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Abstract

Major Depressive Disorder (MDD) often is associated with significant cognitive dysfunction. We 

conducted a meta-analysis of genome-wide interaction of MDD and cognitive function using data 

from 4 large European cohorts in a total of 3510 MDD cases and 6057 controls. In addition, 

we conducted analyses using polygenic risk scores (PRS) based on data from the Psychiatric 

Genomics Consortium (PGC) on the traits of MDD, Bipolar disorder (BD), Schizophrenia 

(SCZ), and mood instability (MIN). Functional exploration contained gene expression analyses 

and Ingenuity Pathway Analysis (IPA®). We identified a set of significantly interacting single 

nucleotide polymorphisms (SNPs) between MDD and the genome-wide association study 

(GWAS) of cognitive domains of executive function, processing speed, and global cognition. 

Several of these SNPs are located in genes expressed in brain, with important roles such 

as neuronal development (REST), oligodendrocyte maturation (TNFRSF21), and myelination 

(ARFGEF1). IPA® identified a set of core genes from our dataset that mapped to a wide 

range of canonical pathways and biological functions (MPO, FOXO1, PDE3A, TSLP, NLRP9, 

ADAMTS5, ROBO1, REST). Furthermore, IPA® identified upstream regulator molecules and 

causal networks impacting on the expression of dataset genes, providing a genetic basis for further 

clinical exploration (vitamin D receptor, beta-estradiol, tadalafil). PRS of MIN and meta-PRS 
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of MDD, MIN and SCZ were significantly associated with all cognitive domains. Our results 

suggest several genes involved in physiological processes for the development and maintenance of 

cognition in MDD, as well as potential novel therapeutic agents that could be explored in patients 

with MDD associated cognitive dysfunction.
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cognitive function; MDD; GWAS; neurodevelopment

Introduction

Major Depressive Disorder (MDD) is an enormous health problem globally, with many 

years of life lived with disability1. In the 2017 Global Burden of Disease Study, MDD 

accounted for an estimated 32.8 million years lived with disability (YLDs)2. Cognitive 

dysfunction has been found to occur in over half of patients with MDD3, including deficits 

in memory, executive function, attention, and slower reaction time4, 5. Deficits in memory 

involve immediate memory6, verbal learning and memory7, visual memory, and working 

memory8.

Cognitive dysfunction observed in MDD is associated with impairment in functioning, 

including social and occupational functioning5, 9. Specifically, unemployment has been 

associated with cognitive dysfunction in both current and remitted MDD6. Furthermore, 

increased severity of MDD has been correlated with reduced cognitive performance in 

measures of executive function, processing speed, and episodic memory10. It has also been 

hypothesized that persistent cognitive dysfunction may be associated with a more disabling 

illness, including more frequent admissions to hospital 9 and non-response of depressive 

symptoms to pharmacotherapy11.

Importantly, cognitive dysfunction observed in MDD often persists, even after other 

symptoms of depression have remitted5. In addition to the cognitive dysfunction persisting, 

the impairment in psychosocial function can persist5, 9, 12. These clinical observations 

suggest that cognitive dysfunction is not only a state marker of MDD, but can present as a 

trait marker of MDD. Hence, there is a need to explore the underlying biology of cognitive 

function in MDD, including its genetic architecture, in more detail. While a number of novel 

treatments are showing promise in improving cognitive dysfunction in MDD, the research 

is generally in the early stages13. Further exploration of the underlying biology of cognitive 

dysfunction may enhance better targeting of treatment, and lead to the identification of novel 

molecular targets for treatments in patients with MDD5, 13.

Only few previous studies have specifically explored the genomic signature of cognitive 

performance in MDD patients and have produced heterogeneous results. A GWAS meta-

analysis conducted in 24 independent cohorts as part of the Cognitive Genomics Consortium 

(COGENT) found genetic correlations between general cognitive performance and several 

psychiatric traits, but not for MDD14. In contrast, linkage disequilibrium (LD) score 

regression analyses using UK Biobank cognitive data found that MDD was genetically 

associated with slower reaction time15. In another study, healthy individuals with a higher 
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MDD polygenic risk score (PRS) were found to show working memory activation patterns 

more like those seen in MDD16. Using data from over 7000 individuals participating in 

the Generation Scotland: the Scottish Family Health Study, Meijsen et al.17 confirmed 

significant deficits in those with MDD across a number of cognitive domains but found no 

single nucleotide polymorphism (SNP) associations with cognitive performance in patients.

These previous findings highlight common difficulties in this research area. First, both MDD 

and cognitive function are complex psychological concepts characterized by high levels 

of phenotypical heterogeneity, requiring very large samples to detect meaningful genetic 

associations. Second, the psychometric tools used to measure cognitive domains vary 

widely, and ‘composite’ cognition scores inherently introduce more variation. To achieve 

progress, studies are required in cohorts that are large and well enough characterized to 

break down cognitive function into recognized subdomains. Third, clinical data suggest that 

cognitive performance and MDD status interact with each other in complex ways. Therefore, 

analytic approaches are warranted that allow for the identification of such interactions on a 

genetic level.

To address these challenges, we aimed to investigate the phenotypic and genetic relationship 

between cognitive function and MDD through a genome wide interaction study, using 

several large European cohorts including MDD cases and healthy controls. Regular GWAS 

identifies the effect of a genetic variant on the phenotypes. The genome-wide interaction 

analysis aims to explore the modifying effect of an exposure variable on the genetic 

association. Due to the excellent clinical characterization of these cohorts, we were able 

to conduct separate analyses for global cognition as well as individual cognitive domains 

including executive function, immediate and delayed memory, and processing speed. We 

hypothesised that genetic associations with cognitive performance differ by MDD status.

Finally, to explore the biological functions of the loci identified in the genome-wide 

interaction study, we conducted analyses including psychiatric PRS, gene expression data, 

and Ingenuity Pathway Analysis (IPA®).

Methods

The overall sample consists of 9567 participants (3510 MDD cases and 6057 controls) with 

both genetic and other phenotypic data from four cohorts (Table 1). A detailed description 

of the cognitive tests in each cohort, including how each test is administered, appears in 

the supplementary material – including Table S1 (refer also to Supplementary Figure 1). 

A description of the method used to calculate z scores for each cognitive test within each 

cohort, for each cognitive domain, and then for each cohort (i.e. a global cognitive score) is 

also provided in the supplementary material.

BiDirect study

BiDirect includes three different cohorts. The first cohort is comprised of individuals with a 

current episode of MDD at the time of recruitment, the second cohort consists of individuals 

with cardiovascular disease, and the third cohort is a reference cohort that was randomly 

sampled from the population18. Cognitive tests in the study assess executive function, 
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processing speed, immediate memory, and delayed memory – with complete data available 

for close to 1600 participants.

FOR2107 cohort

The FOR2107 consortium investigates MDD, as well as Bipolar Disorder (BD), 

Schizoaffective Disorder, and Schizophrenia (SCZ)19. In addition to study participants 

meeting criteria for these disorders, the cohort includes participants at risk, as well as 

healthy controls, with a total of 2500 individuals19. Healthy controls are those without 

genetic risk (no relatives with MDD or BD) or environmental risk (no Childhood 

Trauma Questionnaire subscales meeting the maltreatment threshold)19. Executive function, 

processing speed, immediate and delayed memory are all measured in this cohort.

Generation Scotland cohort

Generation Scotland: Scottish Family Health Study (GS: SFHS) is a large community, 

family based study, with close to 24000 participants 20. The wide range of clinical 

information includes medical history, family history, as well as phenotypes of personality 

traits and mental health20. Cognitive tests measure processing speed, executive function, 

immediate and delayed memory.

SHIP Trend cohort

The Study of Health in Pomerania consists of two population-based independent cohorts 

(SHIP and SHIP-TREND)21. The SHIP-TREND study is the baseline examination of the 

second SHIP cohort, with data collected from 2008 to 201121. Complete data was available 

for 602 participants from SHIP Trend. Executive function and verbal episodic memory are 

assessed in the cohort.

Genome-wide association analysis

We performed the GWAS using SNP by MDD status interaction analysis based on three 

statistical tests, but summarised the main finding using the joint test of SNP and SNP 

by MDD interaction effect (2 degrees of freedom (2 df) test). This has been shown to 

be more powerful in detecting SNPs than either the marginal SNP or the pure SNP 

by MDD interaction test alone22. For each cohort and for each cognitive domain score, 

three genome-wide association tests, the marginal SNP effect, pure interaction effect of 

SNP with MDD status (SNPxMDD) and a joint test of both SNP and SNP by MDD 

status were performed using the GxEscan23 software. To account for confounding and 

population stratification issues, an additional set of covariates such as age, sex, total years 

of education and the first ten principal components were used in the regression models. 

Meta-analysis methods were used to combine each of the three GWAS results across the 

cohorts. Quality controlled GWAS results were meta-analysed for the marginal SNP effects 

and the interaction effect (SNPxMDD) using the METAL package24. Meta p-values for the 

joint effect were obtained using the sample size weighted linear combination of the joint 

effect 2df chi-square statistics25. The results were summarised based on the meta-analysis 

p-values of the joint test of SNP and SNP x MDD status (2 df) tests. The list of SNPs 

reported by the 2 df tests are either associated with cognitive function and/or differentially 
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associated between the MDD subgroups. In other words, identified SNPs are associated 

with cognitive function domains, while also being moderated by MDD status. The GWAS 

p-value threshold was set at p<=5e-8, unadjusted for the number of traits as these traits are 

correlated.

The gene-based GWAS of the joint SNP and SNP x MDD (2df tests) were performed 

using MAGMA26 and the polygenic risk scores were generated using PRS-CS27 software. 

Regression analyses of the combined PRS score with relevant covariates were performed 

using R package v4.0.028. Additional details of the statistical analyses are provided in the 

supplementary material.

Functional analyses of GWAS findings

We conducted functional analyses of our GWAS findings using Qiagen’s Ingenuity 

Pathways Analysis software (IPA®, QIAGEN Redwood City, CA, USA, www.qiagen.com/

ingenuity). Lists of genes for IPA® input were prepared using results from the genome-wide 

2df tests and SNPxMDD interaction tests for all cognitive domains. For intergenic SNPs, the 

closest gene was added to the list. The input to IPA was an unranked list of these genes. IPA 

compares the proportion of input genes mapping to a biological pathway to the reference 

genes list in the ingenuity databases. The significance of the overrepresented canonical 

pathways and functional networks is determined using the right-tailed Fisher’s exact test and 

later adjusted for multiple testing using the Benjamini-Hochberg (BH) method. Significant 

results are determined at BH adjusted p-value <0.01.

Results

Study cohorts

A description of the study cohorts is provided in Table 1. Across all cohorts, there were 

a total of 9567 study participants. In all cohorts, there is a higher percentage of females 

(Table 1). Average age of participants is highest in the BiDirect cohort, with a similar 

average age in the BiDirect, Generation Scotland, and SHIP-Trend cohorts (51.1, 47.9, and 

48.8 years respectively). The average age of the FOR2107 study was considerably lower at 

34.8 years. The largest age range is in Generation Scotland (18 – 93 years), however only 

58 participants were aged over 75 years in this cohort. Only 8 participants in SHIP-Trend 

were over the age of 75 years. Years of education were similar in the BiDirect, Generation 

Scotland, and FOR2107 groups (average 14.3, 13.8, and 13.5 years respectively).

Ratio of cases to controls was highest in the BiDirect cohort, with 912 cases (58.7% of 

participants) and 642 controls (Table 1). In addition, 801 (51.5%) of participants in this 

cohort had Center for Epidemiological Studies-Depression (CES-D)29 scores ≥ 16, a cut-off 

score used to indicate those at risk of depression. Of participants in the FOR2107 cohort 

with lifetime MDD, 13.5% and 2.3% had Hamilton Depression Rating Scale (HAM-D)30 

scores in the moderate and severe range respectively. Both Generation Scotland (see suppl. 

Methods for case-control selection for this analysis) and SHIP-TREND are population 

samples, hence these cohorts have not specifically targeted MDD (and have a lower lifetime 

MDD case to control ratio, with 30.5% and 24.6% of study participants respectively meeting 
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MDD criteria). There is significant difference between lifetime MDD cases and controls 

in age across the cohorts except in SHIP-Trend; in sex ratio except in FOR2107; and in 

education in BiDirect and FOR2107 (Table1).

Age, sex and education are significantly associated with cognitive domain scores across all 

the cohorts (Supplementary Table 2i). Associations of MDD status and severity of MDD 

with cognitive domains are not consistent across all the cohorts (Supplementary Tables 

2i and 2j). The individual mean cognitive scores differ significantly across the cohorts 

(Supplementary Table 2k).

Genome-wide association analyses

i GWAS of cognitive domains associated with MDD—Manhattan plot of the p-

values from the joint test of SNP and SNP x MDD interaction terms are presented in Figure 

1. Presented SNPs are associated with cognitive function domains and/or also moderated 

by MDD status. The QQ plots are provided in Supplementary Figure 2. The marginal SNP, 

SNPxMDD and gene-based association results are provided in the supplementary text.

The domain of executive function showed significant association with 48 SNPs. This 

included the SNP rs188552424 in TNFRSF21, a gene which has a role in the negative 

regulation of oligodendrocyte maturation31, and rs112979588 in DCAF6, a gene thought to 

be involved in stability of the neuromuscular junction32. Individual SNPs in TSLP (a gene 

involved in immune function33), REEP3 (involved in microtubule binding34, 35), and 2 SNPs 

in PDE3A (a gene implicated in cerebral endothelial dysfunction36) were also associated 

with executive function (Supplementary Table 2a).

In the domain of delayed memory, the SNPs rs117823280 (near ZNF839) and rs117688348 

(near MYH10) were found to be significantly associated (Supplementary Table 2b). A 

point mutation of the MYH10 gene in mice is involved in developmental cardiac and brain 

defects37.

With processing speed 116 SNPs were found to be GWAS significant (Supplementary Table 

2c). These included the SNPs in DCAF6, REEP3, and PDE3A associated with executive 

function, plus rs72635025 in ADAMTS5 (involved in regulation of reelin - an important 

protein for cortical development38), and rs114216628 in ROBO1 (a gene involved in axon 

guidance39).

Thirty-two SNPs were significantly associated with global cognition (Supplementary Table 

2d). Several of these SNPs were also associated in the domains of executive function 

and processing speed (SNP rs139747326 in PTAR1, rs148528269 in REEP3, rs112979588 

in DCAF6, rs117658905 in CPXM1, and rs72635025 in ADAMTS5). No SNPs reached 

genome-wide significance for the domain of immediate memory (Supplementary Figure 3).

ii Polygenic risk scores analyses—Association of PRSes of BD, MDD, SCZ, and 

mood instability (MIN) with cognitive domains were examined. PRS of SCZ and MIN 

were significantly associated with all the cognitive domains in our sample. BD PRS was 

associated with four cognitive domains (delayed memory, immediate memory, processing 
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speed, global cognition), but not with executive function. MDD PRS had significant 

association with the cognitive domains of processing speed, immediate memory, and global 

cognition, but the effect was not in a consistent direction (Supplementary Table 2g, marginal 

model). Interestingly, none of the PRS had significant interaction with MDD status except 

the PRS of MDD. To understand the change in effect sizes, we have also examined the 

meta-PRS (MET3) of the three summary GWAS statistics (MDD, MIN, SCZ) with the 

cognitive domains. Although the MET3 is significantly associated with all the cognitive 

domains in consistent directions, the effect sizes are not bigger than the individual PRSes 

(Supplementary Table 2g, marginal).

Functional analyses

i Gene expression analysis of significant genes—Expression pattern and tissue 

specific enrichment of the significantly associated genes (corresponding to the associated 

SNPs) across all cognitive domains were examined using the gene2func module of 

the FUMA software40 using the GTEx (https://gtexportal.org/home/) gene expression 

data. Tissue specific gene expression is displayed in Figure 2. A number of genes are 

expressed in brain, in particular the amygdala (TNFRSF21, DCAF6), anterior cingulate 

cortex (TNFRSF21), basal ganglia (MYH10, DCAF6), frontal cortex (TNFRSF21, DCAF6, 

VMP1), hippocampus (REEP3), hypothalamus (TNFRSF21, REEP3) and cerebellum 

(REEP3, TNFRSF21, DCAF6, VMP1, PTAR1) – but also in other body tissues. No 

tissue specific enrichment tests were found to be significant (Supplementary Figure 4; 

Supplementary Table 2h).

ii IPA® - Functional analyses of genes associated with cognitive phenotypes
—We used IPA® to map genes implicated in the GWAS analysis to the service’s proprietary 

knowledge databases, which include canonical pathways, functional gene networks, 

upstream regulators, causal networks, diseases and bio-functions, toxicology functions, and 

toxicity lists. Detailed IPA® results for a summary gene list for all cognitive domains 

are provided in [Supplementary tables 3]. Overall, there is a relatively small number 

of genes that drive the IPA®-associations with various functional categories (canonical 

pathways, diseases and biofunctions etc.), including MPO, FOXO1, PDE3A, TSLP, NLRP9, 

ADAMTS5, ROBO1 and REST.

MPO was the dataset gene in the IPA® top canonical pathway, melatonin degradation, 

for the combined domains analysis and for processing speed, while FOXO1 and PDE3A 
drove the top canonical pathway for executive function (leptin signalling in obesity)

[Supplementary tables 3].

When all dataset genes where analysed, the two top IPA®-defined functional interaction 

networks implicated TSLP (network 1) and ADAMTS5, the latter together with beta-

estradiol (network 2), as central functional nodes (Figure 3a and b). For executive function, 

the top interaction network centrally implicated the dataset gene NPNT, as well as the 

estrogen receptor 2 (ESR2), androgen receptor (AR), tumor protein 53 (TP 53), and 

amyloid precursor protein (APP). For processing speed, central connectivity was shown 
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for the dataset gene VMP1 together with TP53, TGFB1, HNF4A, and the NFkB complex 

[Supplementary tables 3].

Further, IPA® identified upstream regulators and causal networks with associations to 

dataset genes. Amongst the top-listed molecules, the vitamin D receptor (VDR), beta-

estradiol, the phosphodiesterase inhibitor tadalafil, and the protein kinase C inhibitor Go 

6976 impact on several dataset genes and could therefore be of particular translational 

interest [Supplementary tables 3].

Discussion

We conducted a genome-wide interaction analysis of MDD with cognitive function in the 

BiDirect, FOR2107, Generation Scotland, and SHIP Trend cohorts. We observed a set of 

SNPs to be specifically associated with cognitive function, in the context of MDD. In other 

words, these SNPs became GWAS significant in the joint test of SNP and SNPxMDD, but 

were not marginally significant when the MDD status was not included in the analysis. 

The joint tests of SNP and SNPxMDD have improved power to find SNPs/ genes which 

would have been missing by the routine GWAS (our marginal test) because it looks for 

average effect among MDD vs non-MDD samples. Hence, MDD status has demonstrated a 

moderating effect on the association of these SNPs with cognitive domains.

Significant SNPs from our GWAS were from various genes including LINC00520 (observed 

to promote tumour processes in glioma cells41), CPXM1 (also known as CPX-142, involved 

in adipogenesis43), VMP1 (thought to be important in releasing lipoproteins from the 

endoplasmic reticulum membrane44), and REEP3 (involved in microtubule binding34, 35 

and possibly synaptic plasticity34). REEP3 is also involved in neural pathways linked to 

obsessive-compulsive disorder45 and has been proposed as a positional candidate gene for 

autism spectrum disorder46.

A number of significant SNPs were located in genes involved in negative regulation of 

oligodendrocyte maturation (TNFRSF21)31, axon guidance (ROBO1)39, and myelination 

(ARFGEF1)47. It is also notable that genes such as REEP3, TNFRSF21, and ARFGEF1 
are all expressed in brain (Figure 2). Furthermore, SNPs from REEP3 and DCAF6 (also 

expressed in brain areas including the amygdala, basal ganglia, and frontal cortex) were 

specifically associated with multiple cognitive domains.

Several significant SNPs for global cognition are located in the REST gene (Supplementary 

Table 2d), which as a transcription repressor has an important role in the development of 

neurons48, 49, and also in regulating secretion of insulin from pancreatic β-cells49.

The functional analysis using IPA® software highlighted genes mapping to a high number 

of canonical pathways as well as to various disease- and biofunctions (MPO, FOXO1, 

PDE3A, TSLP, NLRP9, ADAMTS5, ROBO1 and REST). Several of these have previously 

been implicated in the neurobiology of cognitive function. For example, myeloperoxidase 

(MPO) is an enzyme highly expressed by neutrophils and is a primary mediator of 

neutrophils’ oxidative stress response. Elevated MPO levels have been implicated in the 

pathogenesis of Alzheimer’s disease, and mice with MPO deficiency were shown to 
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exhibit superior cognitive performance50. Forkhead Box O (FOXO) transcription factor 

1 is one of 4 isoforms which have previously been described as ‘guardians of neuronal 

integrity’ by inhibiting age‐progressive axonal degeneration in mammals through regulation 

of neuroprotective mechanisms under pro-inflammatory conditions51. In mice, depletion 

of neuronal FOXO 1, 3, and 4 initiates neurodegeneration and advances brain ageing51. 

ADAMTS5, at the centre of functional network 2, is a metalloprotease recently shown 

to play a role in cortical development through interactions with reelin and DISC1 38. 

Interestingly, a variant of TP53, which is implicated in the top functional networks for 

executive function and processing speed, has been described as a disease modifier in fronto-

temporal dementia52.

The IPA -defined upstream regulator molecules and causal networks may provide a genetic 

rationale for further clinical evaluation and therapeutic strategies, in the context of MDD. 

These include beta-estradiol and the estrogen receptor, whose potential for cognitive 

enhancement has been demonstrated in a wide range of preclinical and clinical studies (for 

overview see Hamson et al.53). Signalling through the vitamin D receptor (VDR), another 

IPA® upstream regulator, has been proposed as a strategy for cognitive enhancement54 but 

has not been tested in depressed populations. Taurine supplementation has been observed to 

reduce MPO levels and boost the effects of exercise on cognition in women > 60 years55, 

but also does not appear to have been investigated as a therapeutic adjunct in MDD. Further, 

previous clinical and pre-clinical studies have suggested potential benefit of the upstream 

regulator tadalafil (a 5-phosphodiesterase inhibitor) on cognitive function56–58.

While only the PRS of MDD had significant interaction with MDD status (PRS associated 

with processing speed and executive function, although the effect was in an inconsistent 

direction), the PRS of SCZ and MIN were associated with all cognitive domains. The 

relationship between mood instability and psychiatric disorders has been previously 

investigated, with mood instability found to have a strong genetic correlation with MDD, 

and small but significant correlation with SCZ59. More specifically, mood instability and 

cognitive dysfunction are common in MDD, BD, and SCZ60, 61. These changes in affect 

regulation and cognitive function seen across diagnoses may relate to areas of the brain such 

as the prefrontal cortex. Specifically, reduced functional connectivity between the prefrontal 

cortex and amygdala, brain regions important in emotion regulation62, has been observed 

in BD63 and SCZ64. The prefrontal cortex is important not only in emotion regulation, but 

also in planning and other components of executive function65. With regard to MDD, altered 

functional connectivity has also been observed, with decreased resting state connectivity 

between prefrontal cortex and amygdala in adolescents, and increased connectivity between 

the amygdala and hippocampus in adults66.

No tissue specific enrichment tests of genes were significant. We also did not identify 

identical genome-wide significant SNPs found in previous GWA studies of cognitive 

function from the Cohorts for Heart and Aging Research in Genomic Epidemiology 

(CHARGE) consortium67, the UK Biobank68, in meta-analyses of GWA studies from 

CHARGE69, or in a meta-analysis combining the UK Biobank, CHARGE, and Cognitive 

Genomics Consortium (COGENT) samples70. It is possible that biological pathways which 
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may be involved in MDD, including inflammation, are associated with different genetic 

variants of cognitive traits.

Similarly, in our analyses, none of the genome-wide significant SNPs found in the recent 

Psychiatric Genomics Consortium GWA meta-analysis in MDD, which identified 44 

significant loci71 or from the 23andMe MDD discovery data set72 were identified in the 

context of MDD and cognitive function. Reasons for this could extend beyond the smaller 

sample size of our cohorts, to include age, as well as MDD severity - with different genetic 

variants contributing to cognitive dysfunction during (compared with in between) depressive 

episodes.

There are strengths and limitations of our study. Strengths of this study include the number 

of cognitive tests performed and the coverage of a broad range of cognitive domains, 

covering multiple domains (for example the BiDirect and FOR2107 cohorts are rich in 

phenotypes, and assess MDD in a clinical sample). In addition, we conducted functional 

analyses of the genes associated with cognitive function, which we believe adds to the 

understanding of the neurobiology of cognitive dysfunction in MDD. Several limitations 

need to be considered when interpreting the results. First, the total sample size is relatively 

modest (particularly in comparison to the CHARGE Consortium, COGENT, and UK 

Biobank – which are all population studies). Hence, replications in other independent 

cohorts are important especially for those SNPs with low minor allele frequency (MAF). 

Second, although our GWAS covered a broad range of cognitive domains relevant to MDD, 

not all cohorts from our study contributed to the cognitive domains in the same way; 

hence, depending on the availability of individual tests in each cohort, different individual 

measures were used for a particular cognitive domain within the cohorts. Therefore, to 

address the heterogeneity of cognitive tests and best represent the relevant cognitive domain, 

we calculated z scores for each domain that was assessed by more than a single cognitive 

test. Any impact of this heterogeneity will therefore be more in a cohort where more than 

one cognitive measure was used within an individual domain. Third, cohorts included a mix 

of patients, with some tested during a major depressive episode, and some tested during 

remission. Hence, there may be SNPs associated with an acute episode of severe MDD 

and cognitive dysfunction that are different to those associated with persistent cognitive 

dysfunction following a major depressive episode. Fourth, the clinical and cognitive 

measures were obtained at a single time point only, hence the presented results are related 

to a trait of cognitive dysfunction rather than to changes in cognitive function over time. 

Fifth, some age-related impact on cognition in cohorts with participants over 75 years is 

possible, however, only a small number of participants were of this age. Sixth, databases 

for functional analysis such as IPA® are not biologically complete, and CNS processes are 

typically not as well covered as processes that can be studied in peripheral tissues such as 

blood. Therefore, it is possible that our functional analysis was unable to detect additional 

important pathways directly relevant to brain function.

Conclusions

We find a set of SNPs to be specifically associated with cognitive function, in the 

context of MDD. Many of these SNPs are expressed in brain, and functional analysis 
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of the results point to central physiological processes involved in neuronal development, 

neuroprotection, and maintenance of optimal cognition, thereby offering putative therapeutic 

targets. Potentially this cognitive phenotype - if confirmed in future analyses - represents a 

subgroup in MDD, with unique biological characteristics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manhattan plot for GWAS of SNP and SNP x MDD with cognitive domains
Joint test of SNP and SNP x MDD interaction with cognitive domains. GWAS significant (p 

<= 5x10-8) loci are highlighted with the gene name closest to the top SNP. Identified SNPs 

are associated with cognitive function domains and/or moderated by MDD status.
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Figure 2. Tissue specific expression of top genes (p < 5.0 x 10-8) associated with cognitive function 
across all cognitive domains
Tissue types are on the x-axis and gene symbols are on the y-axis. Scale bar on the right 

gives colour coding and level of gene expression.
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Figure 3. IPA® – functional networks 1 & 2 for all cognition-associated genes
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Table 1
Sample description

BiDirect FOR2107 Generation Scotland SHIP-Trend Total

Total Sample (MDD and No MDD)

Number 1554 1254 6157 602 9567

Sex:

   Male 728 (46.8%) 478 (38.1%) 2399 (39.0%) 282 (46.8%) 3887(40.6%)

   Female 826 (53.2%) 776 (61.9%) 3758 (61.0%) 320 (53.2%) 5680(59.4%)

Age (years)

   Average 51.1 34.8 47.9 48.8 46.75

   SD 7.8 13.2 13.2 13.2 13.34

   Range 35.1-66.1 18.0-69.0 18.0-93.0 22.0-80.0 18.0-93.0

Edu (years)

   Average 14.3 13.5 13.8 10.4 13.66

   SD 2.7 2.6 3.4 1.2 3.23

   Range 0.0-18.0 9.0-18.0 0.0-24+ 8.0-12.0 0.0-24.5

MDD Sample

Number 912 (58.7%) 573 (45.7%) 1877 (30.5%) 148 (24.6%) 3510 (36.7%)

Sex: Male 391 223 538 40 1192

   Female 521 350 1339 108 2318

Age (years)

   Average 49.98 37.55 46.23 48.95 45.91

   SD 7.28 13.53 12.63 12.08 12.29

   Range 35.08-66 18-69 18-84 22.0-80.0 18-84

Edu (years)

Average 13.95 13.02 13.85 10.43 13.60

   SD 2.70 2.72 3.41 1.18 3.15

   Range 0-18 9-18 0-24.5 8.0-12.0 0-24.5

Current MDD 817 (89.6%) 423 (73.8%) 349 (18.6%) 84 (56.8%) 1673 (47.7%)

No MDD Sample

Number 642 (41.3%) 681 (54.3%) 4280 (69.5%) 454 (75.4%) 6057(63.3%)

Sex: Male 305 255 1861 242 2695

   Female 337 426 2419 212 3362

(P=0.0002) (P=0.634) (P<2.2e-16) (P=4.54e-08) (P<2.2e-16)

Age (years)

   Average 52.56 32.56 48.63 48.74 47.25

   SD 8.14 12.49 13.37 13.51 13.9

   Range 35.19-66.09 18-65 18-93 22.0-80.0 18-93

(P=2.03e-10) (P=2.38e-11) (P=2.02e-11) (P=0.858) (P=9.92e-07)

Edu (years)

   Average 14.84 13.92 13.82 10.44 13.68
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BiDirect FOR2107 Generation Scotland SHIP-Trend Total

   SD 2.69 2.48 3.35 1.25 3.23

   Range 0-18 9-18 2.5-24.5 8.0-12.0 0-24.5

(P= 2.0e-10) (P=1.97e-09) (P=0.780) (P=0.943) (P=0.174)

MDD = Major Depressive Disorder (lifetime); SD = standard deviation; P-value in parenthesis is for comparison between MDD vs No MDD. T-test 
was used for comparison of age and education and chi-square test was done to test the association between sex and MDD status.
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