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Abstract: Ezetimibe is a well-known drug that lowers blood cholesterol levels by reducing its
absorption in the small intestine when joining to Niemann-Pick C1-like protein (NPC1L1). A ligand-
based study on ezetimibe analogues is reported, together with one-hit synthesis, highlighted in the
study. A convenient asymmetric synthesis of (2S,3S)-N-α-(R)-methylbenzyl-3-methoxycarbonylethyl-
4-methoxyphenyl β-lactam is described starting from Baylis–Hillman adducts. The route involves a
domino process: allylic acetate rearrangement, stereoselective Ireland–Claisen rearrangement and
asymmetric Michael addition, which provides a δ-amino acid derivative with full stereochemical
control. A subsequent inversion of ester and acid functionality paves the way to the lactam core
after monodebenzylation and lactam formation. It also shows interesting results when it comes to a
pharmacophore study based on ezetimibe as the main ligand in lowering blood cholesterol levels,
revealing which substituents on the azetidine-2-one ring are more similar to the ezetimibe skeleton
and will more likely bind to NPC1L1 than ezetimibe.

Keywords: ezetimibe; cholesterol; ligand study; pharmacophore; domino reaction; chiral amide
addition; Baylis–Hillman; β-lactam

1. Introduction

Cholesterol is an essential structural component of mammalian cell membranes and is
the precursor of vitamin D, bile salts and steroid hormones; a high level of this substance
in an organism can be dangerous. In fact, recent studies suggest that <70 mg/dL LDL may
result in incremental cardiovascular benefits [1,2]. Additionally, raised levels of cholesterol
have been associated with the onset of several diseases, such as stroke, diabetes, type
2 diabetes or endocrine disorders [3–6]. The importance of lowering cholesterol levels
has been well-established. Ezetimibe is a drug that lowers plasma cholesterol levels by
decreasing the absorption of cholesterol in the small intestine. Recent mouse studies have
proved Niemann-Pick C1-like protein (NPC1L1) as the main intestinal cholesterol facilitator,
and ezetimibe has been proved to inhibit this protein leading to a 70% reduction in intestinal
cholesterol absorption [2,7,8]. When it comes to treatment, it can be used alone (marketed
under the name Zetia®or Ezetrol), or combined with other medications used to lower
cholesterol levels such as statins (for example, in a complex of ezetimibe/simvastatin, which
is marketed as Vytorin®and Inegy). Ezetimibe is also the only adjunct to statin therapy
that has successfully shown cardiovascular benefits when combined. This association of
ezetimibe makes it possible to reduce the doses of statin. Taking into account all of these
features, an intensive synthetic study is here devoted to this drug and its derivatives.

2. Results

Below, we describe the optimized synthesis of β-lactam 1, one of the most promising
candidates when it comes to ezetimibe analogues (see Docking section of this article).
All the compounds analyzed in this section are accessible by means of the methodology
developed by the group, which is underlined below.
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We have demonstrated the use of chiral lithium amide (α-methylbenzyl)benzylamide
(R)- or (S)-2 in different domino reactions [9–12]. Firstly, in 1997, we published an
asymmetric conjugate addition cyclization of octa-2,6-diendioate I, initiated by a chi-
ral lithium amide, to obtain, stereoselectively, the methyl 2-amino-5-(2-methoxy-2-
oxoethyl)cyclopentane-1-carboxylate (II Scheme 1), [13–15] and applied it to the synthesis
of (R) and (S)-methyl (2-methoxycarbonylcyclopent-2-enyl)acetate (III and IV) and (R)-
and (S)-2-(2-hydroxymethylcyclopent-2-enyl)ethanol, useful homochiral synthons for
monoterpenes [13], and to the asymmetric synthesis of all the stereoisomers of 2-amino-
5-carboxymethyl-cyclopentane-1-carboxylic acid (V Scheme 1) [14,15]. Most recently, we
performed a multicomponent domino reaction, yielding VI, which has been applied to-
wards the asymmetric synthesis of cyclopentane[c]pyran core of iridoid natural products
(VII Scheme 1) [16].
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We later showed, in 2008, a novel domino reaction (allylic acetate rearrangement,
stereoselective Ireland–Claisen rearrangement and asymmetric Michael addition) [17]; a
protocol starting from Baylis–Hillman adducts VIII and IX, using chiral lithium amide
(R)-2, afforded δ-amino acids X, which are able to be transformed into piperidines XIV
throughout piperidone XIII. Interestingly, in this reaction, the derivative IX provides better
yield of X than Baylis–Hillman adduct VIII [17,18]. Convenient substitution in piperidone
XIII allows the synthesis of piperidine dicarboxylic acid (PDA), [18] as well as neurokinin
analogues, (+)-L-733,060 (+)-CP-99,994 [19]. It must be noted that using this methodology,
PDA compounds were able to be obtained, starting from cinnamaldehyde and methyl
crotonate, to obtain the Baylis–Hillman adduct [18], in which the cinnamaldehyde double
bond is a masked carboxylic functionality. Recently, this methodology was applied to the
synthesis of 2,3,6-trisubstituted piperidines XII (Scheme 2) by converting the acid X to an
aryl ketone XI prior to debenzylation-cyclization one-pot reactions [20].

Herein, following the aforementioned methodology, we report the synthesis of azetidine-
2-one derivative, as shown in Scheme 3, an analogue of ezetimibe, starting from p-
anisaldehyde and tert-butyl acrylate, which are used in the Baylis–Hillman reaction. In
this manner, the adduct 3 was obtained, an α,β-unsaturated ester previously synthetized
by Brand et al. [21] in acceptable yield using phenol as an additive to improve reaction
kinetics [22,23]. This alcohol is acetylated with acetic anhydride and pyridine, giving the
acetate 4, which was treated with the chiral amide (R)-2 to give 5 with good yield and
excellent diastereomeric excess, higher than 95%. The strategy for obtaining the β-amino
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acid from the δ-amino acid is based on simple transformations of the different carboxylates
of 5. Treatment of 5 with TMSCHN2 gives rise to 6 in quantitative yield, and its struc-
ture was corroborated by the appearance of a signal at 3.68 ppm (s, 3H, COOMe). The
subsequent release of the tert-butyl ester in an acid medium leads to the β-amino acid
7 with an excellent yield. Compound 7 is treated with ceric ammonium nitrate (CAN),
which produces a chemoselective debenzylation of the least substituted group, obtaining
8 with 84% yield. Once the β-amino acid has been obtained, the lactam coupling is car-
ried out in order to obtain the final compound 1. In this way, a combination of DIPEA,
1-hydroxybenzotriazole hydrate (BtOH) and EDCI is used under room temperature. In
this case, 1-hydroxybenzotriazole is used as a carboxylic acid activating group for the entry
of carbodiimide, since it reacts rapidly with o-acylisourea, also avoiding side reactions and
risks of racemization [24–26]. In addition, the formed urea can be removed by successive
washings. This fact makes it easy to use this methodology in solid phase synthesis.
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Although all NMR signals as well as reaction details are widely explained in the
supporting information section, see Supplementary Material, the main 1H NMR signals of
the ezetimibe analogue 1 are: 4.88 ppm (q, J = 7.2 Hz, 1H, C(α)H), 1.33 ppm (d, J = 7.2 Hz,
3H, C(α)Me) and 7.34–7.19 ppm (m, 5H, ArH) due to the α-methylbenzyl group; 3.70 (s,
3H, -COOMe) and 3.47 (s, 3H, -OMe), corresponding to the methoxy groups attached to
ester and phenyl functions, respectively; 7.02 (d, J = 8.7 Hz, 2H) and 6.74 (d, J = 8.7 Hz,
2H), showing an aromatic AB system, and 4.43 (d, J = 5.6 Hz, 1H, H4) and 3.22 (td, J = 8.3,
5.6 Hz, 1H, H3), due to the cis-disubstituted β-lactam core, ratifying its synthesis.
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2.1. Pharmacophore Docking Overlay

Although several techniques can be carried out in order to obtain in silico results when
it comes to the computational modelling of ligands (a ligand is a defined polyatomic molec-
ular entity with the experimental or predicted capability to bind a central macromolecular
entity called the target) [27], such as in studies based on the target, which focus on the
protein receptor, this study is based on the pharmacophores, focusing on the comparison
of the pharmacophore groups, representing the spatial arrangement of characteristics that
are essential for a molecule that interacts with a specific target receptor, of a known ligand,
in this case ezetimibe, with the compounds subjected to this study.

2.2. Design of the Ligands

A bibliographic search of the main ezetimibe pharmacophores [28–35] was carried
out, and it was found that the following requirements are advisable to obtain an analogue
with reasonable activity:

An azetidinone ring is required in the structure, Figure 1.
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• In position 1 of the ring, it is advisable to have an N-phenyl or N-benzyl group,
although a range of other substituents are allowed.

• An oxygenated function is required at a distance of three carbons from the cycle at
position 3.

• An aromatic group is required at position 4, preferably p-hydroxyl or p-methoxyphenyl.
In addition, isomers with S stereochemistry at this carbon show greater activity
against R.

• The 3S and 3R isomers have comparable activity without preference. That is, there
is no stereochemical preference at this asymmetric center [30]. This point is relevant
in the present work and it has been very well documented by J.W. Clader et al., in
the article with tittle: “2-Azetidinone Cholesterol Absorption Inhibitors: Structure-
Activity Relationships on the Heterocyclic Nucleus” [35].

With these guidelines, we decided to study derivatives with cis stereochemistry of
the β-lactam ring, since this stereochemistry is accessed directly in our synthetic pathway,
as shown above. However, this work could be expanded in the future by examining the
ligands with the substituents of the ring in trans, easily accessible by means of a similar
methodology. The oxygenated substituents at position 3 are also modified. Additionally,
the substituent R1 will be modified in order to find the best groups, as well as the aromatic
function at four position. This way, in Table 1, ligands L1–L10 are presented.

Table 1. Ligands studied at pharmacophore study.

Ligand R1 R2 R3 Ligand R1 R2 R3

L1
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Once the ligands were designed, the study was carried out by the PharmaGist web
server [36–38], which detects the pharmacophore groups of a set of molecules, see Table 2.
The method used is based on ligands, and therefore it does not require the structure of
the target receptor. Instead, the input files are a set of drug-like molecule structures that
are known to bind to the receptor. We calculated the pharmacophores by multiple flexible
alignments of the input ligands and assigned a score according to the goodness of the
spatial characteristics and the overlap of structures. The main innovation of this approach
is the flexibility of the input ligands, which is handled explicitly and deterministically in
the alignment process. Another important feature of the method is the ability to detect
pharmacophores shared by different subsets of input molecules. This ability is a key
advantage when the ligands belong to different binding modes or when the input contains
outliers in the score.
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Table 2. Results of the superposition with ezetimibe A. SC: spatial characteristics, Ar: aromatic
(aromatic rings), Hy: hydrophobic (prominent hydrophobic groups), Do: donors (hydrogen bond
donors), Ac: acceptors (hydrogen bond acceptors), +: positive (cationic centers), −: negative (anionic
centers) [37].

Ligand Score SC Ar Hy Do Ac + −
L1 9.039 4 1 0 1 3 0 0
L2 7.538 3 1 0 1 2 0 0
L3 7.539 3 1 0 1 2 0 0
L4 7.539 3 1 0 1 2 0 0
L5 7.532 4 1 0 0 3 0 0
L6 7.525 4 1 0 0 3 0 0
L7 6.029 3 1 0 0 2 0 0
L8 6.028 3 1 0 0 2 0 0
L9 6.017 3 1 0 0 2 0 0
L10 7.513 3 2 0 0 1 0 0

Once scores (score is a theoretical value, obtained from a resulting pairwise align-
ment, and is a weighted sum of the matched pivot features. These pivot features are the
detected pharmacophores) are presented, L1 is highlighted, whose structure includes an
aromatic interaction, possesses a hydrogen bond donor group and also hydrogen bond
acceptor groups.

In Figure 2, we can see the overlaps of ligand L1 with ezetimibe (Scheme 1). It can be
seen how the aromatic rings are superimposed on everything that contains the hydroxyl of
phenol. We can also see how the carboxymethyl group overlaps with the hydroxyl of the
ezetimibe chain, and both groups have electronegative atoms (Oxygen). Furthermore, the
β-lactam rings and the other hydrogen acceptor groups overlap, despite having different
relative stereochemistry in the β-lactam ring.
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It would be interesting to carry out biological tests of this class of ligands, which would
allow a more precise understanding of the effects that have been discussed and could also
help the homological construction to obtain higher quality data in the subsequent studies
that are carried out.

3. Conclusions

A useful method for the enantioselective synthesis of compounds with interesting hy-
polipémiant properties is described. By using the p-methoxy-benzaldehyde Baylis–Hillman
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adduct in an efficient domino reaction (allylic acetate rearrangement, stereoselective Ireland–
Claisen rearrangement and asymmetric Michael addition), we have ready access to δ-amino
acids 5 with 59% yield. A subsequent reversal of ester and acid functionality paves the way
to the lactam core after monodebenzylation and lactam formation under activation for the
attainment of amide in 70% yield and four steps. It is important to note that the series of
analogous reactions using the enantiomer of lithium amide (S)-2 in the domino reaction
will allow easy access to the enantiomer of the above-mentioned compounds, as has been
demonstrated in previous work with the synthesis of (R)- and (S)-cyclopentancarboxylates
III and IV, using the enantiomerics amides 2. Taking this into account and considering the
ease of deprotection and new functionalization of N in position 1 of azetidin-2-one core, the
possibility of using different starting aldehydes in the Baylis–Hillman reaction that account
for C-4 substitution and to take advantage of the reactivity of the ester moiety within the
C-3 chain, all this will provide diversity to the methodology for quick access to libraries
of molecules with an emphasis on SAR studies of this series of analogues based on the
support for docking studies. Further work is being undertaken in our laboratory.

Supplementary Materials: The following are available online, The experimental section with the
description of obtaining all the compounds and the spectroscopic characterization.
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