T3 and T5 were 
those most frequently found across all ON, ON/OFF, and OFF 
RGCs. For higher variance, while temporal patterns T1 appeared 
across cell types, T2 only appeared in ON/OFF cells and T3 was 
found only in two ON/OFF cells. This result suggests that tempo-
ral pattern T2 is a strong indicator of ON/OFF RGCs.

DISCUSSION

New features of RFs provided by STC analysis

To investigate the RGC RF profile, we performed STA and STC 
analysis. While STA showed an average RF pattern of RGCs, STC 
showed additional spatiotemporal patterns not available from 
STA, which accounts for 42% of all analyzed cells. No RGCs pre-
sented only STC-positive but STA-negative RFs. As suggested 
earlier [25], this finding confirms that while STA acts as a major 
component of RF, STC seems to extract additional filters by which 
the RGCs encode visual stimuli. Sixty percent of RGCs (208/483 
cells) did not need STC to fully describe their RF, which seems to 
indicate that one averaged stimulus filter is enough to process vi-
sual stimuli in these cells. On the other hand, 42% of RGCs had at 
least two stimulus filters for encoding visual information. 

Through our STC analysis, five temporal types were classified 
as follows: broad biphasic pattern (T1), transient biphasic pat-
tern (T2), contrasting pattern (T3), alternating pattern (T4), and 
monophasic pattern (T5). T1 has been found to be associated with 
a high-ranking eigenvalue of the STC matrix (a higher variance 
along the corresponding direction in stimulus space). As described 

Fig. 4. Temporal pattern clas-
sification based on STC analysis. 
(A) Classification of five tem-
poral patterns (T1-T5) obtained 
by STC analysis. (B) Left: type 
distribution of 95 temporal pat-
terns found among the 59 ON 
cells. Right: distribution of 110 
patterns found among the 91 
OFF cells. (C) The relationship 
between significantly higher or 
lower variances and their respec-
tive type of temporal pattern.
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earlier [25], a higher variance indicates an excitatory filter and a 
lower variance an inhibitory filter for modulating the cell’s firing 
activity. In light of this, T1 could be originating from bipolar cells 
which are known as excitatory neurons to RGCs in retinal circuits 
[50-52]. On the other hand, T3-T5 coincided with lower variances, 
which could be related with inhibitory filters originating from am-
acrine cells [53-55]. Finally, T2 showed inconclusive results when 
considering only ON and OFF RGCs. PSTH analysis indicated 
that the high-variance T2 pattern is likely to be found in the ON/
OFF cell type. We therefore propose T2 an indicator of ON/OFF 
cells.

STA and STC provide complementary information on RFs of 
RGCs. We focused on what kinds of additional information can 
be obtained from STC. As an alternative approach, Cantrell et al 
developed a variant of STC, which they termed as Spike triggered 
covariance-non centered (STC-NC) to identify ON/OFF cells 
[56]. Since STA, which is the mean visual stimulus that precedes 
a spike fails to classify ON/OFF cells, STC analysis which identi-
fies multiple relevant linear filters provides a better analytical ap-
proach. However, conventional STC analysis can be cumbersome, 
therefore, they developed STC-NC analysis which maintains the 
simplicity of a single filter analysis to characterize different RGC 
types including ON/OFF cell. STC-NC has advantage of less time 
consuming which deals only with the highest eigenvalue to count 

the maximal deviation of the spike-triggered stimuli around zero. 
Ironically, by dealing with only one filter, STC-NC has disadvan-
tage of not capable of full characterization of the RF properties 
of RGCs. In our present study, we try to fully characterize the RF 
properties through STC, not found in STA. Although our STC tool 
requires a large number of spikes and time consuming for data 
analysis, multiple filters extracted from the covariance matrix from 
which STA is removed enabled us to fully characterize diverse RF 
properties such as T1-T5 temporal patterns.

In this study, we extended STC to explore RFs of mouse RGCs. 
Previous studies on RGCs are limited to salamander retina, which 
is the most widely used retinal model for in-vitro  MEA study 
due to the single-layer structure of salamander RGCs. One of the 
most relevant salamander studies of Fairhall et al’s [39] performed 
similar analysis based on STC. They applied covariance analysis to 
determine what stimulus features are relevant to each RGC’s firing. 
Their interest was more focused on how much information about 
stimulus features RGC could convey along the visual pathway 
to the brain not the receptive field property of each RGC. They 
showed that covariance analysis was highly successful at describ-
ing how RGCs encode temporal patterns of light intensity. How-
ever, regardless of different research goals, there is a remarkable 
similarity with both studies. For their “bimodal cell” which shows 
two separate clouds in the plane formed by the projections onto 

Fig. 5. Matching of ON, ON/
OFF, and OFF RGC with STC-
based temporal pattern type. (A) 
PSTH graphs of RGC response 
to full-field illumination of 4 
s  ON and 4 s OFF duration 
respectively (time bin: 50 ms). 
Three types of  ON, ON/OFF, 
and OFF responses are shown. 
The percentage of  the three 
types classified through PSTH is 
shown in the pie chart. (B) STA 
temporal profiles of ON, ON/
OFF, and OFF RGCs. (C) STC 
eigenvalue spectrum for ON, 
ON/OFF, and OFF cells. The 
temporal profiles of significant 
eigenvalues (marked by red dot) 
are shown as insets. (D) Distribu-
tion of the five temporal profiles 
for significantly higher and lower 
variances, separately for ON, 
ON/OFF, and OFF cells.
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two visual features are strongly ON/OFF cell in their response 
to light stimulation (Fig. 9 from [39]). In addition, it was also re-
ported that a significantly higher variance of the ‘bimodal cell’ is 
a key factor to lead this bimodal pattern of the ON/OFF cell. The 
fact matches our finding that ON/OFF RGCs are mainly discov-
ered in T2 pattern with significantly higher variance (Fig. 5). In our 
study on mouse retina using MEA, we divided RGCs functionally 
into ON, OFF, and ON/OFF cell types through PSTH patterns us-
ing full-field illumination. Then, through STC analysis, we found 
that a mixture of five temporal patterns is distinctively shown in 
an individual RGC (Fig. 3-5). Except T2 pattern, an indicator of 
ON/OFF cell, the rest of all four temporal patterns appeared in 
individual RGC, irrespective of cell types. Each pattern reflected a 
fraction of synaptic inputs coming into one RGC; T1 (excitatory 
synaptic input from bipolar cell), T3-T5 (inhibitory synaptic input 
from amacrine cell which is well known as an inhibitory neuron in 
the inner nuclear layer of retina). Through this effort, we identified 
the complex RF properties in the individual RGC.

Pros and cons of STA and STC analysis

STA and STC are based on the mean and covariance of spike-
triggered stimulus, respectively. Therefore, STA requires lower 
computational complexity and is easy to interpret. However, 
STA provides limited information about RFs and fails to convey 
complex patterns. In contrast, STC requires higher computational 
complexity and its high-dimensional structure is not straight-
forward to interpret. However, STC is able to capture rich RGC 
responses. Therefore, in an effort to address the shortcomings of 
STC analysis, reducing the dimension of the stimulus space is an 
active research topic [37]. We reduced the computational com-
plexity by setting up a 3×3 ROI (645×645 μm2) for STC analysis, 
which is still large enough to capture important RGC responses 
considering that the average RF diameter is 200 μm.

In this study, we focused on what kinds of RGC response pat-
terns are identified by STC but not by STA. Most importantly, STC 
provides richer characterization of RGC RFs. As shown in Fig. 3 
and 4, STC revealed additional spatiotemporal patterns in the RF. 
These patterns are closely related to the visual encoding process of 
the RF, in which STC patterns function as stimulus filters needed 
to encode visual stimulus into spiking information. Since RGC 
functions as a nonlinear space-time integration module in retinal 
encoding systems [41], these stimulus filters can be utilized as 
elements of linear and nonlinearity functions for computational 
models such as generalized linear models to predict the spiking of 
RGCs [24].

Therefore, when STA and STC are considered together, the per-
formance of the computational model to predict the spiking rate 

of RGC will be improved. The synergistic potential of STA plus 
STC application has already been proven in salamander retina 
study [39]. In future study, these combined filters can be applied to 
the modeling study of mammalian retina, which is more complex 
than the salamander retina. As an alternative to overcoming the 
drawbacks of STA and STC, a spike-triggered non-negative matrix 
factorization (STNMF) method was introduced by Liu et al. [57]. It 
decomposes the ensemble of effective spike-triggered stimuli into 
multiple subunit modules using non-negative matrix factorization, 
enabling STNMF to detect the layouts of localized RF subunits. 
Through STNMF analysis, the previous study has confirmed that 
each localized subunit represents the presynaptic input of inner 
retinal neurons to RGC in the salamander retina. Despite lower 
computational complexity compared with STC and richer char-
acterization of RGC RFs compared with STA, the tool is limited to 
investigating spatial patterns of RFs, not temporal patterns.

Future work

Stimulus design

In this study, we designed a stimulus protocol with random bina-
ry checkerboard for spatiotemporal RF patterns of RGCs. Binary 
checkerboard stimuli have been gold standard stimulus for finding 
RF in retina [23, 24, 26, 28, 29]. Recently, correlated noise stimuli 
is used to distinguish ON and OFF RFs from ON/OFF cells [58]. 
In future work, we aim to apply these stimulus paradigms together 
with STC analysis to identify functional RGC types.

Other studies regarding visual cortex suggested more advanced 
stimulus techniques to better reconstruct RFs of cortical neurons. 
For instance, an oriented wavelet stimulus was used to find the 
orientation selectivity of neurons [59], or 2D noise stimuli to re-
veal the diverse RFs properties of cortex neurons such as complex 
cells [60]. These stimulus techniques could be incorporated to our 
experiment to differentiate orientation selective RGCs.

Applications 

STA and STC techniques can be applied to vision research for 
retinal diseases as well as normal vision. In particular, RF changes 
in RGC have been studied using STA in glaucoma mouse models 
with progressive degeneration of retinal function [61, 62]. Retinal 
diseases caused by photoreceptor loss such as age-related macular 
degeneration and retinitis pigmentosa induce remodeling of the 
retinal circuitry and physiological changes in RGCs [63-67]. We 
assume that the RF of RGC may change as retinal degeneration 
progresses [68]. 

Electrical stimulation of surviving retinal neurons is known as a 
prominent strategy for restoring blind vision [69, 70]. Recently, the 
development of biomimetic electric pulse protocols has been stud-
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ied by many research groups [71-73]. A prerequisite of the task is 
to find an electric pulse that can reproduce the physiological light 
response. Like RGC response to white noise stimulation, electrical 
pulses with Gaussian white noise were used for retinal stimulation 
and the electrical receptive field (eRF) of RGC was reconstructed 
using STA [74-76]. In addition to previous studies using only STA, 
Maturana et al. [77] evaluated the eRF of RGC through not only 
STA but also STC analysis, which revealed several stimulus filters. 
Thus, STC analysis provides useful information about how RGCs 
encode complex visual or electrical inputs.

Future work in this direction includes applying STA and STC 
analysis to determine the RF pattern change of the degenerated 
retina compared to the normal retina, and how the visual informa-
tion encoded by RGCs varies with the degeneration stage.
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