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ABSTRACT
Background. Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignant neo-
plasm. It is necessary to improve the understanding of the underlying molecular
mechanisms and identify the key genes and signaling pathways involved in PDAC.
Methods. The microarray datasets GSE28735, GSE62165, and GSE91035 were down-
loaded from theGene ExpressionOmnibus. Differentially expressed genes (DEGs) were
identified by integrated bioinformatics analysis, including protein–protein interaction
(PPI) network, Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses. The PPI network was established
using the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape
software. GO functional annotation and KEGG pathway analyses were performed using
the Database for Annotation, Visualization, and Integrated Discovery. Hub genes were
validated via the Gene Expression Profiling Interactive Analysis tool (GEPIA) and the
Human Protein Atlas (HPA) website.
Results. A total of 263 DEGs (167 upregulated and 96 downregulated) were common
to the three datasets. We used STRING and Cytoscape software to establish the PPI
network and then identified key modules. From the PPI network, 225 nodes and 803
edges were selected. The most significant module, which comprised 11 DEGs, was
identified using the Molecular Complex Detection plugin. The top 20 hub genes,
which were filtered by the CytoHubba plugin, comprised FN1, COL1A1, COL3A1,
BGN, POSTN, FBN1, COL5A2, COL12A1, THBS2, COL6A3, VCAN, CDH11,MMP14,
LTBP1, IGFBP5,ALB,CXCL12, FAP,MATN3, andCOL8A1. These genes were validated
using The Cancer Genome Atlas (TCGA) and Genotype–Tissue Expression (GTEx)
databases, and the encodedproteinswere subsequently validated using theHPAwebsite.
The GO analysis results showed that the most significantly enriched biological process,
cellular component, and molecular function terms among the 20 hub genes were cell
adhesion, proteinaceous extracellular matrix, and calcium ion binding, respectively.
The KEGG pathway analysis showed that the 20 hub genes were mainly enriched in
ECM–receptor interaction, focal adhesion, PI3K-Akt signaling pathway, and protein
digestion and absorption. These findings indicated that FBN1 and COL8A1 appear to
be involved in the progression of PDAC.Moreover, patient survival analysis performed
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via theGEPIA using TCGA andGTEx databases demonstrated that the expression levels
of COL12A1 and MMP14 were correlated with a poor prognosis in PDAC patients
(p< 0.05).
Conclusions. The results demonstrated that upregulation ofMMP14 and COL12A1 is
associated with poor overall survival, and these might be a combination of prognostic
biomarkers in PDAC.

Subjects Bioinformatics, Oncology, Medical Genetics
Keywords Bioinformatics, Pancreatic ductal adenocarcinoma, Prognostic, Biomarker, MMP14,
COL12A1

INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is the most common malignant tumor of the
pancreas and is a lethal malignancy with poor prognosis, which is in part due to its rapid
progression and the lack of diagnostic and therapeutic targets. In 2018, pancreatic cancer
(PC) ranked 11th among the most common cancers, with 458,918 new cases and 432,242
deaths due to PC worldwide (Bray et al., 2018). Recent work suggests that alcohol is a risk
factor for PC (Go, Gukovskaya & Pandol, 2005), while both genetic and environmental
factors also play a role in the development and progression of PC (Piepoli et al., 2006).

Understanding genetic alterations in the context of biological pathways can help identify
specific novel biomarkers of PDAC. Previous studies identified several cancer-associated
genes implicated in PDAC, including KRAS (Waters & Der, 2018), MYC (Witkiewicz et
al., 2015), and CDKN2A (Sikdar et al., 2018). It is widely accepted that the formation
of stroma contributes to tumor proliferation, invasion, and metastasis (Von Ahrens
et al., 2017). Particularly pathognomonic for PDAC is a stromal reaction that occurs
during tumor progression and extensively involves fibroblasts and the extracellular matrix
(ECM) (Mahadevan & Von Hoff, 2007). Nevertheless, the precise etiology and pathogenetic
mechanism of PDAC remain unclear.

Microarray technology provides high-throughput methods for quantitatively measuring
the expression levels of thousands of genes simultaneously, and microarray-based gene
expression profiling can filter differentially expressed genes (DEGs) and biological pathways
linked to various malignant tumors. Therefore, microarray techniques are promising and
efficient ways to identify candidate biomarkers involved in the pathogenesis of PDAC. The
purpose of our study was to determine significant DEGs and pathways implicated in PDAC
by integrated bioinformatics analysis and to provide novel insights into the progression,
diagnosis, and therapeutic targets of PDAC.

MATERIALS & METHODS
Screening database
The Gene Expression Omnibus (GEO: https://www.ncbi.nlm.nih.gov/geo/) is a public
repository of high-throughput gene expression genomics datasets (Clough & Barrett, 2016).
In this study, we downloaded three microarray datasets, namely, GSE28735, GSE62165,
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and GSE91035, from the NCBI-GEO database. The array data in GSE28735 consist of
45 matching pairs corresponding to PDAC and adjacent non-tumor tissues (Zhang et
al., 2013; Zhang et al., 2012). GSE62165 includes data for 118 whole-tumor tissue and 13
control samples (Janky et al., 2016). GSE91035 incorporates data for 8 normal pancreatic
and 25 PDAC tissues (Sutaria et al., 2017). Altogether, data for 188 PDAC tissues and 66
non-tumor tissues were available.

Screening of DEGs
GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) is an online analysis tool that is based
on the R programming language and can be used to identify DEGs that differentiate
between cancer and normal samples in a GEO series (Yao & Liu, 2018). Using GEO2R,
we analyzed DEGs that differentiate between PDAC and non-tumor tissue samples. An
adjusted p-value of<0.05 and |logFC|> 1 were employed as the cutoff criteria representing
a significant difference. Using a data processing standard, we filtered DEGs via the Venn
diagram tool at http://bioinformatics.psb.ugent.be/webtools/Venn/. A total of 263 DEGs
were selected, which consisted of 167 upregulated genes and 96 downregulated genes.

Establishment of the protein–protein interaction (PPI) network
The Search Tool for the Retrieval of Interacting Genes (STRING: http://string-db.org/) is
an online application that can be used to assess DEG-encoded proteins and protein–protein
interaction (PPI) networks (Szklarczyk et al., 2015). A combined score of >0.4 was set as
the threshold.

Cytoscape software v3.2.1 (Shannon et al., 2003)was utilized to visualize the PPI network,
which established a new way to find potential key candidate genes and core proteins. We
utilized cluster analysis via the Molecular Complex Detection (MCODE) plugin with
degree cutoff = 2, node score cutoff = 0.2, k-core = 2, and max depth = 100, which
detected significant modules in the PPI network. To identify the hub genes, we also utilized
the CytoHubba plugin, which provided a novel method of exploring significant nodes in
PPI networks. These tools yield new insights into normal cellular processes, the underlying
mechanisms of disease pathology, and clinical treatment.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis of DEGs
The Gene Ontology (GO) is used to perform enrichment analysis, which covers the cellular
component (CC), biological process (BP), and molecular function (MF), of the selected
genes (Young et al., 2010). The Kyoto Encyclopedia of Genes and Genomes (KEGG) is
a database that helps to illustrate the functionalities and pathways of the selected genes
(Altermann & Klaenhammer, 2005). The Database for Annotation, Visualization, and
Integrated Discovery (DAVID: http://david.ncifcrf.gov/) is a public online bioinformatics
database (Dennis Jr et al., 2003) that contains information on biological functional
annotations for genes and proteins. The cutoff criteria were selected on the basis of p< 0.05.
We performed enrichment of the GO terms and KEGG pathways for the candidate DEGs
using DAVID.
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Survival analysis of the candidate genes and validation of DEGs
using TCGA and GTEx databases
Based on data for 9,736 tumors and 8,587 normal samples from The Cancer Genome
Atlas (TCGA) database and the Genotype–Tissue Expression (GTEx) database, the Gene
Expression Profiling Interactive Analysis tool (GEPIA: http://gepia.cancer-pku.cn/) is
used to perform functions such as survival analysis, the detection of similar genes, and
correlation analysis to clarify the relationships between diseases and DEGs (Tang et al.,
2017).

The GEPIA was also utilized for validating and visualizing the selected DEGs using
TCGA and GTEx databases (Tang et al., 2017).

Validation of expression of candidate gene-encoded proteins
The expression of proteins encoded by the PDAC candidate genes was validated using
the Human Protein Atlas (HPA: https://www.proteinatlas.org/) website on the basis of
spatial proteomics data and quantitative transcriptomics data (RNA-Seq) obtained from
immunohistochemical analysis of tissue microarrays.

RESULTS
Identification of DEGs
A total of 263 DEGs were identified from GSE28735, GSE62165, and GSE91035. There
were 167 upregulated genes and 96 downregulated genes in PDAC tissues in comparison
with non-tumor tissues (Fig. 1) (Table 1).

Establishment of the PPI network
Using the STRING application and Cytoscape software, 225 nodes and 803 edges were
mapped in the PPI network (Fig. 2A). In association with these nodes, the whole PPI
network was analyzed using the MCODE plugin, and one significant module was identified
with average MCODE score = 8.6, nodes = 11, and edges = 43 (Fig. 2B). This significant
module comprised 11 DEGs, namely, COL6A3, COL3A1, VCAN, COL5A2, COL12A1,
THBS2, FBN1, POSTN, LTBP1, MMP14, and CDH11. From the PPI network, the top
20 hub genes were filtered by the CytoHubba plugin using the maximal clique centrality
method. Their order of sequence was as follows: FN1, COL1A1, COL3A1, BGN, POSTN,
FBN1, COL5A2, COL12A1, THBS2, COL6A3, VCAN, CDH11, MMP14, LTBP1, IGFBP5,
ALB, CXCL12, FAP, MATN3, and COL8A1 (Fig. 2C). Via data mining, we found that the
significant module and hub genes mainly consisted of upregulated genes.

GO and KEGG pathway analysis of DEGs
Functional and pathway enrichment analyses were accomplished using DAVID. GO
analysis showed that the most significant module was mainly enriched in cell adhesion,
extracellular matrix structural constituent, and proteinaceous extracellular matrix (Fig. 3)
(Table 2). Moreover, the 20 hub genes were mainly enriched in cell adhesion, endodermal
cell differentiation, proteinaceous extracellular matrix, and calcium ion binding (Fig. 4)
(Table 3). In addition, KEGG pathway enrichment analysis demonstrated that the DEGs in
the most significant module were enriched in ECM–receptor interaction (Fig. 3) (Table 2)
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Figure 1 Venn diagram. Identification of differentially expressed genes (DEGs) from GSE28735,
GSE62165, and GSE91035. The different colored areas represent the different datasets, and a total of 263
DEGs were common to all three datasets.

Full-size DOI: 10.7717/peerj.10419/fig-1

Table 1 A total of 263 DEGs were identified from the three microarray datasets, which consisted of 167 upregulated genes and 96 downregu-
lated genes present in pancreatic ductal adenocarcinoma (PDAC) tissues in comparison with non-tumor tissues.

DEGs Gene names

Upregulated XDH, RTKN2, PTPRR, ADAM12, STYK1, TPX2, PADI1, HEPH, CEACAM6, ITGA3, COL1A1, ANLN, FNDC1,
PCDH7, SLC6A6, TRIM29, PXDN, EDNRA, LTBP1,MFAP5, PLA2R1, FN1, KRT17, PGM2L1, IFI27, ASAP2,
LAMB3, TNFAIP6, HOXB5, OAS1, NTM, COL5A2, OSBPL3, TMPRSS4, ANTXR1, SDR16C5, OLR1, NT5E,
CTSK, SULF2,MXRA5, APOL1, CDH11, AREG,MALL, S100A16, BGN, LAMA3, COL8A1, IGFBP5,MMP12,
ADAMTS6, SLC2A1, CD109, ECT2, KIF23,MMP11, CDH3, LMO7, CCL18, ATP2C2, POSTN,MMP14,
ADAM28, SRPX2, CEACAM5, TMC5, OAS2,MUC17, GABRP, COMP, SYTL2, GPX8, RUNX2, DLGAP5,
KRT19, VCAN,MKI67, SULF1, LAMC2, GCNT3, NMU,MUC13, CEACAM1, ETV1, COL12A1, AGR2,
ST6GALNAC1, SLC44A4, PLAU, S100P, SERPINB5, FOXQ1, TGM2, ITGB4, DCBLD2, TRIM31, RAI14,
NRP2, SGIP1, CST1, ARNTL2, LEF1,MYOF, ANO1, S100A14, DDX60, KYNU, CAPG, CCL20,MATN3, NPR3,
GPRC5A, NOX4, IL1RAP, ACSL5, HPGD, GREM1, SCEL, FBN1, IGFL2, SLC6A14, KRT6A, DHRS9, ANGPT2,
MST1R, COL3A1, TMEM45B, EDIL3, ASPM, FAP, INPP4B, LOXL2, NQO1, CYP2C18, IFI44L, HK2, EFNB2,
AEBP1, SLC16A3, CORIN, THBS2, BCAS1, DSG3, DKK1, RHBDL2, COL17A1, TSPAN1, FERMT1, CXCL5,
COL6A3, COL10A1, ACTA2, PLAC8, AHNAK2,MLPH, FBXO32, TGFBI, KCNN4, CLDN18, FGD6,MTMR11,
FXYD3,MBOAT2, SEMA3C, DPYSL3, CENPF

Downregulated EPB41L4B, GSTA2, KIAA1324, CELA3A, ACADL, CEL, SLC39A5, LONRF2, SLC3A1, NRG4,MT1G, PROX1,
G6PC2, C5, EGF, FAM3B, AQP8, CLPS, SLC17A4, CPB1, GP2, PDK4, RBPJL, PDIA2, PM20D1, CTRC, IAPP,
PLA2G1B, ERP27, CELA2B, GRPR, REG1A, KIF1A, GUCA1C, CTRL, SYCN, CHRM3, TMED6, ALB, KCNJ16,
REG3A, SLC4A4, AOX1, SERPINA5, CELA2A, SPINK1, FAM129A, FAM150B, SLC16A12, F11, CPA2, SV2B,
BNIP3, C2CD4B, SLC1A2, REG1B, SCGN, PAK3, PRSS3, GRB14, REG3G, DCDC2, F8, GPHA2, EPHX2,
PNLIPRP2, SLC7A2, CPA1, PRKAR2B, ONECUT1, BACE1, NUCB2, HOMER2, CXCL12, SLC43A1, GNMT,
NR5A2, ALDH1A1, IL22RA1, BEX1, ANPEP, CFTR, FLRT2, LMO3, FGL1, NRCAM, FABP4, PNLIPRP1, KLK1,
SERPINI2, GATM, DPP10, C6, SLC16A10, PRSS1, PAH
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Figure 2 Protein–protein interaction (PPI) network of DEGs. (A) PPI network of 263 DEGs in PDAC
tissues. Red nodes represent upregulated genes, whereas blue nodes represent downregulated genes. (B)
Significant module identified from PPI network via the Molecular Complex Detection plugin. This mod-
ule consisted of upregulated genes. (C) Top 20 hub genes filtered using CytoHubba plugin. Nodes shown
in darker colors were found to have higher significance. Red represents the highest significance, followed
by orange, whereas yellow represents the lowest significance.

Full-size DOI: 10.7717/peerj.10419/fig-2

and the hub genes were mainly enriched in ECM–receptor interaction, focal adhesion,
protein digestion and absorption, and PI3K-Akt signaling pathway (Fig. 4) (Table 3). (If
p< 0.0001, the corresponding term was considered to be enriched.)
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Figure 3 Results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses of the most significant module. The blue color represents biological process (BP), the
gray color represents molecular function (MF), the green color represents cellular component (CC), and
the orange color represents KEGG pathways.

Full-size DOI: 10.7717/peerj.10419/fig-3

Table 2 Results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the most significant mod-
ule.

Pathway ID Pathway description Count in
gene set

p-value FDR DEGs

GO:0007155 Cell adhesion 5 1.37E−06 0.001121514 COL6A3, COL12A1, VCAN, POSTN,
THBS2

GO:0001501 Skeletal system development 3 3.80E−04 0.310820683 FBN1, VCAN, COL5A2
GO:0030199 Collagen fibril organization 2 0.017003019 13.1195401 COL5A2, CDH11
GO:0005201 Extracellular matrix structural constituent 4 2.39E−06 0.001487027 COL3A1, FBN1, VCAN, COL5A2
GO:0005509 Calcium ion binding 4 0.003312243 2.045566581 FBN1, VCAN, THBS2, CDH11
GO:0005578 Proteinaceous extracellular matrix 6 1.81E−08 1.29E−05 COL3A1, COL6A3, FBN1, COL12A1,

VCAN, POSTN
GO:0005581 Collagen trimer 3 3.07E−04 0.217600344 COL3A1, COL6A3, COL12A1
GO:0031012 Extracellular matrix 3 0.001912518 1.350246354 FBN1, COL12A1, THBS2
GO:0005615 Extracellular space 4 0.008881226 6.138544445 COL6A3, FBN1, COL12A1, POSTN
GO:0005604 Basement membrane 2 0.032936583 21.16653102 FBN1, THBS2
gga04512 ECM–receptor interaction 4 4.51E−05 0.019602271 COL3A1, COL6A3, THBS2, COL5A2
gga04510 Focal adhesion 4 7.12E−04 0.309146908 COL3A1, COL6A3, THBS2, COL5A2

Notes.
Abbreviation: FDR, false discovery rate.

Overall survival analysis of the top 20 hub genes
Patient survival analysis performed via the GEPIA using TCGA and GTEx databases
demonstrated that the high expression levels of COL12A1 and MMP14 were correlated
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Figure 4 Results of GO and KEGG pathway analyses of 20 hub genes. The blue color represents BP, the
green color represents CC, the yellow color represents MF, and the orange color represents KEGG path-
ways.

Full-size DOI: 10.7717/peerj.10419/fig-4

Figure 5 Overall survival analysis.Overall survival curves for (A) COL12A1 and (B)MMP14 expression
in PDAC patients in comparison with a high-risk group and a low-risk group. A value of p< 0.05 was re-
garded as statistically significant. TPM, transcripts per million; HR, hazards ratio.

Full-size DOI: 10.7717/peerj.10419/fig-5

with an unfavorable prognosis in PDAC patients (p< 0.05) (Fig. 5). The overall survival
analysis showed that the other hub genes had no statistically significant correlations
(p> 0.05).
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Table 3 Results of GO and KEGG pathway analyses of 20 hub genes.

Pathway ID Pathway description Count in
gene set

p-value FDR DEGs

GO:0007155 Cell adhesion 6 3.07E−07 3.44E−04 COL12A1, POSTN, VCAN,
COL8A1, THBS2, FN1

GO:0035987 Endodermal cell differentiation 4 6.17E−06 0.006927836 COL12A1, MMP14, COL8A1, FN1
GO:0018149 Peptide cross-linking 2 0.02230059 22.35847168 COL3A1, FN1
GO:0043588 Skin development 2 0.035457234 33.30840338 COL3A1, COL5A2
GO:0030199 Collagen fibril organization 2 0.035457234 33.30840338 COL3A1, COL5A2
GO:0042060 Wound healing 2 0.039805932 36.60570116 COL3A1, FN1
GO:0001501 Skeletal system development 2 0.048448486 42.72191792 FBN1, COL5A2
GO:0005578 Proteinaceous extracellular ma-

trix
7 1.25E−08 1.13E−05 MATN3, BGN, FBN1, COL12A1,

POSTN, COL1A1, FN1
GO:0031012 Extracellular matrix 4 1.37E−04 0.123843274 COL12A1, VCAN, MMP14,

COL8A1
GO:0005581 Collagen trimer 3 7.87E−04 0.70897958 COL12A1, COL1A1, COL8A1
GO:0005615 Extracellular space 6 0.001248571 1.122732142 ALB, FAP, COL3A1, FBN1,

COL12A1, VCAN
GO:0005604 Basement membrane 3 0.001310663 1.178271997 FBN1, COL8A1, THBS2
GO:0001527 Microfibril 2 0.008113224 7.097635089 LTBP1, FBN1
GO:0070062 Extracellular exosome 7 0.033863185 26.75315613 BGN, ALB, FBN1, COL12A1,

COL8A1, FN1, CDH11
GO:0005509 Calcium ion binding 7 9.57E−06 0.007173793 MMP14, MATN3, LTBP1, FBN1,

VCAN, THBS2, CDH11
GO:0005201 Extracellular matrix structural

constituent
3 4.84E−04 0.362368483 COL3A1, FBN1, COL5A2

GO:0008201 Heparin binding 3 0.003684116 2.728227814 POSTN, THBS2, FN1
ocu04512 ECM–receptor interaction 6 5.00E−08 4.15E−05 COL3A1, COL6A3, COL1A1,

COL5A2, THBS2, FN1
ocu04510 Focal adhesion 6 3.64E−06 0.003011517 COL3A1, COL6A3, COL1A1,

COL5A2, THBS2, FN1
ocu04974 Protein digestion and absorption 5 8.69E−06 0.007197854 COL3A1, COL6A3, COL12A1,

COL1A1, COL5A2
ocu04151 PI3K-Akt signaling pathway 6 3.26E−05 0.026969277 COL3A1, COL6A3, COL1A1,

COL5A2, THBS2, FN1
ocu05146 Amoebiasis 4 3.54E−04 0.292970736 COL3A1, COL1A1, COL5A2, FN1
ocu04611 Platelet activation 3 0.012199259 9.669074187 COL3A1, COL1A1, COL5A2

Validation of DEGs using TCGA and GTEx databases
To ensure the reliability of the identification of the top 20 hub genes, we validated
these via the GEPIA using TCGA and GTEx databases. Boxplots of the hub genes
associated with PDAC were downloaded from the GEPIA. The results demonstrated
that FN1, COL1A1, COL3A1, BGN, POSTN, FBN1, COL5A2, COL12A1, THBS2, COL6A3,
VCAN, CDH11, MMP14, LTBP1, IGFBP5, FAP, MATN3, and COL8A1 were significantly
overexpressed in PDAC tissues in comparison with normal pancreatic tissues, whereas ALB
was underexpressed in PDAC tissues (p< 0.05) (Fig. 6). CXCL12 was expressed in PDAC
tissues, but with no statistically significant difference in expression (p> 0.05).
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Figure 6 Validation of DEGs using The Cancer Genome Atlas and Genotype–Tissue Expression
databases. The boxplots were downloaded from the Gene Expression Profiling Interactive Analysis tool
and are arranged in the following order: (A) FN1, (B) COL1A1, (C) COL3A1, (D) BGN, (E) POSTN, (F)
FBN1, (G) COL5A2, (H) COL12A1, (I) THBS2, (J) COL6A3, (K) VCAN, (L) CDH11, (M)MMP14, (N)
LTBP1, (O) IGFBP5, (P) FAP, (Q)MATN3, (R) COL8A1, and (S) ALB. A value of p< 0.05 was regarded
as statistically significant. The Y -axes represent the expression in terms of log2 (TPM+ 1). The red boxes
represent the expression levels of DEGs in PAAD tissues, whereas the gray boxes represent the expression
levels of DEGs in normal tissues. PAAD, pancreatic adenocarcinoma.

Full-size DOI: 10.7717/peerj.10419/fig-6

Validation of expression of candidate gene-encoded proteins
We obtained the expression levels of proteins encoded by the 20 hub genes associated with
PDAC from the HPA website. No data for proteins encoded by COL5A2, IGFBP5, and
MATN3 are reported on the HPA website, and expression profiles of the other 17 genes in
PDAC clinical specimens are shown in Fig. 7.
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Figure 7 Expression of 20 candidate DEGs in human pancreatic cancer specimens. The immunohisto-
chemical data were obtained from the Human Protein Atlas. Except for COL5A2, IGFBP5, andMATN3,
expression profiles of the other 17 genes in PDAC clinical specimens are shown. Staining demonstrated
(continued on next page. . . )

Full-size DOI: 10.7717/peerj.10419/fig-7
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Figure 7 (. . .continued)
that the protein expressions of (A) FN1, (B)MMP14, (C) COL12A1, (D) COL3A1, (I) COL1A1, (L) FAP,
(M) FBN1, (N) LTBP1, (O) POSTN, and (Q) VCAN were higher in PDAC tissues than in normal pan-
creatic tissues, with only (F) ALB being downregulated in PDAC tissues. (E) COL6A3, (H) CDH11, (J)
COL8A1, and (K) CXCL12 were not expressed, whereas (G) BGN and (P) THBS2 were overexpressed in
both PDAC tissues and normal tissues.

The protein expressions of FN1,MMP14,COL12A1,COL3A1,COL1A1, POSTN,VCAN,
LTBP1, FBN1, and FAP were upregulated in PDAC tissues in comparison with normal
tissues, with only ALB being downregulated in PDAC tissues. COL6A3, COL8A1, CDH11,
and CXCL12 were not expressed in either PDAC tissues or normal tissues, and BGN and
THBS2 were overexpressed in both cancer and normal tissues.

DISCUSSION
Our study was based on GEO datasets, namely, GSE28735, GSE62165, and GSE91035. The
main findings deduced from the studies used to compile GSE28735 were that dipeptidase
1 and a unique set of free fatty acids played roles in the development, progression, and
prognosis of PC and might be potential targets in PDAC (Zhang et al., 2012; Zhang et al.,
2013). The study that was used to compile GSE62165 found that hepatocyte nuclear factor
(HNF)-1 α and HNF-1 β seem to be good candidates as tumor suppressors in PDAC
(Janky et al., 2016). Another paper, which was used to compile GSE91035, concluded that
an increase in the expression of the processed transcript of HNRNPU was associated with
a poor prognosis in PDAC (Sutaria et al., 2017).

In our study, GO analysis showed that the most significantly enriched BP, CC, and
MF terms among the 20 hub genes were cell adhesion, proteinaceous extracellular matrix,
and calcium ion binding, respectively. Cell adhesion is the attachment of a cell either
to another cell or to an underlying substrate. The proteinaceous extracellular matrix
provides structural support and biochemical or biomechanical cues for cells or tissues
and is a structure located external to one or more cells. The ECM is a crucial factor in
both promoting the progression of PDAC and inhibiting the delivery of antitumor therapy
(Weniger, Honselmann & Liss, 2018).

According to the analysis of the MF terms among the hub genes, MMP14, THBS2,
CDH11, FBN1, LTBP1, MATN3, and VCAN were jointly involved in calcium ion
binding, which is defined as selective and non-covalent interactions with calcium ions
(Ca2+). Ca2+ is a ubiquitous and versatile second messenger involved in the regulation
of numerous cellular functions, including gene transcription, vesicular trafficking, and
cytoskeletal rearrangements (Nunes-Hasler, Kaba & Demaurex, 2020). Ca2+ and Ca2+-
regulating proteins contribute to a large number of processes that are key to cancer
cells, including proliferation, invasion, and cell death (Monteith, Prevarskaya & Roberts-
Thomson, 2017; Prevarskaya, Skryma & Shuba, 2011). A high serum Ca2+ level is associated
with a poor prognosis in PDAC (Dong et al., 2014), and cytosolic Ca2+ overload triggers
apoptotic death pathways (Brini & Carafoli, 2009). It is thus reasonable that the seven
abovementioned genes might regulate calcium ion binding and affect the development of
PDAC. Furthermore, our study suggests thatMMP14 is a promising biomarker for survival
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in PDAC. Considering that Ca2+ cannot be produced in cells but undergoes flux between
intracellular calcium storage, cytosolic calcium signals, and the extracellular calcium pool
(Yang et al., 2020), it would be reasonable to hypothesize that the overexpression ofMMP14
influences calcium ion storage and thus might cause disorders of calcium homeostasis and
hence contribute to an unfavorable prognosis in PDAC patients.

Matrix metalloproteinases (MMPs) are a family of calcium- and zinc-dependent
membrane-anchored or secreted endopeptidases that are overexpressed in various diseases,
including breast cancer (Min et al., 2015). MMP14 is located in neoplastic epithelium.
It is speculated that the overexpression of MMP14 alone may be sufficient to induce
the development of PDAC (Shields et al., 2012). Moreover, MMP14 is overexpressed in
the epithelium in invasive PC (Iacobuzio-Donahue et al., 2002; Shields et al., 2012), and
MMP14, as an endopeptidase, can degrade various components of the ECM such as
collagen, which possibly leads to metastasis of tumors (Golubkov et al., 2010). Type I
collagen can induce the expression ofMMP14 and TGF- β1 in pancreatic ductal epithelial
cells (Ottaviano et al., 2006), and COL1A1 encodes the major component of type I collagen.
The expression of MMP14 in PDAC cells stimulates pancreatic stellate cells (PSCs) and
enhances the production of type I collagen by increasing transforming growth factor- β
signaling (Krantz et al., 2011). Ottaviano et al. found that fibrosis and the expression of
MMP14 in tumor specimens increased in comparison with those in normal pancreatic
tissue (Ottaviano et al., 2006). These findings suggest the key role of interactions between
MMP14 and type I collagen in the progression of PDAC and supportMMP14 as a potential
target for inhibiting fibrosis, preventing metastasis, and treating PDAC.

The KEGG pathway analysis showed that six hub genes, namely, COL1A1, COL3A1,
COL5A2, COL6A3, FN1, and THBS2, were significantly associated with ECM–receptor
interactions, focal adhesion, and the phosphatidylinositol-3-kinase–protein kinase B
(PI3K-Akt) signaling pathway. In addition, collagen-encoding genes, including COL1A1,
COL3A1, and COL5A2, were also enriched in protein digestion and absorption and platelet
activation.

ECM–receptor interactions play important roles in the processes of cell shedding,
adhesion, degradation, migration, differentiation, hyperplasia, and apoptosis (Bao et al.,
2019). PSCs secrete several ECM proteins, including collagen, fibronectin, fibulin-2,
and laminin, as well as hyaluronan (Hall et al., 2019). Moreover, COL1A1 and COL3A1
were significantly downregulated in PC (p <0.0001) after treatment with gemcitabine in
combination with EC359 (Hall et al., 2019). The gene COL1A1 encodes the pro-alpha 1
chain of type I collagen, which is closely associated with MMP14. COL3A1 was found
to encode a major structural component of hollow organs such as large blood vessels,
the uterus and bowel, and tissues that must withstand stretching (Kuivaniemi & Tromp,
2019). As an important molecule, COL5A2 is associated with remodeling of the ECM
and is differentially expressed between in situ ductal carcinoma and invasive ductal
carcinoma (Vargas et al., 2012). The alpha 3 chain of type VI collagen is mainly present in
the desmoplastic stroma in PDAC, with large deposits between the sites of stromal fatty
infiltration and around the malignant ducts (Arafat et al., 2011), and the circulating form
of this protein has potential clinical significance in the diagnosis of pancreatic malignancy
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(Kang et al., 2014). FN1 encodes a collagen-associated protein that has been identified
as a potential biomarker of an unfavorable prognosis in PDAC (Hu et al., 2018). THBS2
appears in the early stages of PDAC and hence has great potential for the diagnosis of
PDAC, with 98% specificity (Kim et al., 2017).

At points of ECM–cell contact, specialized structures are formed, which are termed focal
adhesions. Some components of focal adhesions contribute to cell migration in PDAC and
participate in structural links between the actin cytoskeleton and membrane receptors,
whereas others are signaling molecules (Manoli et al., 2019).

The PI3K-Akt signaling pathway regulates fundamental cellular functions, including
transcription, translation, proliferation, growth, and survival. Accumulating evidence has
implied that the PI3K-Akt signaling pathway promotes malignant processes of PDAC
cells, including proliferation, angiogenesis, metastasis, suppression of apoptosis, and
chemoresistance, and targeting the PI3K-Akt signaling pathway has been a potential
therapeutic strategy for the treatment of PC (Ebrahimi et al., 2017).

In PC, both exocrine and endocrine functions are abnormal, which profoundly influences
the secretion of proteases, and hence protein digestion and absorption is a prominent
metabolic change (Gilliland et al., 2017). Platelet activation facilitates the P-selectin- and
integrin-dependent accumulation of cancer cell microparticles and promotes tumor growth
and metastasis (Mezouar et al., 2015). However, the effect of collagen-mediated platelet
activation on the progression of PDAC needs further investigation.

Collagens are centrally involved in the formation of fibrillar and microfibrillar networks
of the ECM and basement membranes, as well as other structures of the ECM (Gelse, Poschl
& Aigner, 2003). We further found that the collagen family is closely associated with PDAC.
Interestingly, Wang and Li also found that the collagen family and FN1 have an influence
on PC via data mining using a different gene set (GSE15471) (Wang & Li, 2015). As we
have done, they suggested that FN1, together with COL1A1, COL3A1, and COL5A2, may be
key molecules in the development and progression of PDAC owing to their involvement in
ECM–receptor interactions and focal adhesion pathways. These DEGs were also identified
in our study. Furthermore, we found that COL12A1 and COL6A3 are probably also key
DEGs that influence PDAC, which differs from the results of Wang and Li. Although the
specific relationship between COL12A1 and PDAC has not been reported, our findings
also suggest that COL12A1 is a potential prognostic biomarker in patients with PDAC.

We also found that FBN1 and COL8A1 appear to be involved in the progression
of PDAC. FBN1 encodes a structural component of the microfibrils of the ECM that
have diameters of 10–12 nm, which impart both regulatory and structural properties
to load-bearing connective tissues (Lee et al., 2004). The silencing of FBN1 inhibits the
proliferative, migratory, and invasive activities of gastric cancer cells, whereas upregulation
of the expression of FBN1 has the opposite effect (Yang, Zhao & Chen, 2017). COL8A1
encodes a macromolecular component of the subendothelium (Xu et al., 2001). It is
suggested that COL8A1 may be associated with malignant processes of hepatocarcinoma
(Zhao et al., 2009) and the progression and prognosis of human colon adenocarcinoma
(Shang et al., 2018).
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CONCLUSIONS
In conclusion, we screened the top 20 hub genes (FN1, COL1A1, COL3A1, BGN, POSTN,
FBN1, COL5A2, COL12A1, THBS2, COL6A3, VCAN, CDH11, MMP14, LTBP1, IGFBP5,
ALB,CXCL12, FAP,MATN3, andCOL8A1) and the related enriched functions or pathways,
which regulate the progression and metastatic invasion of PDAC, as well as overall survival.
The results demonstrate that the upregulation of MMP14 and COL12A1 in PDAC is
closely associated with poor overall survival, that these might be a potential combination
of prognostic biomarkers in patients with PDAC, and that FBN1 and COL8A1 might be
biomarkers of PDAC. In brief, our study increases the understanding of the potential
critical genes and related pathways that participate in the pathogenesis of PDAC.
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