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Abstract: The role of genetic exchanges, i.e., homologous recombination (HR) and horizontal gene
transfer (HGT), in bacteria cannot be overestimated for it is a pivotal mechanism leading to their
evolution and adaptation, thus, tracking the signs of recombination and HGT events is importance
both for fundamental and applied science. To date, dozens of bioinformatics tools for revealing
recombination signals are available, however, their pros and cons as well as the spectra of solvable
tasks have not yet been systematically reviewed. Moreover, there are two major groups of software.
One aims to infer evidence of HR, while the other only deals with horizontal gene transfer (HGT).
However, despite seemingly different goals, all the methods use similar algorithmic approaches, and
the processes are interconnected in terms of genomic evolution influencing each other. In this review,
we propose a classification of novel instruments for both HR and HGT detection based on the genomic
consequences of recombination. In this context, we summarize available methodologies paying
particular attention to the type of traceable events for which a certain program has been designed.

Keywords: homologous recombination (HR); horizontal gene transfer (HGT); recombination
detection; HGT detection; phylogenetic methods; synteny

1. Introduction

The bacterial genome is shaped by homologous recombination (HR) and horizontal
or lateral gene transfer (HGT/LGT), with the latter represented by variable molecular
mechanisms [1,2]. Recombination could be defined as an exchange of nucleotide sequences
between different genomes or within a single genome [1]. If the donor sequence replaces
the respective homologous (or homeologous, i.e., similar but not identical) region in the
acceptor DNA molecule, then the process is called homologous recombination (HR) [3].
Broadly speaking, HGT could be defined as the incorporation of non-homologous genetic
material into the donor genome which requires a long (>500 nucleotides) homologous
region flanking the non-homologous segment [2,4]. During the incorporation, a direct
RecA-dependent homologous recombination mediates the process, and it includes the
excision of the transferred DNA fragment from the donor genome, and its integration
into the recipient genome, implying two acts of homologous recombination. HR mostly
affects core genes maintaining allelic diversity [5,6], while HGT induces the acquisition
of accessory genes [7]. In bioinformatics literature, the term ”non-homologous recom-
bination” (NHR) is sometimes used interchangeably with HGT [4,8], or NHR is seen as
HGT-inducing machinery [9,10]; however, that is not always, if ever, true. In fact, DNA
integration of mobile genetic elements into the recipient genome such as the integration
of phages and genetic islands or conjugative transposons either by site-specific recom-
binases or by single-strand annealing proteins (SSAPs) requires micro-homologous and
homologous sequences, respectively [11,12], that is, strictly speaking, this process could be
treated as a type of homologous recombination. Nevertheless, it should be kept in mind
that homologous recombination implies DNA strand exchange, whereas the integration
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processes mentioned do not include strand exchange. Therefore, in the current review by
HR, we assume exchange between bacterial genomes and by HGT, we mean the incorpora-
tion of genetic material into the recipient genome driven by single-strand annealing (SSA)
and/or site-specific recombination but not NHR. HR and HGT are interconnected with
respect to the evolutionary dynamics of the bacterial genome. Horizontally transferred
genes are often flanked by regions with a high HR rate [13] which could possibly maintain
genome size by replacing/eliminating recently acquired genes [13,14]. Gene acquisition,
loss, and replacement that are driven by HGT and HR often lead to the emergence of
new pathogenic strains [15] and serotypes [16], including opportunistic pathogens [17], in-
creased virulence [18], antibiotic resistance [19,20], immunity evasion [21,22], colonization
of new hosts [23], and metabolic adaptations [24,25], thus, affecting public health.

Apart from practical implications, recombination exerts an effect on phylogenetic
studies altering almost all trees’ parameters. Models applied in conventional phylogenetic
analysis are based on the assumption that any parts of DNA or amino acid sequences
determine the evolutionary history in the same way [26]. Nonetheless, if the data contain
recombination events, the topologies of trees would differ depending on the part of the
sequence, especially if the breakpoint is located in the middle of the sequence [1] which
sometimes makes single locus-based phylogeny non-informative [27]. Furthermore, re-
combination exchange can result in terminal branches that are too long [28], loss of the
molecular clock [28], non-uniform distribution of insertions and deletions [29], impossible
to identify the common ancestor [30], and an erroneously high dN/dS ratio (the ratio of
nonsynonymous to synonymous mutations) resulting in spurious signals of positive selec-
tion [31]. Using several housekeeping genes (5–20), namely, MLST (multilocus sequence
typing) technique was proposed to overcome these issues; however, it cannot depict gene
acquisition or replacement [5]. Progress in next-generation sequencing with high through-
put has made it possible to use core genes in the genomes to reconstruct phylogenies,
which is known as core genome MLST, or cgMLST. Unfortunately, it still cannot circumvent
recombination-driven long terminal branches [32] or inaccurate topologies particularly
when the selective pressure is high [33]. A prospective method to obtain trees with cor-
rect topology and branch lengths called the coarse-graining approach for phylogenetic
reconstruction (CGP) has been devised recently, and it requires further studies to assess its
effectiveness [34].

As stated above, HGT and HR are different, yet genomically connected processes.
From a genomic perspective, it is virtually impossible to determine specific mechanisms and
causes of a particular transfer and/or exchange event; therefore, researchers use indirect
computational methods, namely, comparative genomics and phylogeny reconstruction.
Here, we analyze state-of-the-art bioinformatics tools for detecting HGT and HR. We
discuss conventional approaches as well as novel tools in the context of their pros and cons.
We propose an integrated classification of the algorithms based on the ramifications of
genetic exchanges, both HGT and HR. Finally, we examine major trends in modern tools’
designing new software and discuss the perspective of further developments.

2. A Brief Overview of Conventional Methods for Detecting Homologous
Recombination and Horizontal Gene Transfer

Bioinformatics approaches for detecting genetic exchanges can be divided into several
groups depending on the nature of the tasks set, applied algorithms, and genomic conse-
quences that are analyzed. In the existing literature, researchers have separately discussed
how to trace homologous recombination and HGT proposing distinct classifications. It
is explainable as these two groups seem to have different goals: the former methods are
aimed to calculate HR rates and detect chimeric loci in the closely related genomes [3,26],
whereas the latter approaches reveal continuous genome regions, for example, genes or
larger fragments, acquired from either related or evolutionary distinct species [2].

Considering the end goals of the analysis, methods for HR and HGT detection
are divided depending on whether they accomplish: (i) revealing the evidence of ex-
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changes/acquisitions, (ii) identifying mosaic sequences, (iii) finding breakpoint sites, or
(iv) calculating recombination and HGT rates [3]. The first task is usually embedded into
the latter ones; however, there are some algorithms designed only for revealing the fact of
recombination in analyzed sequences applied mostly in HR studies. The second and the
third goals are achieved by finding distinct local similarities among a subset of aligned se-
quences or via the identification of certain loci responsible for phylogenetic incongruences
due to the exposure to recombination or horizontal transfer [26]. The last issue is mainly
addressed by population genetics principles and phylogenetic analysis [35,36].

When describing the types of methods for HR analysis according to the statistical
basis, it should be noted that they belong to so-called parametric and non-parametric
methods. The former methods aims to calculate population parameters from a sample [3].
It implies revealing the average recombination frequency, which is achieved by population
genetics methods based on a coalescent theory; therefore, these approaches assume the
absence of selection and within-group subpopulations and constant population size [3]. The
other methods rely on non-parametric statistics inferred directly from sequence alignments
and/or tree topology [3]. A distinct methodology is reconstructing ancestral recombination
graphs (ARGs) that include elements from all the aforementioned approaches and depict
individual recombination events backed by population statistics. The non-parametric
methods can be divided into five subclasses on the grounds of their algorithmic nature
as follows:

• Similarity methods are designed to reveal gene conversion by tracking anomalous
identity in variable parts of the genome [37];

• Distance methods find local dissimilarities between sequences using a sliding window
technique [38];

• Compatibility methods detect phylogenetic incongruence of individual sites from
alignments and do not require the phylogeny itself [39,40];

• Substitution distribution approaches group together sequences with similar patterns
of integral substitution properties through comparison with the calculated model
distribution [41];

• Phylogenetic methods are based on topological differences between phylogenetic
trees, and they represent the most frequently used class of methods in the current
studies [42–44].

There are three groups of methods for revealing HGT, with two of them being similar to
what is applied in HR detection. [2]. The first group is represented by parametric methods,
that are aimed to find genetic loci with properties that differ from the genomic average,
including GC content [45], oligonucleotide spectrum [46], DNA structure modeling [47],
and genomic context [48]. The second group, namely, phylogenetic methods, falls into two
subcategories: explicit and implicit phylogenetic methods [2] with the former comparing
trees’ topologies and the latter analyzing distances between genomes [2]. The third group
examines changes in synteny, i.e., the co-localization of genetic loci in the same regions [49].

As mentioned above, the interconnection between HGT and HR should not be ignored
because simultaneous detection of these events can help to disentangle genome evolu-
tion. Moreover, the underlying algorithms in described methods are quite similar, and,
furthermore, they actually deal with similar, but not opposite, goals, namely, finding loci
subjected to recombination/transfer and calculating the frequency of such events. Different
classifications do not contradict each other, thus, allowing us to unify them into a combined
classification scheme based on the consequences of both HR and HGT (Figure 1). There are
three possible scenarios leading to detectable signals in biological data. First, HR and HGT
affect the relative positions of genes in the genome through loci gain/loss, repositioning,
and duplication, thus, disrupting synteny which is especially conspicuous when comparing
whole-genome sequences from diverse strains [49,50]. Second, phylogeny reconstruction
based on different loci susceptible to HR or stemming from HGT would cause inconsis-
tencies when collating different gene-based trees or comparing them to those representing
species evolution [1,2]. Third, HR and HGT evoke traceable patterns of distributions of
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genomic properties, namely, single nucleotide polymorphisms (SNPs), alterations in GC-
content, etc. [1,2,49]. While there are informative reviews discussing software coupled with
guidelines to choose a particular method [1–3,26], recently, a lot of new tools have been
devised which have not yet been systematically reviewed (Figure 1). Therefore, due to the
progress in computational approaches and the occurrence of the novel tools, we discuss
them in accordance with the proposed classification in the following section.

Figure 1. A combined classification of methods for detecting homologous recombination and hor-
izontal gene transfer depending on the genomic consequences of the events. HR—homologous
recombination, HGT—horizontal gene transfer, ARGs—ancestral recombination graphs.

3. Current Bioinformatics Tools for Recombination Analysis
3.1. Synteny-Based Methods

Looking from the angle of genomic context, it is possible to find HGT signals in a
synteny-aware way. Synteny has been defined as the degree of genomic conservation
regarding the relative positions between genes [49]. Hence, changes in synteny can be
traced to detect horizontally acquired genes by comparing the order of the loci in the
defined genomic interval [49]. The so-called synteny index (SI) was proposed for such
purposes and implemented in the Phylo SI software [51]. The synteny index denotes the
number of shared gene pairs between most k genes both downstream and upstream of
a selected shared ortholog. Then, the average values for all the genes within a pairwise
comparison can be utilized to construct a synteny-aware phylogeny [51]. Later on, the SI
was incorporated into the nearHGT tool together with constant relative mutability (CRM),
another method of calculation that assumes mutation rates to remain constant for each gene
within a genome [49]. For two orthologs in two species that exhibit increased similarity
with other orthologs diverging in accordance with the mutability model, this approach
reports a putative HGT event. Thus, in the beginning, possible HGT candidates are selected
through SI calculation, and subsequently, patterns of gene divergence using CRM are
defined. In the end, the chi-square test is performed to calculate the significance of the
predicted events [49]. A further improvement considers the length of the transfer genes
and also utilizes the Chernoff bound test instead of the chi-square test, thus, reducing the
number of false-positive calls [50]. The nearHGT program has been applied to evaluate
the HGT rate in Mycobacterium leprae, which displayed that pseudogenized loci were
transferred with increased frequency in contrast to functional genes [9]. Unfortunately,
the available nearHGT program only calculated the probability of HGT for a given set of
sequences [49]. The prior steps of calculating the SI index and reporting possible HGT has
not been provided as available scripts, thus, nearHGT is more of a conceptual method than
a ready-to-use application.
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Although other synteny-aware utilities do not report HGT events directly, they can in-
directly point out candidates to explore. Lots of genomic browsers have been developed to
visualize synteny, namely, BAGET for retrieving syntenic information for a certain gene [52],
Synima to juxtapose loci between genomes [53], and SYN-View to investigate antibiotic
resistance gene clusters [54]. Sibelia can obtain syntenic blocks in analyzed genomes [55],
while SyntTax and SynTracker link them with taxonomical and strain-specific relation-
ships [56,57]. Finally, current pan-genome analysis software now operates with synteny:
PEPPAN enables one to retrieve putative HGT events from the accessory genes matrix
through synteny-aware pangenome reconstruction [58] and Panaroo provides a graph with
syntenic consecutive triplets of gene families, thus, detecting structural variations [59].
Finally, syntenic information could be obtained from gene-to-gene alignments with conven-
tional tools [60,61].

3.2. Phylogenetic Methods
3.2.1. Phylogenetic Methods for HR Detection

One approach to finding present recombination events is called phylogenetic networks.
In as much as recombination events lead to intermingling between evolutionally distant
lineages, a conventional representation of the evolution as a tree does not reflect the actual
phylogenesis. Given that phylogenetic networks pose a more suitable visualization for
genetic exchange, there are two distinct types of phylogenetic networks, namely explicit
and implicit [62]. The advantage of the former is their interpretability as phylogenetic
trees because these networks possess information about parents and recombinants. Un-
fortunately, explicit networks are hardly obtainable in practical terms, in so far as many
recombination events do not provide signals strong enough to distinguish them from
mutations, in particular, when they affect conservative genes [26]. In contrast, implicit net-
works display the most conflicting clades where tree topology is disturbed, demonstrating
alternative evolutionary scenarios to be verified with other techniques [62].

Once potential signals are found, it becomes possible to identify breakpoints and
to find chimeric sequences. The combination of phylogenetic and distance approaches
has revealed these regions that possibly transferred during recombination and the disen-
tangling evolutionary relationships between analyzed sequences regarding these genetic
exchanges [26]. Dividing sequences into parts can be carried out by a static procedure with
constant borders [63] or dynamically by splitting into two chunks [38], applying a sliding
window [41], or more complex heuristics [64]. Parental and recombinant sequences are
usually determined by analyzing phylogenetic trees built on different parts of the sequences
detected during the previous step. When a potential recombination event is identified, its
statistical significance is evaluated, for example, by parametric bootstrap [65] or chi-square
distribution [66].

At the moment, the most frequently applied novel programs to examine homolo-
gous recombination, as well as HGT, are based on phylogenetic methods. Among these,
RDP4 [66] represents a user-friendly application implementing several algorithms with dif-
ferent partitioning schemes for identifying recombined sequences. Its advantages include
utilizing a combination of phylogenetic and distance methods providing identification
of parent–child relationships and breakpoints in recombined entries [26]. Its updated
version, RDP5 [67] has incorporated extra statistical tests, namely, the Φw test [39], the
four-gamete test [68], and adapted versions of the homoplasy test [43]. In RDP5, run time
speed has been increased up to five times and the number of analyzed bacterial genomes up
to 120 times [67]. Still, it cannot handle large batches of bacterial genomes, and therefore,
it has been used to trace recombination predominantly in viral genomes, for example,
in porcine reproductive and respiratory syndrome virus (PRRSV) [69], SARS-CoV-2 [70],
human rhinovirus [71], and feline parvovirus [72]. However, it should be noted that the
algorithm inherits limitations of phylogenetic algorithms, the most evident of which is its
inability to reveal distant events [26]. Thus, this tool is more suitable for identifying recent
events in sequences with moderate divergence and relatively small genomic datasets.
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Another group of phylogenetic tools can apply the so-called clonal model [10,44,64,73].
This approach is aimed at scanning whole-genome sequences, in which conservative loci
within housekeeping genes are used for phylogeny reconstruction. The chosen genes
are considered to depict a clonal frame showing direct relationships between distinct
clonal groups.

Gubbins starts with removing SNPs (single nucleotide polymorphisms) that do not fit
the assumption of a constant per-site mutation rate, and then places these inconsistencies
among the tree built on the remaining polymorphisms [44]. Among its applications, Gub-
bins has harnessed visualizing and characterizing recombination in Global Pneumococcal
Sequence Clusters (GPSCs) [74] and pneumococcal capsular loci [75].

ClonalFrameML uses a pre-reconstructed starting tree and calculates the probability
of engaging in recombination for each site using Bayesian maximum likelihood (ML)
calculations [73]. ClonalFrameML has been widely used in bacterial genetics to evaluate
within-population recombination rate in Prochlorococcus lineages [76], Staphylococcus aureus
strains [77], and biosynthetic gene clusters in the Salinispora sp. [78].

Although BratNextGen and fastGEAR are not truly phylogenetic methods, they still
operate with clonal relationships, hence, it is more appropriate to discuss them in the
current section. However, they do not analyze single nucleotide polymorphisms (SNPs)
directly but compare the distributions of variants within clonal lineages using hidden
Markov model (HMM) approaches [10,64]. Notably, the latter represents an improvement
of the former with higher statistical power. The ability of BratNextGen to reveal ancestral
recombination has been applied in studies related to Streptomyces species [79], antibiotic-
resistant Staphylococcus aureus strains [80], and differentiated Xylella fastidiosa isolates [81].

On the one hand, all the programs described provide a characterization of SNPs,
revealing whether they originate from mutation or recombination, which allows calculat-
ing the r/m rate (the probability that a given site stems from recombination rather than
mutation) as a proportion of recombination-derived variants. Moreover, these algorithms
can handle large datasets due to their high computational capacities. On the other hand, all
described tools cannot efficiently distinguish recombination from mutations in the presence
of disruptive selection; they also lack statistical power when analyzing highly similar
sequences [36]. Another limitation lies in the reliance on phylogenetic trees obtained by
methods implying no recombination. Actually, such phylogenetic trees do not portray
clonal relationships between ancestors and descendants, as the topology depicts different re-
combinational rates in diverging bacterial populations rather than sequential evolutionary
development [82]. Keeping in mind the questionable feasibility of reflecting clonality even
within conservative loci [82], the validity of matching recombination events to the overall
phylogeny appears to be dubious. Therefore, it seems more valid to provide per-lineage
recombination frequency instead of the overall rate. To sum up, the described tools allow
examining large genomic datasets. Ancestral state reconstruction allows them to reveal
possible ancestral events particularly optimized in the fastGEAR algorithm [10]. Moreover,
due to single-lineage-based clonal relationships, ClonalFrameML [73], Gubbins [44], and
BratNextGen [64] are tuned to analyze single bacterial linage with moderate diversity, while
fastGEAR harnesses studying interspecies events in sequences with higher diversity [10].

3.2.2. Implicit Phylogenetic Methods to Reveal HGT

In revealing HGT events, explicit phylogenetic methods are presented by straightfor-
ward testing of topological similarity [83], decomposing trees’ initial partitions [84], pruning
and regrafting subtrees [85], or selecting appropriate reconciliation models accounting for
gene loss/duplication and homologous recombination events [86]. Implicit phylogenetic
methods do not rely directly on juxtaposing species- and gene-based trees but summarize
distances between genomes analyzed to reveal excessively related or different sequences by
utilizing BLAST searches [87], disparities between species and gene distances [88], building
so-called phylogenetic profiles characterizing patterns of gene presence/absence [89], and
clustering polymorphisms [90]. Similar to homologous recombination, novel phylogenetic
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software to detect horizontal events has been devised recently. It should be noted, however,
that the most current tools fall into an implicit category, therefore, these approaches are
described here.

HGT-Finder implies a BLAST-based algorithm to provide a set of likely transferred
sequences with a transfer index value and significance estimations [91]. The results of the
BLAST search against the NCBI non-redundant protein (NCBI-nr) database are utilized
to infer relative bit scores (R) calculated as a ratio of the observed bit score to the bit score
of the same-sequence alignment. Simultaneously, taxonomic distance using the NCBI
Taxonomy database (D) is evaluated as the number of taxonomic units in the query divided
by the number of common units with the respective database hit [91]. Then, the transfer
index is determined by the mean RD value for each hit genome divided by the number of
genomes. Applying HGT-Finder has provided HGT screening in Burkholderia glumae [92]
and Aspergillus sp. genomes [91].

HGTector is another tool depending on BLAST searches coupled with taxonomic
inference. First, it categorizes genomic hits into three groups: self (the closest strains), close
(the same genera or close family), and distal (other families, orders) [93]. The distributions
of bit scores for the three categories are then followed by a gene-wise estimation of deviation
from these distributions, indicating possible HGT-derived genes [93]. HGTector has been
used to infer exchanges in Legionella sp. [94], Nocardia sp. [95], and Blautia sp. [92].

RecentHGT was developed to reveal HGT events between close species [96]. It per-
forms global Needleman–Wunsch alignment of protein-coding sequences and builds the
distribution accordingly. Next, particular hits are tested in terms of the inconsistency
with the distribution [96]. The approach has successfully harnessed HGTs in Rhizobium
strains [96,97].

HGT-Finder and HGTector are more sophisticated taxonomy-wise methods as com-
pared with simple BLAST searches; however, it should be considered that they lack sen-
sitivity as the success of detection depends on taxonomical distance [91,93]. Their design
makes them more suitable for revealing HGT between distant bacterial lineages, for exam-
ple, different taxonomic groups. Contrarily, RecentHGT, in its turn, is designed to detect
genetic exchange in close lineages, and therefore can distinguish HGT events from highly
conserved housekeeping genes with a reduced false-positive rate as compared with other
tools [96].

Of the most current tools to mention, ShadowCaster represents a hybrid approach
incorporating both composition-based support vector machines (SVMs) and implicit phylo-
genetic methods based on the phylogenetic shadow that is constructed on proteomes of
species both closely related and distant to the analyzed ones [98]. ShadowCaster shows
improved sensitivity as compared with other methods, and moreover, it can detect both
close and distant events. For instance, it revealed the transfer of heavy metal resistance
genes in Rhodanobacter denitrificans with high accuracy [98]. Nevertheless, while it looks
promising, it does not reflect the direction of transfers [98]. As it was not benchmarked by
comparing with RecentHGT, it is impossible to state which tool shows better performance,
nevertheless, it could be proposed that due to a hybrid check implemented, ShadowCaster
may be more sensitive and accurate.

3.3. Methods Based on Genetic Features
3.3.1. Compatibility Methods to Reveal HR

Being non-phylogenetic, compatibility methods now seem of great potential due to
their ease and computational effectiveness. The basic approach of such evaluations is a so-
called ”four-gamete test” [68]. If two sites provide a genealogy that should involve recurrent
mutations to resolve evolutionary relationships, then, these sites are called phylogenetically
incompatible, implying their occurrence through homoplasy or recombination [68]. In
practice, it is almost impossible to tell recombination from homoplasy for highly similar
sequences; nonetheless, one can summarize all homoplasic features and can compare results
with the predictions of the model recombination-free distribution [3]. The most commonly
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used implementations of this approach are the homoplasy test [43] and its improvement, a
Φw test [39], both depending on the frequency and distribution of incompatible sites.

The recently developed ptACR program identifies potential breakpoints with a sliding
window followed by a permutational test to calculate the significance of found events [40].
Its architecture has ensured robustness to false-positive results checked on clinical isolates of
Staphylococcus aureus [40] Nonetheless, ptACR’s disadvantage is the absence of strategies to
handle gaps; thus, it is hard, if possible, to analyze divergent sequences with this utility [40],
that is to say, this program is useful if the aim of the research is to reveal the most probable
recombination events in sequences with moderate diversity.

3.3.2. Substitution Distribution-Based HR Detection Approaches

Similar to compatibility approaches, substitution distribution methods have regained
attention due to their high speed as compared with phylogenetic approaches. HREfinder
is a dynamic algorithm that divides the genome into blocks where each polymorphism is
estimated to result from mutation, homologous recombination, or sequencing error [99].
The stepped validation guarantees obtaining events with high probability as tested in a
Xanthomonas oryzae evolution study [100]. The sensitivity of HREfinder continuously grows
with sequence diversity, while at the same time, a false-positive rate is coupled with it [99].
Hence, HREfinder just like ptACR, is suitable when dealing with moderately divergent
sequences. Within the optimal diversion range, HREfinder detects mostly true events,
however, it also tends to miss a lot of them because of detection thresholds [99].

3.3.3. Parametric Methods for HR Identification

Parametric methods are mostly aimed at evaluating the overall HR rate based on
population genetics principles. [3]. Population recombination rate (p) is calculated as
p = 4Ne ∗ r, where Ne is the effective population size and r stands for per-site recombination
rate for one generation. Similarly, the population mutation rate is determined by the
following equation: θ = 4Ne ∗ µ, where µ denotes per-site mutation rate. The p/θ ratio
is considered to be an average quantitative variable characterizing recombination for a
particular population [1].

One program implementing these methods is Mcorr [101]. This tool calculates the cor-
relation of synonymous substitutions (correlation profiles), and the average recombination
rate is delineated on the basis of these profiles [101]. The authors denoted a correlation
profile as the probability of observing a difference at the i + l site for a randomly chosen
site i, where l is the distance in nucleotides. The function P(l) is constant in the absence
of recombination, whereas the presence of recombination causes a monotonic decrease
of the P(l) function [101]. The method is highly useful in metagenomic studies, for exam-
ple, subpopulations in soil metagenome [102] or multidrug-resistant Escherichia coli ST131
populations in the infant gut microbiome [101]. The presented statistic provides a vivid
interpretable result reflecting the recombination rate, however, the congruity between this
method and compatibility-based HR frequency calculation has not been assessed yet.

3.3.4. Ancestral Recombination Graphs

A distinct method combining phylogenetic incongruence detection, population ge-
netics principles of coalescent theory, and phylogenetic networks is a reconstruction of
so-called ancestral recombination graphs (ARGs) [63]. The ARG represents a directed graph
in which the most probable site-to-site relationships are exhibited, thus, enabling lateral
connections denoting horizontal events such as recombination, which is distinct from clas-
sic trees with acyclic topology determined by the average identity between sequences [63].
Being a hybrid approach, ARG construction can depict evolutionary histories that involve
recombination coupled with the timed presentation of vertical inheritance, thus, providing
a detailed evolution-wise report of recombination events [26].

Bacter, a Bayesian algorithm, has been applied to reconstruct ARGs based on the
ClonalOrigin model and Markov chain Monte Carlo (MCMC) algorithm that are used
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jointly to infer genealogical relationships as well as homologous conversion events and the
overall conversion rate [35]. This single-step procedure, instead of a stepped algorithm,
improves detection and reduces uncertainty in the case of a poor phylogenetic signal [35].
Its application has accurately revealed previously undetected gene flow between pathogenic
and nonpathogenic Escherichia coli serotype O157 representatives [35]. Still, the limitation
of this tool is its dependence on a lot of parameters to be optimized for each study, poor
throughput, and inefficiency if analyzing long genomes, especially big batches [34].

To handle the inference of ARGs on a large genomic scale, a computationally efficient
alternative has been proposed. This approach is called topological data analysis (TDA) in
which genomes are treated as points in a high dimensional space with pairwise distances
delineated by genetic dissimilarities [103]. Loops in this space linking points occur in the
presence of recombination, hence, summarizing loops generate a structure closely related to
ARGs, namely, topological ARG (tARG) that depicts minimal recombination histories [103].
TARGet was designed in accordance with the aforementioned principles. While it was
tested on eukaryotic organisms, it seems to be applicable for analyzing bacterial genomes,
especially when examining large datasets [103]. Topological data analysis is a promising
approach regarding its computational effectiveness, although tARG itself cannot depict
the specific evolutionary histories behind the data [103]. Therefore, an available tool
for recombination-wise bacterial evolution reconstruction, Bacter, is reasonable to apply
when dealing with small genomes or parts of genomes, thus, it is necessary to develop
computationally efficient tools possibly based on the principles of topological data analysis.

3.3.5. Parametric Methods for Finding HGT Events

Sample-based parametric methods in the context of an HGT analysis have been con-
sidered to be less accurate than phylogenetic methods which are dominant in the repertoire
of HGT detection programs; however, recently, novel tools with better performance have
been devised. They have been applied to obtain the most probable HGT-subjected parts
of the genome and the overall transfer frequency. The respective HGT-rate computations
rely on the calculation of the HGT-affected genome fraction [104], the ratio of gene gain to
gene loss [105], or the total number of detected HGT events divided by the total number of
compared genomes [106,107].

To reveal HGT-subjected parts, sequence clustering methods seem to be a perspective
approach to deal with the constraints of current tools. The Clusterflock algorithm utilizes a
model of self-organizing swarm intelligence originally proposed to imitate bird and insect
behavior [108]. This model enables clustering based on a distance matrix with arbitrary
distance metrics. The comparison of orthologous gene families’ (OGFs) clusters with
obtained flocked clusters has revealed signals of HGT between sequences. Its application
has disentangled a large-scale map of genetic exchanges in Staphylococcus aureus [108], still,
the Clusterflock has not been benchmarked in the context of comparison with other tools
or calculating accuracy and specificity.

The genome mosaic structure (gmos) algorithm was developed to overcome difficulties
related to computational costs of full genome-comparison alignments [109]. This program
performs local alignments for a given query sequence against subject genomes, refines
the alignments according to the substitution models, and finally, overlaps the refined
local alignments to gain the mosaic structure of the regions. The utility has been used to
track mosaic sequences in the pathogenic Enterococcus faecium strain [109]. The advantage
of such an approach is the ability to reveal both homologous recombination events and
horizontally transferred genes. However, the latter is possible only if genomes possess
sufficient similarity in transfer regions; moreover, the tool does not resolve the direction of
transfer/exchange [109].

GeneMates is an R package to reveal co-transferred genes in bacterial genomes associ-
ated with mobile genetic elements [110]. In the package, the matrix of core genome SNPs
coupled with allelic presence/absence matrix is analyzed using linear mixed models to
generate a network of alleles that are most likely co-transferred together. This framework
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transcends simple co-occurrence tests according to a validation study of GeneMates on
known antibiotic resistance genes in Escherichia coli and Salmonella Typhimurium; nonethe-
less, it is designed for a specific aim to identify intraspecies events, while its dependence
on core SNPs may probably restrict the sensitivity of the analysis [110].

The abovementioned tools rely on completed and maximally annotated genomes. In
contrast to it, Daisy is a reference-free method that processes short reads to detect HGT
boundaries via split-read mapping and coverage information, and it leads to outperforming
assembly-based approaches [111]. Its performance has been checked on a simulated H.
pylori dataset and two real E. coli datasets [111]. While providing high sensitivity, Daisy
relies on short reads only and requires genomes with explicitly defined suspected donor
and acceptor, thus, it is not applicable to process long reads or it cannot compare bathes of
genomes when donor and acceptor are unknown.

4. Assessing the Effectiveness of Recombination Detection Software

To choose a particular algorithm to detect HR and HGT in biological data, it is useful
to understand the expected rate of false-positive calls. Erroneous identification of recombi-
nation events may occur when analyzing extremely divergent sequences, given that in the
tools applied, statistical power proportionally increases with sequence divergence [112].
However, handling substantially similar strains may also generate errors [113]. Some meth-
ods are also sensitive to asymmetric tree topology [112]. If linkage disequilibrium between
nucleotide substitutions is used to predict recombination events, findings may actually
represent evolutionary selection signals instead of genetic exchange [114]. A so-called
“patchy-tachy” (PT) phenomenon describes sequences in which different partitions exhibit
unequal evolution rates, which leads to an excess in false-positive results [115]. Tracking
HGT can generate false-positive results as well. For instance, parametric methods based on
codon usage are prone to a high rate of both false-positive and false-negative results [116].
In addition, similar to HR, false-positive HGT signals likely occur if comparing closely
related strains [49]. Another essential source of misreported events relates to genomic
data collection, namely, assembly procedures and PCR-gained chimeric sequences. For
example, a comparative study of Mycobacterium tuberculosis genomes revealed that most
of the recombination events described in the literature were artifacts [117]. They occurred
due to inconsistencies in the genomic alignments in the case of reference-based genome
assembly relying on the reference assembly already containing false-positive results; hence,
in bacterial genomics, high-quality de novo assemblies should be preferred instead [117].
Sample preparation could provoke artificial recombination events both during PCR am-
plification and data analysis of sequencing data leading to the emergence of chimeric
sequences [118,119]. These chimeric sequences are often presented in current databases,
thus, making it difficult, if possible, to estimate the number of artefactual data possibly
utilized as reference sequences in phylogenetic studies [26].

Given a great variety of cases in which correct detection of HGT and HR is hampered
(Table 1), the limits of applications for the programs have to be quantitatively evaluated to
ensure choosing the most accurate and sensitive algorithms. Therefore, it seems surprising
that there is a lack of comparative analyses. In most cases, such studies include only a small
number of algorithms to display the performance of the recently devised tool [10,44,98],
whereas comprehensive examinations currently seem outdated [112,120]. Still, for such per-
formance tests, one can apply genome evolution simulators under HR, such as SimBac [121]
and Bacmeta [122]. Nevertheless, it should be borne in mind that these simulators are
coalescent-based, implying a constant recombination rate and modeling neutral evolution.
In contrast, cutting-edge technologies such as CoreSimul [123] include stochastic parame-
ters imitating environmental changes accompanied by recombination. Similar to it, there
are HGT simulators such as HgtSIM [124]. Finally, the most promising simulators capable
of modeling both recombination and horizontal exchange such as SLiM [125] can be utilized
to jointly analyze the detection of both HR and NHR, thus, providing a comprehensive
evaluation of the genetic exchange map between bacterial populations.
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Table 1. Current bioinformatics tools for detecting homologous recombination and horizontal gene transfer in genetic data. The table summarizes tools’ properties
in terms of algorithms applied, input files and output results, type of detected events, advantages, and limitations.

Tool Applied Approach Method’s Class Input Output Detected Events Advantages Limitations References

Homologous Recombination (HR) Identification

RDP4/RDP5
Combination of

phylogenetic and
distance methods

Phylogenetic and
distance-based

Alignments in
FASTA format

Recombination events with
phylogenetic relationships

and breakpoints
coordinates for chimeric

sequences in tabular
format

Recent

Robustness and
providing the

information on the
direction of
exchanges

Inability to reveal
distant events and

high computational
costs

[66,67]

Gubbins

Revealing increased
substitution rate
among ML-tree

branches

Phylogenetic Alignments in
FASTA format

Coordinates of
recombination events

tabular format and their
visualization on the
genome alignment

Recent and ancestral
Precise

reconstruction of
ancestral state

High computational
costs and possible

false-positive results
when analyzing trees
with short branches

(theoretically)

[44]

ClonalFrameML
Maximal

likelihood-based
clonal model

Phylogenetic
Alignments in

FASTA format and
guiding tree

Phylogeny regarding
recombination and

visualization of events’
coordinates on the genome

alignment in tabular
format

Recent and ancestral Computational
effectiveness

Underestimation of
recombination rate

in datasets with
intensive

recombination

[73]

BratNextGen Bayesian modeling Substitution
distribution

Alignments in
FASTA format

Coordinates of the events
in tabular format and

visualization of
transmitted regions on the

genome alignment

Recent and ancestral Computational
effectiveness

False-negative
results in the case of

mosaic sequences
with multiple
recombination

events

[126]

fastGEAR
HMM algorithms

coupled with
Bayesian clustering

Substitution
distribution

Alignments in
FASTA format

Coordinates of ancestral
and recent recombination
events in tabular format

Recent and ancestral

Computational
effectiveness, high

sensitivity, and
handling of missing

data

Missing events
between closely
related species

[10]

ptACR

Genome-wise
average SNP
compatibility

calculation

Compatibility Gap-free alignments
in PHYLIP format

Genomic coordinates of
recombination events in

tabular format
Recent

High accuracy and
robustness to

false-positive results

Inability to process
alignments with
gaps and high

false-negative rate
when processing

divergent sequences

[40]

HREfinder
Genome partitioning

into SNP-flanked
blocks

Substitution
distribution

Genomes in FASTA
format, tree in

Newick format, and
SNP list in tabular

format

List of sequences subjected
to recombination in tabular

format
Recent High accuracy

High false-negative
rate when processing
divergent sequences

[99]
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Table 1. Cont.

Tool Applied Approach Method’s Class Input Output Detected Events Advantages Limitations References

mcorr

Building correlation
profile of

synonymous
substitution

Parametric Alignments in XMFA
or BAM formats

Tables and figures
depicting the average

recombination rate

The total rate of
recent/ancient

events

The ability to process
raw reads and

metagenomic data

Has not been
compared to

conventional r/m
rate calculating tools

[101]

Bacter Markov chain Monte
Carlo (MCMC) ARG Alignments in

FASTA format

Ancestral recombination
graph (ARG) in Newick

format
Recent

Improved detection
of the events in the

case of poor
phylogenetic signal

Dependence on
predetermined

parameters and high
computational costs

[35]

TARGet Topological data
analysis (TDA) ARG

Alignments in
FASTA format

without gaps or
segregating sites

denoted by 1 and 0

Ancestral recombination
graph (ARG) in XML

format and positions of
reticulate events

Recent Computational
effectiveness

Inability to process
alignments with

gaps
[103]

Horizontal Gene Transfer (HGT) Detection

Clusterflock Self-organizing flock
algorithm Parametric Sequences and a

distance matrix
Clusters of sequences in

tabular format Recent

Applicability to any
distance metrics and
resilience to missing

data

Has not been
compared to the

existing tools
[108]

gmos

Pairwise local
alignments with

subsequent regions
overlapping

Parametric
Query and subject
genomes in FASTA

format

Structural variants in
FASTA format Recent

Computational
effectiveness and the
ability to reveal both

HR and HGT

Depends heavily on
the high similarity

between transferred
regions

[109]

GeneMates

Association tests
with the

linear-mixed model
accounting for

population structure

Parametric
Genome assemblies

in FASTA format and
raw reads in FASTQ

format

The linkage network of
horizontally co-transferred

alleles in tabular format
Recent

Resolving
co-occurred HGT

events

Reduced sensitivity
due to the

dependence on core
SNPs

[110]

ShadowCaster
Support vector
machine-based

hybrid approach

Implicit
phylogenetic and

parametric

A query genome and
proteome and list of
related proteomes in

FASTA format

The list of HGT candidates
with corresponding

likelihood calculations in
tabular format

Recent and ancestral

High sensitivity
when reveling both
recent and ancient

events and reduced
false-positive rate

Does not determine
the directions of

transfers and
processes only a
single genome

[98]

nearHGT

Calculating synteny
index (SI) followed
by constant relative
mutability (CRM)

measurement

Synteny-based and
parametric

Reference and
putatively
transferred

sequences in FASTA
format

Chi-square-based p-value
denoting the probability of

HGT
Recent High sensitivity

No ready-made
application is

available
[49]

HGT-Finder

Similarity ratio
evaluation for

proteins according to
BLAST hits and

taxonomic distance
calculation based on
the NCBI Taxonomy

annotation

Implicit
phylogenetic

The BLAST search
result and the NCBI
Taxonomy database

Tabular format file with the
transfer index value for a

protein
Recent Detecting mostly

true events

High reliance on the
taxonomic

nomenclature and
low sensitivity

[91]
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Table 1. Cont.

Tool Applied Approach Method’s Class Input Output Detected Events Advantages Limitations References

HGTector

Analyzing BLAST
hit distribution

patterns according to
predefined

evolutionary
categories

Implicit
phylogenetic

FASTA files of amino
acid sequences for

each analyzed
genome

List of candidate
HGT-derived genes with
the respective silhouette
scores in tabular format

Recent
Insensitive to gene
loss, rate variations,
and database errors

High reliance on the
taxonomic

nomenclature and
low sensitivity

[93]

RecentHGT

The expectation-
maximization

algorithm based on
the

sequence-similarity
distribution of

orthologous genes

Implicit
phylogenetic

Tabular file with
strains information

and RAST-annotated
GenBank file

Putative HGT events in
chromosomal and plasmid
regions in tabular format

Recent

Reduced
false-positive rate
when processing
conserved genes

Missing events when
analyzing divergent

sequences
[96]

Daisy

Mapping-based
detection relying on
short read pairs and

coverage
information

Parametric

Reads from the
analyzed organism

and poposed
acceptor and donor
genomes in FASTA

format

A variant call format (VCF)
file reporting HGT

candidates meeting the
predefined threshold and
tabular format file with all

potential events

Recent

Outperforms
reference

genome-based
approaches if short
reads are available

Requires short reads
only and explicit

specifying recipient
and donor genomes

[11]



Int. J. Mol. Sci. 2022, 23, 6257 14 of 20

5. Conclusions

Homologous recombination (HR) and horizontal gene transfer (HGT) in bacteria are
fundamental mechanisms of their evolution, and these two processes are inextricably con-
nected on a genomic scale. HR provides allelic diversity and causes genetic gain/loss [13].
It may well maintain genome stability by discarding unused HGT-obtained genes, and
sometimes this gene loss intensity does not correlate to the overall HR rate [127]. HR
and HGT are of importance for fundamental science and practical application. Therefore,
genomic studies require special tools for the effective detection of these events. Recently,
a host of programs have been devised, and the development is still going on. Having re-
viewed novel bioinformatics tools, we revealed that methods depend on the consequences
of HR and HGT such as alterations in synteny, trees’ topologies incongruence, and al-
tered distribution of genetic features (Figure 1). A great variety of available programs
presents dozens of applications for studies with different goals and varying performances
when used on diverse data. Programs such as Mcorr [101] or clonal frame model-based
tools [44,64,73] can calculate overall HR rate, while nearHGT can evaluate HGT rate [49].
ARGs implemented in Bacter [35] are tuned to depict site-wise individual HR histories, thus,
being computationally expensive, sensitive to divergence, and applicable for analyzing
small sets of related genomes. Parent–child relationships for large blocks are also provided
by RDP4/5 [66,67] in the case of HR, and similar donor-acceptor HGT directions could
be identified with Daisy [111]. The tools also differentiate in preferred data to process.
ClonalFrameML [73], Gubbins [44], and RDP4/5 [66,67] manage to detect recent HR events
in moderately divergent sequences, while fastGEAR [10] is suitable for digging ancestral
and recent recombination events in sequences with high divergence. If highly accurate
detection of true recombination events is needed, ptACR [40] and HREfinder [99] seem
to be useful, while, at the same time, they lack sensitivity. Similar to HR, RecentHGT [96]
shows a lower false-positive rate being appropriately utilized to uncover recent transfers in
similar sequences, whereas HGT-Finder [91] and HGTector [93] are tuned to trace events in
distant genomes. Similar to fastGEAR [10], ShadowCaster [98] predicts both distant and
close HGT events and potentially appears to be the most effective HGT-detecting tool by
far. To sum up, state-of-the-art approaches for studying HR and HGT are characterized by
different sensitivities and accuracies, and they find either recent or ancient events in similar,
moderately different, or highly divergent sequences. We might conclude, that the tools
reviewed show better performance when detecting some types of recombination events
while being less effective to reveal others. Therefore, it looks promising to develop new
software that incorporates hybrid approaches to improve recombination detection. Going
further, given the genomic interrelation between HR and HGT affecting each other in terms
of frequency and direction, a comprehensive framework equipped with both HR and HGT
predictors would sufficiently broaden our understanding of the mechanisms driving the
plasticity of bacterial genomes.
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Abbreviations

HR Homologous recombination
NHR Non-homologous recombination
HGT Horizontal gene transfer
LGT Lateral gene transfer
SSAPs Single-strand annealing proteins
SSA Single-strand annealing
ARGs Ancestral recombination graphs
MLST Multilocus sequence typing
CGP Coarse-graining approach for phylogenetic reconstruction
CRM Constant relative mutability
SI Synteny index
PRRSV Porcine reproductive and respiratory syndrome virus
GPSCs Global pneumococcal sequence clusters
SNPs Single nucleotide polymorphisms
HMM Hidden Markov model
TDA Topological data analysis
MCMC Markov chain Monte Carlo
tARG Topological ARG
OGFs Orthologous gene families
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