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Abstract

There is a long-standing interest in understanding host-parasite coevolutionary dynamics

and associated fitness effects. Increasing amounts of genomic data for both interacting spe-

cies offer a promising source to identify candidate loci and to infer the main parameters of

the past coevolutionary history. However, so far no method exists to perform the latter. By

coupling a gene-for-gene model with coalescent simulations, we first show that three types

of biological costs, namely, resistance, infectivity and infection, define the allele frequencies

at the internal equilibrium point of the coevolution model. These in return determine the

strength of selective signatures at the coevolving host and parasite loci. We apply an Approx-

imate Bayesian Computation (ABC) approach on simulated datasets to infer these costs by

jointly integrating host and parasite polymorphism data at the coevolving loci. To control for

the effect of genetic drift on coevolutionary dynamics, we assume that 10 or 30 repetitions

are available from controlled experiments or several natural populations. We study two sce-

narios: 1) the cost of infection and population sizes (host and parasite) are unknown while

costs of infectivity and resistance are known, and 2) all three costs are unknown while popu-

lations sizes are known. Using the ABC model choice procedure, we show that for both sce-

narios, we can distinguish with high accuracy pairs of coevolving host and parasite loci from

pairs of neutrally evolving loci, though the statistical power decreases with higher cost of

infection. The accuracy of parameter inference is high under both scenarios especially when

using both host and parasite data because parasite polymorphism data do inform on costs

applying to the host and vice-versa. As the false positive rate to detect pairs of genes under

coevolution is small, we suggest that our method complements recently developed methods

to identify host and parasite candidate loci for functional studies.

Author summary

It is of importance for agriculture and medicine to understand host-parasite antagonistic

coevolutionary dynamics and the deleterious associated fitness effects, as well as to reveal

the genes underpinning these interactions. The increasing amounts of genomic data for
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hosts and parasites offer a promising source to identify such candidate loci, but also to use

statistical inference methods to reconstruct the past coevolutionary history. In our study

we attempt to draw inference of the past coevolutionary history at key host and parasites

loci using sequence data from several individuals and across several experimental repli-

cates. We demonstrate that using a Bayesian statistical method, it is possible to estimate

the parameters driving the interaction of hosts and parasites at these loci for thousands of

generations. The main parameter that can be estimated is the fitness loss by hosts upon

infection. Our method and results can be applied to experimental coevolution data with

sequences at the key candidate loci providing enough repetitions and large enough popu-

lation sizes. As a proof of principle, our results open the door to reconstruct past coevolu-

tionary dynamics using sequence data of interacting species.

Introduction

Host-parasite coevolution is an ubiquitous process and has been demonstrated in terrestrial

[1], limnological [2] and marine environments [3]. It describes the process of parasites and

hosts exerting reciprocal selective pressures on one another. Therefore, coevolutionary dynam-

ics are expected to substantially interact with and shape neutral nucleotide diversity linked to

the coevolving sites. The latter can be single or multiple SNPs in coding or non-coding parts of

genes [4, 5], insertions/deletions [6] or distributed across a gene network [7]. Accordingly, the

polymorphism patterns at the coevolving loci, referred to as the genetic signatures, are

expected to be distinct from loci not involved into the coevolutionary interaction. Therefore,

host and parasite genomic data are not only expected to be a valuable source to identify loci

under coevolution but also to understand the past coevolutionary history.

On the one hand, signatures of positive selection which are characterized by lower genetic

diversity compared to the genome-wide average and increased levels in linkage disequilibrium

[8] are expected to arise at the coevolving loci under so called arms-race dynamics [9, 10]. In

arms race dynamics, frequencies of new beneficial alleles (such as new resistance or infectivity

alleles) arising by de novo mutations increase towards fixation in both interacting partners.

Accordingly, alleles are short lived and recurrently replaced and thus, allelic polymorphism is

only transient [9, 10]. On the other hand, signatures of balancing selection characterized by

higher than average diversity [11] are expected to be the result of so called trench-warfare

dynamics (also referred to as Red Queen dynamics) [6, 9]. In this type of dynamics, several

alleles are stably maintained over large time periods in both coevolving species. Hereby, allele

frequencies either converge towards a stable equilbrium or they fluctuate persistently over

time. Based on these classic expectations, genomic studies have unravelled positive and balanc-

ing selection signatures at various resistance genes [4–6, 12–16] and effector genes [17, 18].

However in reality, there is a continuum between arms-race and trench-warfare dynamics.

The dynamics are in fact strongly affected by the type and strength of various forms of selec-

tion (negative indirect frequency-dependent selection, negative direct frequency-dependent

selection, overdominant selection) and their interplay with genetic drift [19, 20] and mutation

[21, 22]. Under negative frequency-dependent selection (nFDS) the fitness of a particular allele

is either inversely proportional to its own frequency (direct, ndFDS) or to allele frequencies in

the interacting partner (indirect, niFDS) [23, 24]. If only ndFDS is acting in single locus host-

parasite coevolutionary interactions internal equilibrium points where several host and para-

site alleles coexist may exist, but they are always unstable. In such systems overdominant selec-

tion or some form of ndFDS are a necessary but not always sufficient condition for trench-
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warfare dynamics to take place [21, 24]. Even if some form of ndFDS is acting, arms-race

dynamics can take place if either the strength of ndFDS compared to niFDS is weak or genetic

drift is causing random loss of alleles (see S1 Fig).

The exact nature of the dynamics, such as the equilibrium frequencies of alleles and the

period and amplitude of coevolutionary cycles, are further affected by the way host and para-

site genotypes interact at the molecular level and the fitness costs associated with the coevolu-

tionary interaction. The interaction at the molecular level is captured by the infection matrix

which stores the specificity and the level of infection in all possible pairwise interactions

between host and parasite genotypes [25]. One well studied type of interaction is the gene-for-

gene (GFG) interaction which presents one endpoint of a continuum of infection matrices [26,

27]. GFG-interactions are characterized by one universally infective parasite genotype and one

universally susceptible host type and for example have been found in the Flax-Melampsora lini
system [28].

A fitness cost which has been shown to crucially affect the coevolutionary dynamics is the

loss in host fitness due to infection [19, 24], henceforward called the cost of infection (s). This

fitness loss could be for example a reduced fertility or an increased mortality. In addition, costs

of resistance (cH) such as reduced competitive ability or fertility in absence of the parasite [29–

31] and costs of infectivity (cP) such as reduced spore production of highly infective pathogens

[32] compared to pathogens with a more narrow infection range can further alter the dynam-

ics. These costs also determine the equilibrium frequencies of the coevolutionary system [33,

34] at which one or several alleles are maintained or around which allele frequencies cycle. An

important result from previous theoretical investigations [33, 34] is that the equilibrium fre-

quencies in the host population depend on fitness costs applying to the parasite (cost of infec-

tivity). Conversely, the equilibrium frequencies in the parasite population depend on host

fitness costs (cost of resistance and cost of infection). Strictly speaking, coevolutionary dynam-

ics in a GFG-interaction occur only when s> cH. Coevolution is stronger with an increasing

difference between these two parameters, the strength being measured by faster cycles and

lesser sensitivity to the effect of genetic drift [19].

Given this continuum of coevolutionary dynamics, it is necessary to gain a deeper and

refined understanding on how the interaction between allele frequency dynamics at the

coevolving loci, genetic drift and mutation shapes the resulting genetic signatures at the coevo-

lutionary loci and linked neutral sites. This is an important step for the development and appli-

cation of methods designed to draw inference on the coevolutionary history. A previous study

has investigated this link for two distinct coevolutionary models [19]. Focusing on a small set

of summary statistics, the signatures at the coevolving loci cannot be necessarily distinguished

from neutrality when considering host or parasite data in isolation. Moreover, the strength of

genetic signatures at the coevolving loci depends on the host and parasite population sizes and

varies with changing costs of infection, resistance and infectivity [19].

The first aim of the present paper is to extend this approach [19] by including additional

summary statistics in order to get a more refined understanding of the resulting genetic signa-

tures. Based on this extended set of summary statistics, our major aim is to jointly infer several

of the above mentioned parameters as a proof-of-principle by using an Approximate Bayesian

Computation approach [35–37]. We thus, specifically seek to understand how much informa-

tion about parameters governing the past coevolutionary history is contained in, and can be

inferred from, the polymorphism data at pairs of coevolving loci.

We base our inference on average summary statistics from r = 10 and r = 30 repeatedly sim-

ulated coevolutionary histories. We envision data from repeated experiments for the following

two reasons. First, previous studies have shown [19] that drift substantially interacts with the

coevolutionary dynamics and the resulting genetic signatures. Second, microcosm
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experiments offer the possibility to perform repeated coevolutionary experiments with the

same initial conditions.

We test this approach on two different scenarios. In scenario 1, we aim to infer simulta-

neously the cost of infection (s), the host population size (NH) and the parasite population size

(NP) assuming that we know the true cost of resistance (cH) for resistant hosts and the true cost

of infectivity (cP) for infective parasites. This scenario mimics systems where experimental

measures of the costs of resistance or infectivity have been performed [32, 38] and thus, these

parameters can be assumed as known. In scenario 2, our goal is to infer simultaneously the

cost of infection (s), the cost of infectivity (cP) and the cost of resistance (cH) assuming that the

true host (NH) and parasite population sizes (NP) are known. Scenario 2 is motivated by the

assumption that an independent estimate of the effective population size can be obtained by

using full-genome data of loci unlinked to the coevolutionary locus. For each scenario we per-

form the ABC model choice to distinguish pairs of coevolutionary from neutral loci and subse-

quently infer the model parameters.

Materials and methods

General outline of the approach

Approximate Bayesian computation (ABC) is an inference method which can be used in situa-

tions where likelihood calculations are intractable, as is the case for the coevolutionary models

[39]. The principle of ABC methods is to perform a large amount of simulations covering the

parameter space for each of several possible models which are expected to reflect the past evo-

lutionary history of the population(s) of concern and thus, having given rise to the observed

data. These values of the different parameters of each model are drawn from prior distribu-

tions based on current knowledge. The observed data and each simulation are summarised by

the same set of summary statistics to reduce their dimensionality. In a rejection step the best

set of simulations, i.e. the simulations with the smallest distance to the summary statistics of

the observed data, can be selected. Based on this retained simulations a model choice can be

applied to obtain a posterior probability for each competing model. Under the model with the

highest posterior probability, an additional regression step can be used to generate the poste-

rior distribution of each parameter. In this paper we do not use real observed sequence data,

but study the power of our approach using so-called pseudo-observed (simulated) datasets

(PODs).

In more detail the workflow in our paper is as follows:

1. We compare a model of coevolution between a single host and single parasite locus to a

neutral model of independently evolving (non-interacting) pairs of host and parasite loci.

Under each model, we simulate polymorphism data for n = 50 haploid host individuals and

n = 50 haploid parasite individuals.

2. We simulate r replicates of these data corresponding to repeating r-times the coevolution-

ary history. Such repetitions can be obtained in controlled laboratory set-ups using for

example microcosm/chemostat experiments with several replicates, or from several inde-

pendent natural populations of the same host-parasite system with similar environmental

conditions.

3. We summarise the obtained SNP data by a set of 17 statistics (Table 1) for each of the

r-replicates.
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4. We calculate the mean for each of the 17 statistics across the r-replicates. These average val-

ues are used as summary statistics in the ABC. Therefore, the average statistics from one set

of r-replicates define a given pseudo-observed dataset (POD).

5. We first perform a model choice between the coevolution model and the neutral model

based on our PODs. For each POD, we select the 1% closest simulations based on the set of

summary statistics. Based on these retained simulations we compute the posterior probabil-

ity for both models.

6. In a second step, we estimate the posterior distribution of the coevolutionary parameters

for the PODs. We apply a post-sampling adjustment (regression) based on the 1% best sim-

ulations under the coevolutionary model.

Simulation of SNP data at the coevolutionary loci

SNP data at the coevolutionary loci are simulated by using a forward-backward approach as

outlined in [19].

Forward in time coevolution model. We model coevolution between a single haploid

host and a single haploid parasite species. The coevolutionary interaction in both species is

driven by a single bi-allelic functional site (SNP, indel, . . .). This functional site is located in

the coevolutionary locus which encompasses several other linked neutral sites. Hosts are either

resistant (RES) or susceptible (res) and parasites are either non-infective (ninf) or infective

(INF). Thus, the model follows a gene-for-gene interaction with the following infection matrix:

ninf INF

RES

res

0 1

1 1

 !
; ð1Þ

where each entry gives the probability that a given host genotype is infected by a given parasite

genotype. Hence, a 1-entry in the infection matrix indicates that the parasite always infects the

host and a 0-entry indicates that the host is fully resistant towards the parasite.

We denote the frequency of resistant hosts (susceptible hosts) by R (r) and the frequency of

infective parasite (non-infective parasites) by a (A). The coevolution model is based on the

polycyclic auto-infection model in [24]. This population genetics model (sensu [40]) assumes

host and parasite population sizes to be constant regardless of the disease prevalence and is

based on non-overlapping host and parasite generations. As such it is probably most suited to

describe plant-parasite or invertebrate-parasite systems.

Table 1. SNP statistics calculated.

Name reference

number of segregating sites S [65]

θW [65]

nucleotide diversity π [66]

Tajimas’ D [67]

Fu and Li’s D [68]

Fu and Li’s F [68]

θH [69]

Hprime [70]

PMD

https://doi.org/10.1371/journal.pcbi.1007668.t001

PLOS COMPUTATIONAL BIOLOGY Inference of coevolutionary dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007668 March 23, 2020 5 / 30

https://doi.org/10.1371/journal.pcbi.1007668.t001
https://doi.org/10.1371/journal.pcbi.1007668


Polycyclic diseases are characterized by more than one infection cycle per season. For sim-

plicity, the model is based on T = 2 infection cycles per discrete host generation g each caused

by a single discrete parasite generation t (t 2 {1, 2}). An auto-infection refers to an infection

where a parasite re-infects the host individual on which it was produced. Therefore, resistant

(Rg) and susceptible hosts (rg) which are infected by infective parasites (ag,1) in the first infec-

tion cycle (t = 1) stay infected by infective parasites in the second infection cycle (t = 2). This

causes a fitness reduction s1 = s, where s is called the cost of infection and refers to the host fit-

ness loss resulting from infection such as increased levels of mortality or reduced fertility. The

same applies to susceptible host (rg) infected by non-infective parasites (Ag,1) in the first infec-

tion cycle (t = 1). Resistant host which are attacked by non-infective parasites in the first infec-

tion cycle (t = 1) resist infection. In the second infection cycle (t = 2), this fraction of resistant

hosts (Rg � Ag,1) either receives a non-infective parasite (Ag,2) resulting in no fitness loss or an

infective parasite (ag,2) resulting in a reduced cost of infection s2 = s/2. Therefore, the cost of

infection (s) is different from a classic selection coefficient as its effect depends on the infection

matrix and the frequencies of the different parasite genotypes. The resistant (RES) allele in the

host comes at cost cH (cost of resistance) and the infectivity (INF) allele in the parasite comes

at cost cP (cost of infectivity).

The allele frequencies of resistant hosts (Rg), susceptible hosts (rg), non-infective parasites

(Ag,t) and infective parasites (ag,t) are given by the following recursive equations:

ag;2 ¼
ag;1 � ð1 � cPÞ

ag;1 � ð1 � cPÞ þ Ag;1 � rg
ð2aÞ

agþ1;1 ¼
ð1 � cPÞ � ½RgðAg;1ag;2 þ ag;1Þ þ rgag;1�

ð1 � cPÞ � ½RgðAg;1ag;2 þ ag;1Þ þ rgag;1� þ rgAg;1
ð2bÞ

Rgþ1 ¼
Rg � ð1 � cHÞ½Ag;1Ag;2 þ Ag;1ag;2ð1 � s2Þ þ ag;1ð1 � s1Þ�

Rg � ð1 � cHÞ½Ag;1Ag;2 þ Ag;1ag;2ð1 � s2Þ þ ag;1ð1 � s1Þ� þ rgð1 � s1Þ
ð2cÞ

with Ag,t = 1 − ag,t and rg = 1 − Rg. The equilibrium frequencies â; R̂ [24] at the internal, non-

trivial equilibrium point are approximately given by:

â �
s2 þ s1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2 þ s1Þ
2
� 4s2ðs1 � cHÞ

q

2s2ð1 � cHÞ

R̂ �
cP

2 � cP � â

�
2cP � s2 � ð1 � cHÞ

s2ð3 � 4cH � 2cPð1 � cHÞÞ � s1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2 þ s1Þ
2
� 4s2ðs1 � cHÞ

q ð3Þ

Note that in this model coevolution, which we define as the occurrence of coevolutionary

cycles, only takes place if the cost of resistance (cH) is smaller compared to the cost of infection

(s). Otherwise the susceptible allele in the host always fixes immediately, irrespective of the ini-

tial frequencies of alleles.

In the forward part, we obtain the frequencies of the different alleles at the beginning of

each discrete host generation g in three steps:

1. Using the discrete-time gene-for-gene coevolution model from Eq (2), we compute the

expected allele frequencies in the next generation (under the infinite population size

assumption).

PLOS COMPUTATIONAL BIOLOGY Inference of coevolutionary dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007668 March 23, 2020 6 / 30

https://doi.org/10.1371/journal.pcbi.1007668


2. Genetic drift is incorporated by performing a binomial sampling based on the frequency of

the RES-allele (INF-allele) after selection (Eq (2)) and the finite and fixed haploid host pop-

ulation size NH (parasite population size NP) as in [19] (see also [41]).

3. Recurrent allele mutations take place and change genotypes from RES to res at rate μRtor or

res to RES at rate μrtoR in the host and from ninf to INF at rate μntoI and from INF to ninf at

rate μIton in the parasite. Henceforward, such mutations are referred to as functional muta-

tions. In the reminder of this manuscript we set all functional mutation rates to μRtor = μntoI

= μrtoR = μIton = 10−5 (for a discussion on these values see [19, 41]).

Repeating this procedure for gmax host generations, we obtain the so called frequency path,

which summarizes the allele frequencies at both loci forward in time.

Backward in time coalescent. To obtain polymorphism data at the coevolutionary loci we

combine the obtained frequency paths which include genetic drift and recurrent mutations

with coalescent simulations separately for the host and the parasite. The host and parasite fre-

quency paths are used separately as input for a modified version of msms [19, 42], after scaling

time appropriately in units of the respective population sizes (for more information see S1

File). Based on the allele frequency in a species at present, a coalescent tree is build backward

in time using msms. A sample of size nH (nP) is drawn at random from the host (parasite) pop-

ulation consisting of RES and res-alleles (ninf and INF-alleles) [19]. The tree shape and length

are conditioned on the changes in allele frequencies, including fixation or loss [19]. To clarify

the forward—backward correspondence, let us describe the case of recurrent selective sweeps

in the parasite population. In a monomorphic parasite population of allele INF, a functional

mutation with rate μIton can reintroduce forward in time a mutant ninf. This allele reaches fixa-

tion and the population is then monomorphic for allele ninf. Backward in time, this is equiva-

lent, in msms, to the decrease of the ninf allele population size until only one last individual

exhibits this allele. This last ninf coalescent lineage then migrates to the population of allele

INF. The forward frequency path and the backward msms simulations are thus coupled for the

re-introduction of new alleles due to functional mutations in analogy to gene flow in a struc-

tured coalescent with two demes [43].

The forward in time coevolution model is run for gmax = max(3NH, 3NP) generations

assuming a small initial frequency of RES (R0 = 0.2) and INF (a0 = 0.2) alleles. The length of

simulation time was previously found to be sufficient to observe signatures of selective sweeps

and balancing selection in host or parasite [19]. In msms, the backward simulations condi-

tioned on the frequency paths are run for the same amount of time. If after g generations, sev-

eral coalescent lineages remain and/or the most recent common ancestor of both functional

alleles has not been reached, a neutral Kingman coalescent process is built until a common

ancestor of all remaining lineages is found. Note that that in this last temporal phase of the

simulation, i.e. older than g generations in the past, the functional alleles in hosts (RES and res)
and in parasites (INF and ninf) have the same fitness (and are exchangeable within species).

We therefore simulate a coevolution history of g generations.

We set the sample size to nH = 50 for the host (nP = 50 for the parasite) which are adequate

to capture balancing selection if one of the allele occurs in low frequency at the present time of

sampling [19]. For both species we assume realistically a coevolutionary locus of length 2500

bp without recombination and a per site neutral mutation rate of 10−7. Accordingly, the neu-

tral population mutation rate is θH = 2 � NH � 2500 � 10−7 for the host (θP = 2 � NP � 2500 � 10−7

for the parasite) defining the number of mutations found on the host and parasite coalescent

trees (and in the polymorphism data).

Calculating statistics for the SNP-data. For each msms-output we calculate eight statis-

tics for each species which are based on the site frequency spectrum (SFS) of the respective

PLOS COMPUTATIONAL BIOLOGY Inference of coevolutionary dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007668 March 23, 2020 7 / 30

https://doi.org/10.1371/journal.pcbi.1007668


coevolving locus (Table 1). We only use statistics based on the unfolded site frequency spec-

trum (SFS), as it can be hard to obtain unbiased haplotype statistics depending on the sequence

method. In addition to these 16 statistics we calculate the (Pairwise Manhattan Distance)

which is based on comparing the host and parasite site frequency spectra (see S2 File).

Additional coevolutionary models tested. Additionally, we study two extensions, B and

C of the model from Eq (2) (Model A), in order to check for the generality of our results. In

model B, we extend the described model to include more than two parasite (T> 2) genera-

tions per host generation g (see S1 File). In model C, we keep T = 2 but allow for allo-infection

to take place at rate (1 − ψ) in the second parasite generation (t = 2) within host generation g
(see S1 File). Based on the equations (S1 File), we generate forward in time simulations with

genetic drift and functional mutations (as described above and in S1 File) and the expected

coevolutionary signatures at the coevolving loci. We study how the values of the different sta-

tistics obtained under these two more realistic but complex models differ from those of the

main model from Eq (2).

ABC inference

In the following section, we lay out the two scenarios to be investigated, the simulations for

obtaining the PODs, and the prior distributions for the coevolutionary and neutral models.

Finally, the ABC model choice and parameter estimation procedures are described.

Inference scenarios. We focus on two scenarios. In scenario 1, we aim to infer the cost of

infection (s), the host population size (NH) and the parasite population size (NP). Therefore,

the cost of resistance (cH) and the cost of infectivity (cP) are assumed to be known. In scenario

2 the goal is to infer the cost of infection (s), the cost of resistance (cH) and the cost of infectiv-

ity (cP), assuming that the host (NH) and parasite (NP) population sizes are known.

Generating pseudo-observed data sets. Each pseudo-observed datasets (PODs) is

composed of r = 30 (or r = 10 in SI figures) repetitions of the coevolutionary history under

a particular combination of parameters (s, cP, cH) while fixing the haploid population sizes to

NH = NP = 10, 000 and the population mutation rates to θH = θP = 5.

For scenario 1, we simulate PODs for values of cost of infection (s) ranging from s = 0.15 to

s = 0.85 (in steps of size 0.05) while fixing the cost of resistance to cH = 0.05 and the cost of

infectivity to cP = 0.1. For each value of s, 30 independent PODs are simulated.

For scenario 2, we generate PODs for the 60 possible combinations of cH 2 {0.05, 0.1},

cP 2 {0.1, 0.3} and s from 0.15 to 0.85 (in steps of size 0.05). For each of these combinations, 15

PODs are generated.

ABC sampling: Priors of the coevolutionary model. For both scenarios, between 95, 000

and 100, 000 datasets are generated from the coevolutionary model based on the following pri-

ors (defined with the ABCsampler from ABCtoolbox, Version 1.0, [44]).

In scenario 1, defined with cH = 0.05 and cP = 0.1, the cost of infection is drawn from a

uniform prior such that s � Uð0:1; 0:9Þ, and the host and parasite population sizes are

drawn for log uniform distributions such that NH � Uðlogð2; 000Þ; logð40; 000ÞÞ and

NP � Uðlogð2; 000Þ; logð40; 000ÞÞ. The population mutation rates are calculated as

θH = 2NH � 25000 � 10−7 and θP = 2NP � 25000 � 10−7 (see Table 2).

In scenario 2, defined by NH = NP = 10, 000 and θH = θP = 5, the cost of infection is drawn

from a uniform distribution such that s � Uð0:1; 0:9Þ, and the cost of resistance and infectivity

from uniform distributions such that cH � Uð0:01; 0:35Þ and cP � Uð0:01; 0:35Þ (see Table 3).

ABC sampling: Priors of the neutral model. As for the coevolution model, we obtain

between 95, 000 and 100, 000 data sets for a corresponding neutral model for each scenario.

This neutral simulations are generated by coalescent simulations with msms [42] for a non-
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recombining host and parasite locus with the same length (2500bp) as in the coevolutionary

model. To mimic data obtained from the same repeated evolutionary history, we generate

r = 30 repetitions of the neutral coalescent process. For each replicate we calculate the same 17

statistics as under the coevolution model which are defined in Table 1. The summary statistics

used in the ABC consist of the average value of each statistic over the r replicates.

In scenario 1, the neutral simulations are based on the same priors for the host and

parasite population sizes as in the corresponding coevolutionary model. Accordingly,

both, the host and the parasite population size are drawn from log uniform distributions

(NH � Uðlogð2; 000Þ; logð40; 000ÞÞ and NP � Uðlogð2; 000Þ; logð40; 000ÞÞ). The population

mutation rates are calculated as θH = 2NH � 2500 � 10−7 and θP = 2NP � 2500 � 10−7.

In scenario 2, we simulate neutral datasets for constant host and parasite population sizes

(NH = NP = 10, 000) and thus, the population mutation rates are θH = θP = 5.

ABC model choice. The ABC model choice procedure is used to test whether a pair of

coevolving loci can be discriminated from pairs of neutral loci based on our set of summary

statistics and within the range of priors for our outlined scenarios. To find genes under coevolu-

tion, we wish to access the False Positive (FPR) and the False Negative (FNR) rate. These rates

are also referred to as the confusion matrix in the ABC literature. Under the hypothesis that

two genes (one from the host and one from the parasite) are coevolving, the FPR is the percent-

age of pairs of truly neutral loci which have a higher posterior probability in support of the

coevolution model rather than the neutral model. Thus, these loci would be incorrectly identi-

fied as coevolving although in fact they are not. On the other hand, the FNR is defined as the

percentage of truly coevolving pairs of loci which have a higher posterior probability in support

Table 3. Settings ABC scenario 2. Settings for the ABC simulations under scenario 2.

Coevolution model Neutral model

NH 10,000 10,000

NP 10,000 10,000

θH 5 5

θP 5 5

nH 50 50

nP 50 50

s � Uð0:10; 0:90Þ –

cP � Uð0:01; 0:35Þ –

cH � Uð0:01; 0:35Þ –

https://doi.org/10.1371/journal.pcbi.1007668.t003

Table 2. Settings ABC scenario 1. Settings for the ABC simulations under scenario 1.

Coevolution model Neutral model

NH � Uðlogð2000Þ; logð40000ÞÞ � Uðlogð2000Þ; logð40000ÞÞ

NP � Uðlogð2000Þ; logð40000ÞÞ � Uðlogð2000Þ; logð40000ÞÞ

θH 2 � NH � 2500 � 10−7 2 � NH � 2500 � 10−7

θP 2 � NP � 2500 � 10−7 2 � NP � 2500 � 10−7

nH 50 50

nP 50 50

s � Uð0:1; 0:9Þ –

cP 0.10 –

cH 0.05 –

https://doi.org/10.1371/journal.pcbi.1007668.t002
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of the neutral model (rather than the coevolving model). These loci would be considered as

neutral although they are in fact coevolving. To access the FPR and FNR, we first perform a

leave-one-out cross-validation running the function cv4postr of the abc r-package (version 2.1,

[45]) for each scenario 1 and 2. The cross-validation is based on the rejection algorithm and

works as follows. For a given scenario (1 or 2), a dataset, called validation simulation, is chosen

at random from all simulations which have been performed under one of the two models

(coevolution or neutral) with their respective priors. The summary statistics of all simulations

are standardised by their median absolute deviation. Based on these normalised summary sta-

tistics the Euclidean distance between the summary statistics of the validation simulation and

all other simulations from both models is calculated. The one percent of the simulations with

the smallest Euclidean distance to the validation simulation are retained and all other simula-

tions are rejected [45]. Based on these retained simulations, the posterior probability for each of

the two models is calculated for this given validation simulation. This procedure is repeated for

500 validation simulations for each model within each scenario. The FDR and FNR are thus

computed for each scenario.

After the cross-validation we perform a model choice for each of the PODs to investigate

the effect of specific coevolutionary parameters on the accuracy of model choice. For each sce-

nario we used the same settings and simulations for the coevolution model and the neutral

model as for the cross-validation. For each POD we retain the 1% best simulations and report

the posterior probability for the coevolution model.

ABC parameter estimation. The inference of the coevolution model parameters is

obtained using the ABCestimator within the ABCtoolbox (Version 1.0, [44]). We retain the

1,000 simulations with the smallest Euclidean distance (without summary statistics normalisa-

tion) to the respective POD (rejection step). The standard ABCestimator applies a Gaussian

kernel smoothing for each parameter (width of Dirac peak set to 0.01) followed by a post sam-

pling adjustment via a general linear model [44, 46]. We report the median of the posterior

marginal density distribution for each parameter. For each POD we perform the parameter

estimation based on a) host and parasite summary statistics, b) host summary statistics only

and c) parasite summary statistics only.

Results

Link between coevolutionary dynamics and sequence data

Previous work has dealt with understanding the coevolutionary dynamics under a gene-for-

gene coevolution model [24] and the resulting genetic signatures [19]. We provide a short

summary of these results here to help the reader to gain an intuition regarding the ABC results.

A classic coevolutionary cycle in this Gene-For-Gene model consists of four phases (see S1 and

S2 Figs, [24, 47]):

1. The frequency of resistant (RES) hosts increases when infective (INF)-parasites are in low

frequency.

2. As a response to the increasing frequency of RES-host the frequency of INF-parasites

increases very quickly and the parasite population reaches almost fixation for the INF-allele.

3. This results in a decrease of the frequency of RES-hosts due to the cost of resistance.

4. Once RES-hosts are in low frequency the frequency of non-infective parasites (ninf)-para-

sites increases due to the cost of infectivity (cP).

Depending on the combination of cost of infection (s), cost of resistance (cH) and infectivity

(cP) the model either exhibits trench-warfare dynamics or arms-race dynamics (for an
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explanation see S1 Fig). Trench-warfare dynamics mainly take place for small to intermediate

costs of infection. The dynamics switch to arms-race for high costs of infection (S2 and S3

Figs), irrespective of cH and cP. When arms-race dynamics take place the parasite population

always exhibits fixation of the INF-allele within the chosen range of parameters. The speed of

the subsequent fixation of the res-allele in the host depends on the cost of resistance (cH) and is

faster for higher costs of resistance (cH).

The internal equilibrium frequencies under trench-warfare dynamics are affected as fol-

lows. The frequency of RES-hosts mainly increases with increasing cost of infectivity (cP) (S3a

+S3b Fig vs. S3c+S3d Fig), increases very slightly with increasing cost of infection (s) and

remains almost unaffected by changing costs of resistance (cH) (S3a+S3c Fig vs. S3b+S3d Fig).

The opposite is true for the parasite. Here, the equilibrium frequency of the infective (INF)-

parasite rises mainly with increasing cost of infection (s) (S3 Fig). Higher costs of resistance

(cH) decrease the equilibrium frequency of INF-parasites (S3a+S3c Fig vs. S3b+S3d Fig) for a

given value of s. In contrast to the host, the equilibrium frequencies in the parasite are almost

unaffected by changes in the cost of infectivity (cP). Whenever allele frequencies are close to

the boundaries alleles can be lost at random due to genetic drift (see S1 Fig).

The changes in equilibrium frequencies with changing cost of infection (s), cost of resis-

tance (cH) and changing cost of infectivity (cP) are reflected by the resulting genetic signatures

at the coevolving loci (S10 Fig). We summarize the genetic signatures of coevolution chiefly by

Tajima’s D as the behaviour of Tajima’s under selective sweeps and balancing selection (S10

and S4 Figs) is well known. Generally, the strongest signatures of balancing selection, indicated

by high Tajima’s D values, can be observed when the equilibrium frequencies of INF-parasites

or RES-hosts are close to 0.5 (see S3 and S10 Figs). The strength of the signatures declines the

further the equilibrium frequencies move away from 0.5.

The genetic signature in the parasite changes strongly with changing cost of infection (s),
irrespectively of cH and cP (S10 Fig). Further, the resulting genetic signatures in the parasites

for a given cost of infection s are distinguishable for different costs of resistance but not for dif-

ferent costs of infectivity. The genetic signature in the host is mainly indicative about the cost

of infectivity (cP), a cost which is affecting the parasite fitness, whereas the signature in the par-

asite is mainly informative about the costs of resistance (cH) and infection (s), parameters with

a direct fitness effect on the host (S10 Fig).

The qualitative changes of the genetic signatures for changing costs of infection remain

similar even when population sizes differ in both interacting partners (S4 Fig). However, their

strength is affected by the population sizes.

Inference of coevolutionary dynamics from polymorphism data

Scenario 1: Model choice. Under scenario 1 and r = 30, the model choice procedure is

suited to distinguish a coevolutionary model in which the cost of infection (s), host population

size (NH) and parasite population size (NP) are unknown from a neutral model where the host

and parasite population size are unknown. The cross-validation reveals (values for r = 10 in

brackets) that 482 (441) out of 500 coevolution simulations are correctly identified, while 18

(59) are misclassified as neutrally evolving pairs of loci, yielding a FNR of 3.6% (respectively

11.8%). In addition, 498 (495) neutral simulated pairs of loci are correctly identified as evolv-

ing neutrally, yielding a FPR of 0.4% (respectively 1% for r = 10) (see S5 Fig for r = 30, S6 Fig

for r = 10). When analysing results for the PODs the accuracy of model choice is very high for

low costs of infection but becomes worst when s> 0.6 (Fig 1 for r = 30, S7 Fig for r = 10). It is

apparent from Fig 2 that for Tajima’s D and PMD all PODs with intermediate to high s are in

the cloud of neutral simulations (see S8 Fig for r = 10). For high values of s, dynamics are
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indeed switching to arms-race generating fast recurrent selective sweeps. Hence, the values of

these statistics become similar to neutral expectations under small host and parasite popula-

tion sizes. Additional simulations show that for small costs of infection ranging from s = 0.01

to s = 0.09 the signatures are indistinguishable from neutral signatures as long as s< cH as the

susceptible allele is always fixed immediately. As soon as s>= cH the signatures can be clearly

distinguished from neutral signatures as coevolutionary dynamics are taking place (see S20 Fig

for r = 30 and S21 Fig for r = 10).

Scenario 1: Parameter estimation. Our results indicate that it is possible to jointly infer

the cost of infection (s), the host population size (NH) and the parasite population size (NP)

using polymorphism data from the host and parasite (Fig 3 for r = 30, S9 Fig for r = 10). Gener-

ally, the accuracy of inference mainly depends on 1) the true value of the cost of infection and

the 2) the type of polymorphism data being used (host and parasite together, only host or only

parasite).

Inferences of the cost of infection and of the population sizes are the most accurate if both

host and parasite polymorphism data are used (Fig 3, S9 Fig). Using only parasite polymor-

phism data is also quite accurate for inferring small to intermediate values of the cost of infec-

tion (s< 0.6) (Fig 3c, S9c Fig) where trench-warfare dynamics take place. In contrast, using

only host polymorphism data shows markedly less accuracy in the same parameter range (Fig

3b, S9b Fig). Overall the inference results become less accurate when decreasing the number of

repetitions to r = 10 (S9 Fig).

Scenario 2: Model choice. Under scenario 2 and r = 30, model choice is suited to discrim-

inate between coevolution and neutral evolution. Out of the 500 coevolution validation

Fig 1. Posterior probability in support of the coevolution model (against a neutral model) for scenario 1. Results

shown for 30 repetitions and 30 PODs per value of the cost of infection (s). Results for single PODs are shown as dots.

Model choice distinguishing a coevolution model with unknown costs of infection (s), host population size (NH) and

parasite population size (NP) from a neutral model with unknown host and parasite population sizes. Note that for

these points we added some jitter to the x-values in order to increase the readability of the plots.

https://doi.org/10.1371/journal.pcbi.1007668.g001
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simulations 470 (417 for r = 10) are correctly classified as coevolving pairs of loci whereas 30

(83) are classified as neutrally evolving pairs, yielding a FNR of 6% (respectively 16.6% for

r = 10). In addition, 489 (495 for r = 10) neutral simulated pairs of loci are correctly identified

as evolving neutrally, yielding a FPR of 2.2% (respectively 1% for r = 10) (see S11 Fig for r = 30,

S12 Fig for r = 10). When analysing results for the PODs the accuracy of model choice is very

high under a higher cost of infectivity (cP = 0.3). For a lower value of cP = 0.1, the model choice

becomes less accurate when s increases, especially when cH = 0.1 (Fig 4 for r = 30, S13 Fig for

r = 10). As for scenario 1, it is also apparent from Fig 5 that some PODs are found within the

cloud of neutral simulations (see S14 Fig for r = 10). For high values of s, dynamics are indeed

switching to arms-race generating fast recurrent selective sweeps. Note however, the interest-

ing case of cH = cP = 0.1 which displays the worst accuracy for high values of s. This is explained

by very fast recurrent selective sweeps along with very fast coevolutionary cycles due to the

combination of high cost of resistance and low cost of infectivity. Note that such fast cycles

affect more strongly other statistics (in particular the nucleotide diversity) than the three we

present in Fig 5 (Tajima’s D host and parasite and PMD), thus highlighting the need to include

a larger number of summary statistics in the ABC procedure. As for scenario 1, additional sim-

ulations show that for cases where the cost of infection is chosen to be smaller that the cost of

Fig 2. Pairwise Manhattan distance and Δ Tajima’s D (host-parasite) for the PODs under scenario 1 compared to

simulations under a neutral model. Pairwise Manhattan distance (y-axis) and the difference between Tajima’s D of the host

and of the parasite (x-axis) for the PODs used for inference in Scenario 1 and the 100,000 neutral simulations run for this

scenario. Under the neutral model, host and parasite population sizes vary. Simulations under the neutral model are shown

as grey open circles, and a bivariate normal kernel estimation has been applied to obtain a probability density of the

summary statistic combinations. The PODs for scenario 1 are shown as diamonds and are coloured coded based on the true

cost of infection (s).

https://doi.org/10.1371/journal.pcbi.1007668.g002
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resistance signatures are not distinct from those of coevolutionary loci, as the susceptible allele

fixes immediately and thus, also the INF-allele in the parasite has always bears a fitness disad-

vantage. Once the cost of infection is larger than the cost of resistance, trench-warfare dynam-

ics are taking place, and therefore, pairs of candidate loci are distinguishable from pairs of

neutral loci (see S22 Fig for r = 30 and S23 Fig for r = 10).

Scenario 2: Parameter estimation. As for scenario 1, the accuracy of inference for sce-

nario 2 is best if data from both the host and the parasite are available (Figs 6 and 7 for r = 30,

S15 and S16 Figs for r = 10). However, inference of the cost of infection s is less accurate com-

pared to scenario 1. The most accurate inference results are obtained for intermediate costs of

Fig 3. Parameter estimations under scenario 1. Median of the posterior distribution (y-axis) for the cost of infection s (top, a-c), host population size (NH)

(middle, d-f) and parasite population size (NP) (bottom, g-i) when inference is based on host and parasite summary statistics (left), only host summary statistics

(middle) or only parasite summary statistics (right). The median of the posterior distribution (after post-rejection adjustment) is plotted for each POD. The true

cost of infection for each POD is shown on the x-axis with jitter added to increase the readability. The R2-value of a corresponding linear regression model is

shown in each panel.

https://doi.org/10.1371/journal.pcbi.1007668.g003
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infection. This is due to the fact that signatures in the host and the parasite are differentially

affected by the various costs (S10 Fig).

Inference of the cost of resistance (cH) works reasonably well if polymorphism data only

from the parasite are available. However, this comes at the cost of less accurate inference of

the cost of infection (s) as both parameters are affecting the equilibrium frequency in the para-

site (S3 Fig, Figs 6 and 7 for r = 30, S15 and S16 Figs for r = 10). This effect is especially pro-

nounced when the cost of infection (s) is low and only the information from the parasite

polymorphism data are available (see Figs 6c+7c). The inference of the cost of infectivity (cP) is

reasonably accurate if polymorphism data only from the host are available (Figs 6h and 7h).

This is due to the fact that the cost of infectivity (cP) mainly affects the equilibrium frequency

in the host but not in the parasite (S3 Fig). Therefore, inference of this parameter does not

work if only parasite polymorphism data are available (Figs 6i and 7i).

Discussion

In the present study we explicit a link between coevolutionary dynamics (S3 Fig), the resulting

genetic signatures (S4 and S10 Figs) and the subsequent amount of information which can be

extracted from genetic signatures at the coevolving loci (Figs 3, 6 and 7). Our results indicate

that under trench-warfare dynamics the allele frequencies at the non-trivial internal equilib-

rium point affect the strength of genetic signatures at the coevolving loci in both, the host and

Fig 4. Posterior probability in support of the coevolution model (against a neutral model) for scenario 2. Results

are shown for r = 30 and 15 PODs per boxplot. The posterior density in support of the coevolution model (y-axis) is

shown for PODs with varying cost of infection (s). The different panels reflect the combination of cH and cP for the

respective PODs (left: cH = 0.05, right: cH = 0.1, top: cP = 0.1, bottom: cP = 0.3). Model choice has been run to

distinguish a coevolution model with unknown costs of infection (s), cost of resistance (cH) and cost of infectivity (cP)

from a neutral model with constant host and parasite population size (NH = NP = 10, 000). Results for single PODs are

shown as dots and jitter added to the x-values to increase the readability.

https://doi.org/10.1371/journal.pcbi.1007668.g004
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parasite. Furthermore, pairs of coevolving loci are well discriminated from pairs of neutral loci

by ABC model choice (Figs 1 and 4, S7 and S13 Figs). However, the accuracy decreases for

higher costs of infection. We further show as a proof of principle that it is possible to infer the

parameters underlying the coevolutionary interaction from polymorphism data at the loci

under coevolution if some relevant parameters such as diverse costs (Fig 3) or population sizes

(Figs 6 and 7) are known. The inference is accurate if polymorphism data from both the host

and the parasite are available from at least ten repetitions of the coevolutionary history (S9,

S15 and S16 Figs).

Coevolutionary dynamics and inference

As already shown in [19] there is a continuum of genetic signatures which can arise at the loci

under coevolution. This contrasts to the often postulated dichotomy that arms-race dynamics

result in strong selective sweep signatures and trench-warfare dynamics in strong balancing

selection signatures.

In general, the strength of the selective signatures under trench-warfare dynamics is a result

of the internal equilibrium frequencies, the fluctuations around these equilbrium frequencies,

Fig 5. Pairwise Manhattan distance and Δ Tajima’s D (host-parasite) for the PODs under scenario 2 compared to

simulations under a neutral model. Pairwise Manhattan distance (y-axis) and the difference between Tajima’s D of the host

and of the parasite (x-axis) for the PODs used for inference in Scenario 2 and 100,000 neutral simulations. Simulations

under the neutral model are shown as grey open circles. A bivariate normal kernel estimation has been applied to obtain a

probability density of the different summary statistic combinations. The PODs for scenario 2 are shown in color. Colors

reflect the true cost of infection (s) for a particular POD (see legend) and shapes indicate the combination of cH and cP
(diamonds: cH = 0.05, cP = 0.1; circles: cH = 0.05, cP = 0.3; crosses: cH = 0.1, cP = 0.1; stars: cH = 0.1, cP = 0.3) for the respective

POD.

https://doi.org/10.1371/journal.pcbi.1007668.g005
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the amount of genetic drift in both partners and the proximity of these equilibrium frequencies

to the fixation boundaries. When equilibrium frequencies are close to boundaries, alleles can

be easily lost by drift and thus, arms-race dynamics take place although trench-warfare dynam-

ics would be predicted based on the deterministic model (see S1 Fig). Moreover, if the costs

are very small (for example, cH = cP = 0.01), the equilibrium frequencies may also be close to

the boundaries, and coevolutionary dynamics are strongly affected by to genetic drift. This

generates a discrepancy between the expected deterministic behaviour and the observed

behaviour under finite population size [19, 41]. In such case, the polymorphism signature at

Fig 6. Parameter estimations under scenario 2. Median of the posterior distribution (y-axis) for the cost of infection s (top, a-c), cost of resistance (cH) (middle, d-

f) and cost of infectivity (cP) (bottom, g-i) when inference is based on host and parasite summary statistics (left), only host summary statistics (middle) or only

parasite summary statistics (right). The median of the posterior distribution (after post-rejection adjustment) is plotted for each POD. The true cost of infection for

each POD is shown on the x-axis with jitter added to increase the readability. The R2-value of a corresponding linear regression model is shown in each panel.

https://doi.org/10.1371/journal.pcbi.1007668.g006
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the coevolutionary loci would appear as neutral and such loci would inflate the rate of false

negatives. As most studies of coevolution, we thus rely on the costs of resistance and infectivity

not to be too small (e.g. [6, 30, 32, 33, 38, 47]).

The strong link between equilibrium frequencies under trench-warfare dynamics and

resulting genetic signatures can be explained in terms of the underlying approximated struc-

tured coalescent tree with two alleles in each species (RES and res for the host and INF and ninf
for the parasite). This model is analogous to a two-demes model with gene flow [43]. When

the frequencies of both alleles are fairly similar they have equal contributions to the sample,

and the underlying coalescent tree is well balanced. Accordingly, we observe an excess of

Fig 7. Parameter estimations under scenario 2. Median of the posterior distribution (y-axis) for the cost of infection s (top, a-c), cost of resistance (cH) (middle, d-

f) and cost of infectivity (cP) (bottom, g-i) when inference is based on host and parasite summary statistics (left), only host summary statistics (middle) or only

parasite summary statistics (right). The median of the posterior distribution (after post-rejection adjustment) is plotted for each POD. The true cost of infection for

each POD is shown on the x-axis with jitter added to increase the readability. The R2-value of a corresponding linear regression model is shown in each panel.

https://doi.org/10.1371/journal.pcbi.1007668.g007
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intermediate frequency variants in the SFS [11]. As the equilibrium frequencies move away

from 0.5, the average sample configuration changes and the coalescent tree becomes less bal-

anced (see S2 Fig). Therefore, the number of SNPs at intermediate frequencies drops and Taji-

ma’s D decreases (S10 Fig). This link can be also observed when we modify our model to more

realistic but complex models by either a) extending the model to more than two parasite gener-

ations per host generation (Model B, S17 and S19 Figs a+b) or b) allowing for allo-infections

at rate 1 − ψ in the second parasite generation within host generation g (Model C, S18 and S19

Figs c+d).

There are three sources of stochasticity affecting the polymorphism data at the coevolutionary

loci: 1) The effect of genetic drift on the allele frequency trajectory under coevolution (S1 Fig), 2)

the stochasticity in the coalescent process for a given allele frequency trajectory and 3) the sto-

chasticity in the neutral mutation process on top of the coalescent process. As the first type of

stochasticity affects the ‘population’ sizes of the functional alleles in the host (in the parasite)

over time, it also has a subsequent effect on the other two sources of stochasticity. Using data

from several repetitions allows to better handle and to average out the effect of genetic drift on

the variability of the allele frequency path and its subsequent effect on the observed summary

statistics. Therefore we use the average of the summary statistics over several repetitions of the

same coevolutionary history (i.e. r frequency paths) in our ABC. In future, such repeated data

could be potentially obtained for example from microcosm experiments or repeated experiments

such as performed by [48–51]). However, we acknowledge that for species with long generation

times it might be extremely hard to perform the corresponding experiments. Nevertheless, the

fact that we rely on data from repeated experiments also provides useful insights in a way that

signatures under coevolution can be quite variable even if the parameters underlying the coevo-

lutionary history are the same. This underlines the need for taking the effect of genetic drift into

account when analysing host and parasite polymorphism data be it to detect loci under coevolu-

tion or to infer parameters of the past coevolutionary history.

Stemming from theoretical considerations [52], we envision two further possibilities to deal

with the variability in allele frequency trajectories if data from repeated experiments cannot be

obtained: a) using data from several populations or b) using data from several time points. As

whole-genome sequencing data is becoming less expensive the information contained in the

whole genome data from several host and parasite populations could be used to establish the

demographic history such as migration rates and population sizes before inferring the coevolu-

tionary parameters. Taken the demographic history into account, the coevolutionary parame-

ters in each population could be inferred in a second step following our approach. We follow

here the expectations from [52] that several populations give insights into the coevolutionary

dynamics as these are found to be a different points of the coevolutionary cycles. However, this

approach would rely on migration rates being not too high and that the environmental condi-

tions and host-parasite interactions are similar across the different populations. If the migration

rates are too high the independence between the different populations would be violated and

the allele frequencies become synchronized between the different populations [52]. With a simi-

lar idea, whole genome-data obtained at different time points in a population [49, 50] would

allow for estimating the amount of genetic drift between time-points (see [53]) and thereafter

the coevolutionary parameters using our method with known prior on population sizes.

Accuracy of inference

We first perform a model choice procedure for each scenario to assess the possibility to distin-

guish pairs of loci which are coevolving from pairs evolving independently from one another

(in our case neutrally in each species). Therefore, we envision that the gene dataset can be
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divided into two categories of genes in hosts and parasites a priori: pairs of candidate loci pos-

sibly under coevolution, and pairs of other randomly selected genes. For example, the candi-

dates can be resistance genes in the host plant [4–6, 12–16] and the corresponding predicted

effectors in the parasite [17, 18]. The second category can be composed of genes involved in

processes such as housekeeping, abiotic stress responses or photosynthesis in plants, and

housekeeping genes and/or degrading enzymes with non-specific activities in parasites.

It is encouraging that our results show very good accuracy and low False Positive rates.

Interestingly, the model choice accuracy is very good for low values of the infection parameter

s, and thus we are more likely to identify pairs of loci which are coevolving under trench-war-

fare than under arms race dynamics. We show thus that in contrast to the somehow pessimis-

tic view in [19] based on few statistics, extending the number of summary statistics does help

to distinguish neutral from coevolving loci.

Regarding parameter inference, we show that estimations of parameters governing the

coevolutionary dynamics is possible if they substantially shift the equilibrium frequencies and/

or the dynamics and thus, the resulting genetic signatures. However, equilibrium frequencies

can be shifted along the same axis by different parameter combinations. In such circumstances,

it is only possible to infer a compound parameter if there is no a priori information on any of

the parameters available. This identifiability problem is illustrated by the inference results for

scenario 2 especially when only parasite polymorphism data are available (Figs 6 and 7). Here,

both the cost of infection (s) and the cost of resistance (cH) are overestimated. If however some

parameter values are a priori known from experiments such as the cost of resistance in scenario

1, the other parameters (here the cost of infection) can be inferred conditional on this informa-

tion. Whenever the parameters of interest have different effects on the equilibrium frequencies

in the host and parasite, inference of both parameters is possible. This explains why inferences

are usually the most accurate when host and parasite statistics are jointly used.

Our approach of jointly using host and parasite information is in line with recent method

developments [54–56] which also show the value of analysing hosts and parasite in a joint

framework. These mentioned methods can also be promising complementary approaches to

our ABC in order to identify and to reduce the number of candidate loci.

Additional demographic changes

An important assumption of our model is the absence of intra-locus recombination at the

coevolutionary loci. Nevertheless, recombination does occur along the genomes of the host

and the parasite, so that the coevolutionary loci evolve independently from other unlinked loci

(for example on different chromosomes).

In such circumstances, it is possible to estimate past population size fluctuations based on

whole-genome data of both species. Population size changes in host-parasite coevolution can

be either independent of the coevolutionary interaction or arise as an immediate result of

coevolutionary interaction, e.g. from epidemiological feedback or any other form of eco-evolu-

tionary feedback. Independently of the particular source, demographic changes always affect

all loci in the genome simultaneously. The genomic resolution of the latter type of population

size changes has been shown to depend on the amplitude and time-scales of the population

size fluctuations [53]. These authors have demonstrated that populations size fluctuations only

leave a signature in the genome-wide parasite site frequency spectrum if they happen at a slow

enough time scale. Irrespective of whether the demographic changes can be resolved from

genome-wide data, the resulting genetic signatures at the coevolving loci will be always the

result of the underlying allele frequency path which is always confined to a 2d-plane for a bi-

allelic locus. Further studies should therefore focus on the specific effect of eco-evolutionary
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feedback on the variability of the allele frequency path and the resulting effect of the popula-

tion size changes on mutation supply at the coevolving loci. Doing so will help to refine our

understanding how much information can be likely inferred under such circumstances.

Scope, implications and applications of the presented approach

Based on the genetic signatures found for our two model extensions (S19 Fig) [24], we suggest

that our findings are generally valid and are not restricted to the coevolution GFG-model used

in the main text. We acknowledge that we assume the most simple type of coevolutionary

interaction possible and strongly rely on data from repeated experiments. However, under-

standing possible links between dynamics, signatures and resulting accuracy of inference for

this simple scenario is a useful starting point to develop further inference methods where sev-

eral major loci [7] or quantitative traits [39] are involved. We further hope that our results

stimulate further thinking on how genomic data from the host and parasite in combination

with other sources of data such as phenotypic data, data from several populations, or several

time-points could be used to gain a refined understanding of host-parasite coevolution. In

addition, our approach should be applicable to several pairs of host and parasite coevolving

loci as long as the coevolutionary dynamics are driven by few major loci without any epistatic

and/or pleiotropic effect. These pairs could for example involve resistance genes from a single

host species, each co-evolving independently with effectors from different parasite species

(bacteria, fungi, . . .). If quantitative traits [7, 39] are involved into coevolution we expect the

signatures to be weaker than in our model (see theory on polygenic selection and polymor-

phism signatures, [57]).

For many host-parasite models (including the one used here) it has been shown that the

equilibrium frequencies in the host are substantially or exclusively affected by fitness penalties

applying to the parasite and vice-versa [24, 33, 34]. Thus generally speaking, the strength of

genetic signatures in either species are presumably most indicative about processes affecting

the coevolving partner. We therefore speculate, that the balancing selection signatures which

have been found at R-genes in Arabidopsis thaliana [6, 12] [13], Solanum sp. [4, 5, 14], Phaseo-
lus vulgaris [58], Capsella [59], are indicative about the selective pressure in the coevolving par-

asite or parasite community. Conversely, the long term maintenance of strains in Pseudomonas
syringae [60] could reflect fitness costs in Arabidopsis thaliana.

A complication for analysis can be the lack of recombination in genomes of microparasites

such as viruses or bacteria. Phylogenetic methods exist to study the evolution of these parasites

with very short generation time, and can allow to define groups of individuals or populations

which could be used in inference methods such as ours or in co-GWAs [54–56, 61]. Note also

that several methods have been developed to draw inference of the epidemiological parameters

based on parasite sequence data (e.g. [62]). However, such methods study only short term

epidemiological dynamics within few years, ignoring the effect of coevolution and Genotype

(host) x Genotype (parasite) interactions. By contrast, our method intends to infer the parame-

ters of long term coevolutionary dynamics driven by GxG interactions.

We finally point out a potential source of bias in coevolution studies, namely the possibility

that scenarios other than coevolution, such as for example unilateral or independent adaptive

evolution of hosts and/or parasites, can result in correlation of traits or allele frequencies

which resemble those of true coevolution [63, 64]. At present, our approach cannot control for

independent evolution at host and parasite loci generating polymorphism signatures mimick-

ing that of true coevolution. Such pairs of loci would indeed inflate our false positive rate. We

speculate here that based on polymorphism data from a single experimental data point alone,

it is likely not possible to disentangle such scenarios from true coevolution. Nevertheless,
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using repeated experiments with and without the coevolution treatment [50, 51] along with

molecular, functional and bioinformatics studies may help to resolve this issue in some host-

parasite systems.

Conclusion

We investigated here a link between coevolutionary dynamics and resulting genetic signatures

and quantify the amount of information available in polymorphism data from the coevolving

loci. Although, we started from a very simple coevolutionary interaction we show that model-

based inference is possible if data from repeated experiments are available. With growing avail-

ability of highly resolved genome data, even of non-model species, it is important to gain a dif-

ferentiated and deep understanding of the continuum of possible links between coevolutionary

dynamics without or with eco-evolutionary feedbacks and their effect on polymorphism data.

Such thorough understanding is the basis for devising appropriate sampling schemes, for using

optimal combinations of diverse sources of information and for developing model-based

refined inference methods. Our results and the suitability of the ABC approach open the door

to further develop inference of past coevolutionary history based on genome-wide data of hosts

and parasites from natural populations or controlled experiments. Lastly, as the false positive

rate to detect genes under coevolution is smaller than 2.5% (r = 30) under the model choice pro-

cedure, our method can be used in combination with other methods such as co-GWAS or cor-

relation of host and parasite allele frequencies among several populations as a starting point to

identify host and parasite candidate loci for further functional studies.

Supporting information

S1 Fig. Schematic of the forces driving coevolutionary cycles, unstable vs. stable equilib-

rium points and the interaction of coevolution with genetic drift. Schematic illustrating the

evolutionary forces and interactions driving the coevolutionary cycles on top. The different

coevolutionary dynamics in infinite population in interaction with genetic drift are shown on

the bottom. The grey line always shows the expected dynamics in infinite population size over

time. The frequency of the resistant allele in the host is always shown on the x-axis, the frequency

of the infectivity allele in the parasite on the y-axis. The triangles are the unstable/stable internal

equilibrium points of the model. The effect of genetic drift on the allele frequency path due to

finite population size is always shown in color. Bottom left: Model with arms-race dynamics in

infinite and finite population size. Bottom middle: Model with trench-warfare dynamics in infi-

nite population size and arms-race dynamics in finite population size. Bottom right: Model with

trench-warfare dynamics in infinite and finite population size.

(TIF)

S2 Fig. Coevolution dynamics in infinite population size, finite population size and site

frequency spectra for Model A. Influence of the cost of infection (s) on the coevolutionary

dynamics and genetic signatures in Model A. The subfigures show the allele frequency trajec-

tory in infinite population size (a-f, A-F), one exemplary allele frequency path in finite popula-

tion size which takes genetic drift and functional mutations into account (d-f, D-F), the

average unfolded host site frequency spectrum of r = 200 repetitions (I-VI) and the average

unfolded parasite site frequency spectrum of r = 200 repetitions (VII-XII). In subfigures a-l

each dot represents the frequency of resistant (RES) hosts (x-axis) and infective (INF) parasites

(y-axis) at the beginning of a single host generation g. The same information is displayed in a

slightly different way in subfigures A-L. Here, the frequencies of resistant (RES) hosts (light

grey) and infective (INF) parasites (dark grey) (y-axis) are plotted over time (x-axis). Costs are
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fixed to cH = 0.05, cP = 0.1. The results in finite population size are plotted for NH = NP =

10, 000, μRtor = μntoI = μrtoR = μIton = 10−5. The site frequency spectra are shown for θP = θH = 5

and nH = nP = 50.

(TIF)

S3 Fig. Deterministic equilibrium frequencies Model A. Deterministic equilibrium frequen-

cies for model A for different combinations of cost of resistance cH = (0.05, 0.1) (columns),

cost of infectivity cP = (0.1, 0.3) (rows) and cost of infection s = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8)

(color of the squares). Only parameter combinations with trench-warfare dynamics are

shown. Centres of the dots represent the stable equilbrium frequencies obtained by simulating

numerically the recursion equations Eq (2) for 30,000 generations starting with an initial fre-

quency of R0 = 0.2 resistant hosts and a0 = 0.2 infective parasites. Heads of the arrows represent

the equilibrium frequencies based on Eq (3) which slightly differ from the numerical computa-

tions due to analytical approximations.

(TIF)

S4 Fig. Tajima’s D Model A varying popsizes. Tajima’s D (y-axis) for Model A for various

cost of infection s (x-axis) and different combinations of NP (NP = 5, 000 top, NP = 10, 000

middle, NP = 15, 000 bottom) and NH (NH = 5, 000 left, NH = 10, 000 middle, NH = 15, 000

right). The mean and standard error of Tajima’s D of the parasite population (dark grey) and

of the host population (light grey) are plotted for r = 200 repetitions. Note that subfigure e cor-

responds to S9a Fig. The other parameters are fixed to: cH = 0.05, cP = 0.1, θH = NH/2000, θP =

NP/2000, nH = nP = 50, μRtor = μrtoR = μntoI = μIton = 10−5.

(TIF)

S5 Fig. Cross-validation model choice scenario 1 for r = 30 repetitions. Leave-one-out-

cross-validation result for distinguishing the coevolution model with unknown costs of infec-

tion (s), host population size (NH) and parasite population size (NP) from a neutral model with

a unknown host and parasite population sizes. Cross-validation results are shown for r = 30

and are based on 500 randomly chosen ABC-simulations for each model.

(TIF)

S6 Fig. Cross-validation model choice scenario 1 for r = 10 repetitions. Leave-one-out-

cross-validation result for distinguishing the coevolution model with unknown costs of infec-

tion (s), host population size (NH) and parasite population size (NP) from a neutral model with

unknown host and parasite population sizes. Cross-validation results are shown for r = 10

and are based on 500 randomly chosen ABC-simulations for each model.

(TIF)

S7 Fig. Model choice results for PODs from scenario 1 for r = 10 repetitions. Model choice

results for scenario 1 for r = 10. Model choice has been run to distinguish a coevolution model

with unknown costs of infection (s), host population size (NH) and parasite population size

(NP) from a neutral model with unknown host and parasite population sizes. Model choice is

shown for r = 30 repetitions and based on the 1% simulations having the closest summary sta-

tistics to those of the PODs. The posterior probability in support of the coevolution model (y-

axis) is shown for PODs with different costs of infection (s) (30 PODs for each s). Results for

single PODs are shown as dots. Note that for these points we added some jitter to the x-values

in order to increase the readability of the plots.

(TIF)

S8 Fig. Pairwise Manhattan distance and Δ Tajima’s D (host-parasite) for the PODs under

scenario 1 compared to simulations under a neutral model for r = 10. Pairwise Manhattan
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distance (y-axis) and the difference between Tajima’s D of the host and of the parasite (x-axis)

for the PODs used for inference in Scenario 1 and the 100,000 neutral simulations run for this

scenario. Under the neutral model, host and parasite population sizes vary. Simulations under

the neutral model are shown as grey open circles, and a bivariate normal kernel estimation has

been applied to obtain a probability density of the summary statistic combinations. The PODs

for scenario 1 are shown as diamonds and are coloured coded based on the true cost of infec-

tion (s).
(TIF)

S9 Fig. Inference results Scenario 1 for r = 10. Median of the posterior distribution (y-axis)

for the cost of infection s (top, a-c), host population size (NH) (middle, d-f) and parasite popu-

lation size (NP) (bottom, g-i) when inference is based on host and parasite summary statistics

(left), only host summary statistics (middle) or only parasite summary statistics (right) for sce-

nario 1. The median of the posterior distribution (after post-rejection adjustment) is plotted

for each POD in scenario 1. The true cost of infection for each POD is shown on the x-axis

with jitter added to increase the readability.

(TIF)

S10 Fig. Tajima’s D Model A for different costs of infection, resistance and infectivity. Taji-

ma’s D (y-axis) for model A for various cost of infection s (x-axis). The results are shown for

different combinations of cP (cP = 0.1 top, cP = 0.3 bottom) and cH (cH = 0.05 left, cH = 0.1

right). The mean and standard error of Tajima’s D of the parasite population (dark grey) and

of the host population (light grey) are plotted for r = 200 repetitions. The dashed-dotted line

shows the expected value of Tajima’s D in a Wright-Fisher population with constant popula-

tion size. Tajima’s� 0 is an indicator of selective sweeps Tajima’s D� 0 is an indicator of bal-

ancing selection. The other parameters are fixed to: NH = NP = 10, 000, nH = nP = 50, θH = θP =

5, μRtor = μrtoR = μntoI = μIton = 10−5.

(TIF)

S11 Fig. Cross-validation model choice scenario 2 for r = 30 repetitions. Leave-one-out-

cross-validation result for distinguishing the coevolution model with unknown costs of infec-

tion (s), cost of resistance (cH) and cost of infectivity (NP) from a neutral model constant host

and parasite population sizes (NH = NP = 10, 000). Cross-validation results are shown for

r = 30 and are based on 500 randomly chosen ABC-simulations for each model.

(TIF)

S12 Fig. Cross-validation model choice scenario 2 for r = 10 repetitions. Leave-one-out-

cross-validation result for distinguishing the coevolution model with unknown costs of infec-

tion (s), cost of resistance (cH) and cost of infectivity (NP) from a neutral model constant host

and parasite population sizes (NH = NP = 10, 000). Cross-validation results are shown for

r = 10 and are based on 500 randomly chosen ABC-simulations for each model.

(TIF)

S13 Fig. Posterior probability in support of the coevolution model (against a neutral

model) for scenario 2. Results are shown for r = 10 and 15 PODs per boxplot. The posterior

density in support of the coevolution model (y-axis) is shown for PODs with varying cost of

infection (s). The different panels reflect the combination of cH and cP for the respective PODs

(left: cH = 0.05, right: cH = 0.1, top: cP = 0.1, bottom: cP = 0.3). Model choice has been run to

distinguish a coevolution model with unknown costs of infection (s), cost of resistance (cH)

and cost of infectivity (cP) from a neutral model with constant host and parasite population

size (NH = NP = 10, 000). Results for single PODs are shown as dots and jitter added to the x-
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values to increase the readability.

(TIF)

S14 Fig. Pairwise Manhattan distance and Δ Tajima’s D (host-parasite) for the PODs

under scenario 2 compared to simulations under a neutral model for r = 10. Pairwise Man-

hattan distance (y-axis) and the difference between Tajima’s D of the host and of the parasite

(x-axis) for the PODs used for inference in Scenario 2 and 100,000 neutral simulations. Simu-

lations under the neutral model are shown as grey open circles. A bivariate normal kernel esti-

mation has been applied to obtain a probability density of the different summary statistic

combinations. The PODs for scenario 2 are shown in color. Colors reflect the true cost of

infection (s) for a particular POD (see legend) and shapes indicate the combination of cH and

cP (diamonds: cH = 0.05, cP = 0.1; circles: cH = 0.05, cP = 0.3; crosses: cH = 0.1, cP = 0.1; stars: cH

= 0.1, cP = 0.3) for the respective POD.

(TIF)

S15 Fig. Inference results Scenario 2 for r = 10. Median of the posterior distribution (y-axis)

for the cost of infection s (top, a-c), cost of resistance (cH) (middle, d-f) and cost of infectivity

(cP) (bottom, g-i) when inference is based on host and parasite summary statistics (left), only

host summary statistics (middle) or only parasite summary statistics (right) for scenario 2. The

median of the posterior distribution (after post-rejection adjustment) is plotted for each POD

in scenario 2. The true cost of infection for each POD is shown on the x-axis with jitter added

to increase the readability. The R2-value of a corresponding linear regression model is shown

in each panel.

(TIF)

S16 Fig. Inference results Scenario 2 for r = 10. Median of the posterior distribution (y-axis)

for the cost of infection s (top, a-c), cost of resistance (cH) (middle, d-f) and cost of infectivity

(cP) (bottom, g-i) when inference is based on host and parasite summary statistics (left), only

host summary statistics (middle) or only parasite summary statistics (right) for scenario 2. The

median of the posterior distribution (after post-rejection adjustment) is plotted for each POD

in scenario 2. The true cost of infection for each POD is shown on the x-axis with jitter added

to increase the readability. The R2-value of a corresponding linear regression model is shown

in each panel.

(TIF)

S17 Fig. Equilibrium frequencies Model B. Deterministic equilibrium frequencies for Model

B for a) T = 5 parasite generations (left) and b) T = 10 parasite generations (right) per host

generation. The equilibrium frequencies for different combinations of cost of resistance

cH = (0.05, 0.1) (columns), cost of infectivity cP = (0.1, 0.3) (rows) and cost of infection s = (0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8) (color of the squares) are shown. Only combinations with trench-war-

fare dynamics are shown. Centres of the squares represent the equilbrium frequencies obtained

by simulating numerically the recursion equations in S1 File for gmax = 30, 000 host generations

starting with an initial frequency of R0 = 0.2 resistant hosts and a0 = 0.2 infective parasites.

(TIF)

S18 Fig. Equilibrium frequencies Model C. Deterministic equilibrium frequencies for Model

C (auto-allo-infection model) with T = 2 parasite generations per host generation and ψ =

0.95. The equilibrium frequencies for different combinations of cost of resistance cH = (0.05,

0.1) (columns), cost of infectivity cP = (0.1, 0.3) (rows) and cost of infection s = (0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8) (color of the squares) are shown. Only combinations which result in trench-

warfare dynamics are plotted. Centres of the squares represent the equilbrium frequencies
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obtained by simulating numerically the recursion equations in S1 File for gmax = 30, 000 host

generations starting with an initial frequency of R0 = 0.2 resistant hosts and a0 = 0.2 infective

parasites. Heads of the arrows represent the equilibrium frequencies based on Eq (3) which

corresponds to the case ψ = 1 [24].

(TIF)

S19 Fig. Tajima’s D and pairwise manhattan distance Model B and C. Mean and standard

error of Tajima’s D (a+c) and pairwise manhattan distance (PMD) (b+d) for various costs of

infection s (x-axis) and r = 200 repetitions. Results for Model B (pure autoinfection model

with T = 5 and T = 10) are shown at the top, results for Model C (auto-allo-infection model

with ψ = 0.95) are shown at the bottom. The other parameters are fixed to: cH = 0.05 and cP =

0.1. Initial frequencies R0 and a0 in a and b are chosen randomly from a uniform distribution

between 0 and 1 while R0 = a0 = 0.2 in c and d.

(TIF)

S20 Fig. Pairwise Manhattan distance and Δ Tajima’s D (host-parasite) for PODs with low

costs of infection (s = {0.01 − 0.09}) under scenario 1 compared to simulations under a neu-

tral model for r = 30. Pairwise Manhattan distance (y-axis) and the difference between Taji-

ma’s D of the host and of the parasite (x-axis) for the PODs used for inference in Scenario 1

and the 100,000 neutral simulations run for this scenario. Under the neutral model, host and

parasite population sizes vary. Simulations under the neutral model are shown as grey open

circles, and a bivariate normal kernel estimation has been applied to obtain a probability den-

sity of the summary statistic combinations. The PODs for scenario 1 are shown as diamonds

and are coloured coded based on the true cost of infection (s).
(TIF)

S21 Fig. Pairwise Manhattan distance and Δ Tajima’s D (host-parasite) for PODs with low

costs of infection (s = {0.01 − 0.09}) under scenario 1 compared to simulations under a neu-

tral model for r = 10. Pairwise Manhattan distance (y-axis) and the difference between Taji-

ma’s D of the host and of the parasite (x-axis) for the PODs used for inference in Scenario 1

and the 100,000 neutral simulations run for this scenario. Under the neutral model, host and

parasite population sizes vary. Simulations under the neutral model are shown as grey open

circles, and a bivariate normal kernel estimation has been applied to obtain a probability den-

sity of the summary statistic combinations. The PODs for scenario 1 are shown as diamonds

and are coloured coded based on the true cost of infection (s).
(TIF)

S22 Fig. Pairwise Manhattan distance and Δ Tajima’s D (host-parasite) for PODs with low

costs of infection (s = {0.01 − 0.09}) under scenario 2 compared to simulations under a neu-

tral model for r = 30. Pairwise Manhattan distance (y-axis) and the difference between Taji-

ma’s D of the host and of the parasite (x-axis) for the PODs used for inference in Scenario 2

and 100,000 neutral simulations. Simulations under the neutral model are shown as grey open

circles. A bivariate normal kernel estimation has been applied to obtain a probability density

of the different summary statistic combinations. The PODs for scenario 2 are shown in color.

Colors reflect the true cost of infection (s) for a particular POD (see legend) and shapes indi-

cate the combination of cH and cP (diamonds: cH = 0.05, cP = 0.1; circles: cH = 0.05, cP = 0.3;

crosses: cH = 0.1, cP = 0.1; stars: cH = 0.1, cP = 0.3) for the respective POD.

(TIF)

S23 Fig. Pairwise Manhattan distance and Δ Tajima’s D (host-parasite) for PODs with low

costs of infection (s = {0.01 − 0.09}) under scenario 2 compared to simulations under a
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neutral model for r = 30. Pairwise Manhattan distance (y-axis) and the difference between

Tajima’s D of the host and of the parasite (x-axis) for the PODs used for inference in Scenario

2 and 100,000 neutral simulations. Simulations under the neutral model are shown as grey

open circles. A bivariate normal kernel estimation has been applied to obtain a probability

density of the different summary statistic combinations. The PODs for scenario 2 are shown in

color. Colors reflect the true cost of infection (s) for a particular POD (see legend) and shapes

indicate the combination of cH and cP (diamonds: cH = 0.05, cP = 0.1; circles: cH = 0.05, cP =

0.3; crosses: cH = 0.1, cP = 0.1; stars: cH = 0.1, cP = 0.3) for the respective POD.

(TIF)

S1 File. Additional information on coevolutionary models.

(PDF)

S2 File. Details Pairwise Manhattan Distance (PMD).

(PDF)
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Investigation: Hanna Märkle, Aurélien Tellier.
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