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Background: Peripheral nerves are able to regenerate spontaneously after injury. An increasing number
of studies have investigated the mechanism of peripheral nerve regeneration and attempted to find
potential therapeutic targets. The various bioinformatics analysis tools available, gene set enrichment
analysis (GSEA) and protein-protein interaction (PPI) networks can effectively screen the crucial targets of
neuroregeneration.

Methods: GSEA and PPI networks were constructed through ingenuity pathway analysis and sequential
gene expression validation ex vitro to investigate the molecular processes at 1, 4, 7, and 14 days following
sciatic nerve transection in rats.

Results: Immune response and the activation of related canonical pathways were classified as crucial
biological events. Additionally, neural precursor cell expressed developmentally downregulated 4-like
(NEDD4L), neuregulin 1 (NRG1), nuclear factor of activated T cells 2 (NFATC2), midline 1 (MID1), GLI
family zinc finger 2 (GLI2), and ventral anterior homeobox 1 (VAX1), which were jointly involved in both
immune response and axonal regeneration, were screened and their mRNA and protein expressions following
nerve injury were validated. Among them, the expression of VAX1 continuously increased following nerve
injury, and it was considered to be a potential therapeutic target.

Conclusions: The combined use of GSEA and PPI networks serves as a valuable way to identify potential

therapeutic targets for neuroregeneration.
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Introduction

Peripheral nerve injuries (PNIs) present a substantial
clinical problem worldwide and are associated with a
considerable financial burden (1). Direct suturing repair,
commonly used for short nerve deficits (<0.5 cm), is a
gold-standard treatment for axonotmesis and neurotmesis
injuries (2). A repair of larger nerve deficits requires nerve
autografting, which means implanting a patient’s healthy
nerves (3). With the limitation of nerve autografting,
peripheral nerve regeneration aided by tissue engineering
technology emerged as the alternatives (4). Owing to the
different cell types in the peripheral nervous system (PNS)
and the central nervous system (CNS), and their specific
functions post-injury, peripheral nerves possess greater
potential for regeneration than those in the CNS (5). Due
to the traumatic injury and postoperative complications,
PNIs can trigger a series of biological events within the
proximal and distal nerve stumps (6). Substantial progress
has been made with understanding how PNIs elicit these
transcriptional and epigenetic changes (7). Regulators
of axonal regeneration have also been identified, which
has provided valuable insight into understanding the
transcriptional changes that promote regeneration in
peripheral neuron response to injury (8); however, there are
still many questions left to answer.

Beyond the classical injury signal pathways, transcriptional
and epigenetic factors have been shown to be involved
in axonal regeneration, which can be facilitated by
pharmacological or genetic means to conquer the non-
permissive microenvironment iz vitro or in vivo (9-14).
Therefore, a clear understanding of peripheral nerve
regeneration mechanisms would allow us to offer feasible
treatment for patients with PNIs. Furthermore, it may
provide potential clues for research into CNS regeneration.

The dynamic changes of biological processes and
related core genes that occurred in both sciatic nerve
stumps during neuroregeneration in rats were reported
in our previous research (15-18). In particular, the
molecular pathways and interactive networks underlying
the molecular interaction between immune response and
axonal regeneration following sciatic nerve transection
were discussed (15). The immune response followed by
a persistent hyperinflammatory state accompanied by
increased infiltration of macrophages and inflammatory
signals has been reported after sciatic nerve injury (19).
Macrophages enhance tissue clearance, which is further
promoted by cytokine release by CD-4-positive T cells
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and B lymphocyte-produced antibodies (20). In addition
to immune response, chemotaxis (21), blood vessel
regeneration (16), and remyelination (22) are crucial events
after PNI. To obtain a more comprehensive understanding
of the biological processes, cellular components, molecular
functions, signaling pathways, and protein-protein
interaction (PPI) networks involved in the intrinsic
regenerative programs after PNI, more wide-ranging
investigations are needed.

To investigate the molecules and pathways involved after
PNI systematically, we performed gene set enrichment
analysis (GSEA), constructed PPI networks, and verified
gene expression ex vitro at 1, 4, 7, and 14 days after sciatic
nerve transection in rats. Neural precursor cell expressed
developmentally downregulated 4-like (NEDD4L),
neuregulin 1 (NRG1), nuclear factor of activated T cells
2 (NFATC2), midline 1 (MID1), GLI family zinc finger
2 (GLI2), and ventral anterior homeobox 1 (VAX1),
which were involved in both immune response and axonal
regeneration following sciatic nerve transection, were
screened. NEDD4L, NRG1, NFATC2, MID1, GLI2,
and VAX1 are all related to neural development or other
functions in the nervous system (23-37). Of these genes,
VAXI, the known functions of which include guidance,
binding, and penetration of axons, was considered to
be a potential therapeutic target, because its expression
continuously increased after nerve injury. Our work showed
that the injury-induced molecular change in proximal
nerve stump includes enriched molecular pathways and PPI
networks. Furthermore, mechanistic-based treatments may
potentially be developed based on our work, which can be
used as a tool for exploring the potential therapeutic target
in neuroregeneration after PNI. We present the following
article in accordance with the ARRIVE reporting checklist
(available at http://dx.doi.org/10.21037/atm-20-4958).

Methods
Animal model

Adult male Sprague-Dawley (SD) rats (weight: 200-220 g,
supplied by the Experimental Animal Center of Nantong
University) were randomly divided into five groups
(15 rats in each group). The rats were anesthetized by
intraperitoneal injection of composite narcotics, consisting
of trichloroac etaldehyde monohydrate (85 mg/kg),
magnesium sulfate (42 mg/kg), and sodium pentobarbital
(17 mg/kg). Then, an incision was made on the lateral
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aspect of the left mid-thigh of the rats, and the sciatic
nerve was identified. The sciatic nerve transection was
carried out near the center of the femur, and the incision
was closed. All animal experiments in this study were
performed in accordance with the guidelines for animal care
and were approved by the Administration Committee of
Experimental Animals, Jiangsu Province, China [SYXK (Su)
2012-0031].

Sample and raw data collection

All samples were collected according to the previous
protocol (38). Briefly, 0.5 cm of non-injured nerves and
the proximal sciatic nerve stumps were collected at 1, 4, 7,
14 days post injury, respectively. Five groups were divided
by the time points preoperatively and postoperatively
(normal, 1, 4, 7, and 14 days). Total RNA was extracted
from the nerve samples using Trizol (Life technologies,
Carlsbad, CA, USA) according to the manufacturer’s
instructions. The RINA quality of each sample was qualified
using Agilent Bioanalyzer 2100 (Agilent technologies,
Santa Clara, CA, USA) and Nanodrop ND1000
spectrophotometer (NanoDrop Technologies, Wilmington,
DE, USA). Microarray analysis was performed with an
Agilent Microarray Scanner (Agilent Technologies), and
the subsequent data were compiled with Agilent feature
extraction software. All steps from RNA amplification to
the final scanner output were conducted by the National
Engineering Center for Biochip at Shanghai (China), and
three biological replicates were performed for each group.
The raw data can be accessed from the Gene Expression
Omnibus (GEO) database (GSE30165).

Bioinformatics analysis

Log’-transformed mean-centered datasets filtered for
expression values greater than 128 in any subsets and including
only 10% of probes were used for further analysis (15).
GSEA (Broad Institute; software.broadinstitute.org/gsea/)
was performed to show variation among groups, with probes
ranked by signal-to-noise ratio and statistical significance
determined by 1,000 gene set permutations (39). For
GSEA analysis, a GO gene set enrichment map generated
by a false discovery rate (FDR). Q-value cutoff of 0.01
was used to obtain credible results. The results of gene set
enrichment were graphically mapped to the Enrichment
Map in Cytoscape (US National Institute of General Medical
Sciences, Bethesda, MD, USA). Node size represents the
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number of genes in the gene set, and edge thickness is
proportional to the overlap between gene sets, calculated
using overlap coefficients. The enrichment score was
mapped to the node color as a color gradient (40). The Venn
diagrams were created using the Venny 2.1.0 online tool (41).
For genes with fold change (FC) £2.0, pathway analysis and
the construction of PPI networks of the expression data were
performed with Ingenuity Pathway Analysis IPA, QIAGEN,
Redwood City, CA, USA). Pathways with Z-score >2 or
<-2 (Benjamini-Hochberg method) were considered to be
significant. PPI networks were depicted on the IPA database.

Quantitative real-time polymerase chain reaction (¢PCR)

Reverse-transcribed complementary DNA synthesis and
qPCR were sequentially performed with the Prime-Script
RT reagent Kit (TaKaRa, Dalian, China) and SYBR Premix
Ex Taq (TaKaRa, Dalian, China), respectively. The relative
expression levels of genes were calculated by comparative
27*“ method. The sequences of primer pairs used are
provided in 7able S1.

Histological immunofluorescent staining

At 1, 4, 7 and 14 days after surgery, nerve samples from the
proximal nerve stumps and normal nerve sections (0 d) of the
rats were harvested and cut into longitudinal sections. The
samples were then subjected to immunofluorescent triple-
staining with rabbit anti-VAX1 (1:400 dilution, Sigma),
mouse anti-NF200 (1:400 dilution, Sigma), and Hoechst
33342 (1:5,000 dilution, Life Technologies) respectively.
The nerve sections were incubated with primary antibody
at 4 °C overnight, followed by further incubation with the
secondary antibody (Goat anti-Mouse IgG-Alex-488, 1:1,000
and Donkey anti-Rabbit IgG-Cy3, 1:1,000) at 4 °C overnight.
Finally, the nerve sections were observed under a confocal
laser scanning microscope (TCS SP2, Leica).

Statistical analysis

For statistical analysis, the data were replicated in at least
three independent experiments. Data are showed as mean
+ standard error of the mean (SEM). Multiple comparisons
were performed with one-way analysis of variance (ANOVA)
as well as Bonferroni post-hoc 7-test. The statistical analyses
were carried out using IBM SPSS Statistics 26.0 (IBM
Corp., Armonk, NY, USA). Differences were considered
significant at *P value <0.05, and **P value <0.01.
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Results

Overview of functional GSEA in rat proximal nerve
stumps following sciatic nerve transection

To elucidate the mechanism of neuroregeneration after
sciatic nerve transection, the microarray data from proximal
nerve stumps and normal nerve sections of rats were
analyzed by GSEA and IPA at 1, 4, 7, 14 days after surgery.
qPCR and immunofluorescent staining were also carried
out to confirm the expression and histological localization
of the potential genes for immune response and axonal
regeneration (Figure 1A).

GSEA with enrichment map analysis was performed
to visualize the enriched biological processes, cellular
components, molecular functions, and KEGG pathways
following sciatic nerve transection. The only gene sets
passing significance thresholds (FDR Q-value cutoft:
0.01) were selected for inclusion in the Enrichment Map
(Figure 1B). The enrichment data showed that the gene
sets of GO biological processes related to immune
response, chemotaxis, cell activation, and cell adhesion
were upregulated in the nerve samples after injury. In
contrast, in the normal nerve samples (control group), the
neurotransmitter-related biological processes and steroid
synthesis were upregulated. For GO cellular components,
gene sets enriched in extracellular space and cell membrane
were upregulated after injury, while the synapse,
mitochondria, and endoplasmic reticulum were upregulated
in the control group. For GO molecular functions, gene sets
enriched in receptor binding, cytokine activity, and serine
hydrolase activity were upregulated after injury, while co-
enzyme and con-factor binding were upregulated in the
control group. In KEGG analysis, the most upregulated
gene sets after injury were involved in immune response,
cytokine and cell adhesion-related signaling pathways,
while only the calcium signaling pathway was upregulated
in the control group. All of the above GSEA data
indicated that when injured, the sciatic nerve exhibited an
intensive immune response, which may have activated the
regeneration process; this is consistent with the findings of
previous reports (15). Due to the direct impact of mechanical
injury, the neurofunctional gene sets and signaling pathways
were inhibited, but this was not our main focus.

GSEA of critical GO biological processes after sciatic nerve

transection

GSEA was performed to determine the enriched gene
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sets of critical GO biological processes after sciatic nerve
transfection. After sciatic nerve transection, the top 8
upregulated gene sets according to normalized enrichment
score (NES) had the highest overlapping genes involved in
immune response, defense response, leukocyte migration,
cell chemotaxis, and cell activation (Figure 24). The
dynamic expression of the core enrichment genes involved
in immune response are shown in a heat map in Figure 2B.
The proteins encoded by these genes including enzymes,
cytokines, peptidases, G-protein coupled receptors, kinases,
transmembrane receptors, and other molecules, were
integrated into the PPI network based on the IPA database
(Figure 2C). Of these proteins, interleukin 6 (IL-6) and
transforming growth factor beta 1 (T'GFB1) exhibited
higher levels of activity than the others, which suggested
that they play crucial roles during neuroregeneration after

injury.

GSEA of critical GO cellular components after sciatic
nerve transection

GSEA of GO cellular components showed that the top
4 upregulated gene sets after sciatic nerve transection
had the highest overlapping genes localized in the
membrane, extracellular space, and cell surface (Figure 34).
The dynamic expression of the core enrichment genes
localized in the extracellular space is shown in a heat
map in Figure 3B. The proteins encoded by these genes
including enzymes, cytokines, peptidases, transporters, and
transmembrane receptors, and their interactions are shown
in the PPI network displayed in Figure 3C. Besides IL-6,
CXCL2 and MMP?9 also have been demonstrated to involve
in neuroregeneration (42,43).

GSEA of critical GO molecular functions after sciatic
nerve transection

GSEA of GO molecular functions showed that the top 4
upregulated gene sets after sciatic nerve transection had
the highest overlapping genes involved in cytokine activity,
serine hydrolase activity, and receptor binding (Figure 44).
The heat map in Figure 4B shows the dynamic expression
of the core enrichment genes involved in receptor binding.
A PPI network was constructed integrating the enzymes,
cytokines, transcription regulators, peptidases, kinases,
transporters, transmembrane receptors, and ligand-depend
nuclear receptors encoded by these genes (Figure 4C).
Similar to the previous report’s findings, we observed
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Figure 2 GSEA of GO biological process gene sets after sciatic nerve transection. (A) Ranked by NES score, the top 8 upregulated
enriched gene sets of the GO biological process gene sets after sciatic nerve transection were involved in taxis, positive regulation of cell
activation, cell chemotaxis, immune response, immune effector process, defense response, regulation of immune response, and myeloid
leukocyte migration. (B) The heat map shows the dynamic expression of the core enrichment genes involved in immune response. (C) The
PPI network shows the interaction of the proteins involved in immune response. GSEA, gene set enrichment analysis; NES, normalized

enrichment score; PPI, protein-protein interaction.
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membrane, side of the membrane, extracellular space, and cell surface. (B) A heat map showing the dynamic expression of the core
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the extracellular space. GSEA, gene set enrichment analysis; NES, normalized enrichment score; PPI, protein-protein interaction.
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© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2020;8(16):988 | http://dx.doi.org/10.21037/atm-20-4958



Annals of Translational Medicine, Vol 8, No 16 August 2020

that BRCA1 and TLR2 potentially play essential roles in
neuroregeneration (44,45).

GSEA of critical KEGG pathways after sciatic nerve

transection

The top 2 enriched KEGG pathways after sciatic nerve
transection were the cytokine-cytokine receptor interaction
and chemokine signaling pathways (Figure 5A). Figure 5B
shows a heat map of the dynamic expression of the core
enrichment genes in these pathways. A PPI network was
constructed integrating the cytokines, enzymes, kinases, and
transmembrane receptors encoded by the genes in these
pathways (Figure 5C). Among these proteins, hepatocyte
growth factor (HGF), interleukin-18 (IL-18), inhibin
subunit beta A (INHBA), and mitogen-activated protein
kinase 1 (MAPK1) were highly correlated with peripheral
nerve regeneration, which supports the efficacy of our
analytical methods (46-49).

Dynamic canonical patbway envichment analysis after PNI

Using the IPA comparison module, we identified 35
canonical pathways as being significantly enriched (both
activation and inhibition, Z-core >2 or Z-core <-2) at 1, 4,
7, 14 days after sciatic nerve transection (Figure 6). Most of
them were associated with immune response. Meanwhile,
“PPAR Signaling”, “LXR/RXR Activation”, “Cell Cycle:
G2/M DNA Damage Checkpoint Regulation”, “CDKS5
Signaling” were inhibited canonical pathways, while others
pathways were activated after PNI. Among them, “TREM1
Signaling”, “Role of NFAT in Regulation of the Immune
Response”, “PPAR Signaling”, “LXR/RXR Activation”,
“IL-6 Signaling”, “IL-17A Signaling in Airway Cells”,
“Ephrin B Signaling”, “TNFR1 Signaling”, and “Signaling
by Rho Family GTPases” were revealed to be involved in
neuroregeneration (50-58).

qPCR and histological validation of potential genes

regulating neurovegeneration

The Venn diagram showed that 39 significantly expressed
genes were involved in neuroregeneration at 1, 4, 7, 14 days
after sciatic nerve transection (Figure 74). The proteins
encoded by these genes play important roles in axonogenesis,
guidance, penetration, binding, regeneration, axon
growth, outgrowth, branching, and myelination of axons.
Interestingly, most of these genes were involved in immune

© Annals of Translational Medicine. All rights reserved.
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response (Figure 7B). To further confirm the microarray
data, six differentially expressed genes including NEDDA4L,
NRGI, NFATC2, MID1, GLI2, and VAX1, which are
associated with immune response and axonal regeneration,
were validated by qPCR (Figure 7C). NEDD4L, NFATC2,
MID1, and GLI2 shared a similar expression trend,
suggesting that they play similar roles following sciatic
nerve transection. NEDD4L mediates the ubiquitination
of multiple target substrates and plays a critical role
in neural development (23), axonal degeneration (24),
and neuropathic pain (25). As a member of the nuclear
factor of activated T-cell (NFAT) family, NFATC2 is
involved in neural development (26), axon growth, synaptic
plasticity, and neuronal survival (27). Midl is important
for normal axonal development through the promotion of
axon growth and branch formation (28). Gli2 is required for
the initial extension of axons in the mouse spinal cord (29).
NRGTI and its neuronal tyrosine kinase receptor ErbB4 are
well-known regulators of myelination in the PNS (30-32).
They also regulate synaptic transmission in the CNS (33,34),
and influence several processes of neurodevelopment (35).

To address the molecular effects of regulating the
behavior of neural cells during sciatic nerve regeneration,
triple immunostaining of sciatic nerve longitudinal
transection was carried out, which validated the dynamic
expression level of VAX1 after sciatic nerve transection
(Figure 7D).

Discussion

The regeneration of peripheral nerves is often incorrectly
understood to occur spontaneously and robustly without
improvement or further support. However, injured
peripheral nerves rarely recover completely, especially
after complicated PNIs (59). Activating neurotrophin
pathways, protecting the myelin sheath, and reducing the
local response of inflammatory and antioxidative stress, as
well as minimizing the scar formation at the lesion site, are
the most well-known ways for supporting peripheral nerve
regeneration (60). Although the inhibition or knockdown
of some tumor suppressors, such as phosphatase and tensin
homolog (PTEN) or retinoblastoma 1 (Rbl), may improve
axonal regeneration (59), new neuroregenerative targets are
needed.

Informed by our previous mRNA profiling data in
proximal nerve segments (15,16,38), we jointly applied
GSEA, IPA, qPCR, and histological localization to validate
the differentially expressed genes at 1, 4, 7, and 14 days after

Ann Transl Med 2020;8(16):988 | http://dx.doi.org/10.21037/atm-20-4958
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Figure 7 The validation of selected genes for neuroregeneration post sciatic nerve transection. (A) The Venn diagram shows the number of
differentially expressed genes for neuroregeneration at 1, 4, 7, and 14 days after sciatic nerve transection. (B) The PPI network constructed
with the differentially expressed proteins involved in axonogenesis, guidance, penetration, binding, regeneration, growth of axons,
outgrowth, branching and myelination of axons, and immune response (blue) at all time points after sciatic nerve transection. NEDDA4L,
NRGI, NFATC2, MID1, GLI2, and VAX1were highlighted in red for further validation. (C) Histograms showing the real-time qPCR
validation for relative mRNA expressions of NEDD4L, NRG1, NFATC2, MID1, GLI2, and VAX1. The relative level was normalized
to GAPDH. The data, obtained from three independent experiments, are expressed as mean = SEM. The data were analyzed by one-way
ANOVA and post hoc Bonferroni #-test. *, P<0.05 and **, P<0.01 versus the normal control. (D) The longitudinal sectioned proximal nerve
stumps were immunostained with anti-VAX1 (green) merged with anti-NF200 (red) primary antibodies and Hoechst 33342 (blue) obtained
from normal nerve samples at 1, 4, 7, and 14 days after sciatic nerve transection of. Scale bar, 75 pm (left column), 25 pm (middle column),

and 10 pm (right column). PPI, protein-protein interaction.
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sciatic nerve transection in rats, with the aim of identifying
potential therapeutic targets for neuroregeneration. The
results of GSEA revealed that molecules located in the
extracellular space or cell membrane, as well as signal
pathways involved in immune response, chemotaxis,
cell activation, and cell adhesion, play crucial roles in
neuroregeneration after PNI.

"To further investigate the transcriptional dynamics after
PNI, canonical pathway enrichment analysis was carried
out using IPA, which allowed us to analyze the coordinate
expression changes at a pathway level rather than focusing
on a single gene. GSEA and IPA obtained similar
results. The IL-6, TGFB, MAPK, and TNF signaling
pathways were significantly enriched. The molecules and
signal pathways involved in immune response showed
unprecedented importance in neuroregeneration.

Furthermore, NEDD4L, NRG1, NFATC2, MIDI,
GLI2, and VAXI1, which potentially play crucial roles after
PNI, were selected for follow-up validation. Among them,
VAXI1 was determined to be a potential therapeutic target
for neuroregeneration, because its expression continuously
increased after nerve injury. It has also been shown in
previous reports to perform the functions of guidance,
binding, and penetration of axons (36).

To date, no drug treatment which can improve the
speed and quality of peripheral nerve regeneration after
PNI has been widely accepted in clinical practice (60).
Our data could be used as a tool for screening drugs or
small molecular compounds that may enhance axonal
regeneration. Technical challenges to navigate the injured
axons across gaps between the proximal and distal stump
still exist. Unanticipated axon hesitation results in delayed,
slow, and staggered neuroregeneration (59). However,
our work may lead to the expectation that coordinate
overexpression or knockdown of the core set of genes
identified here will enhance peripheral nerve regeneration.
We predict that changing the transcriptional state of the
regenerative microenvironment by coordinate expression
of genes involved in immune response may activate the
relevant functional molecular pathways. This represents
a worthwhile strategy, which may enhance the possibility
of creating axonal regenerative capacity after the injury
that has been supported by other studies on PNS and
CNS (61,62). Because there are no drug sensitivity or
targeted therapeutic data currently available, further
basic and preclinical work using genetic tools are needed
to confirm that Vaxl can serve as a therapeutic target in
the treatment of PNIs. Compared to our previous work

© Annals of Translational Medicine. All rights reserved.

Page 13 of 16

(15,16,38), this study systematically examined the molecular
changes by using both GSEA and PPI network analysis.
Immune response and the related signaling pathways were
addressed. As a transcriptional regulator, VAX1 was found
to be partially localized in the regenerative axons and
other cells in the local microenvironment; this needs to be
investigated further in the future studies. Axonal proteins
possibly transfer from the neuron bodies to the injured axon
terminals in response to PNI. VAX1 was previously found to
play an essential role in axon guidance, penetration of axons,
major tract formation in the developing forebrain (37), and
retinal ganglion cell axonal growth (36), which strongly
indicates its crucial role in neuroregeneration. VAX1
was screened in our present work by the comprehensive
approaches as gene expression profiling followed by multi-
level bioinformatics analysis and experimental validation,
which were highly correlated with axonal regeneration
(Figure 7B). Based on the continually increased expression
of VAXI post-PNI, we hypothesis VAX1 is highly related
to the peripheral nerve regeneration. Further experiment
as knocking-down/out or over-expressing the expression
of these genes in vitro and in vivo should be carried out in
order to explore the roles and regular mechanisms of these
investigated genes in future..

Conclusions

The combination of GSEA and PPI network analysis served
as a valuable tool for identifying the molecular processes
and potential therapeutic targets in neuroregeneration.
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Supplementary

Table S1 The sequences of primer pairs

Gene symbol Forward primer Reverse primer

VAX1 AGCTCTACAGACTGGAGATG TCTGGAACCAGACCTTCAC
NEDD4L CCTCCAGAGTACCCATGAAT AAGGCGGTTAAAGCATGTAT
MID1 CAATAACTTCACAGAAGTGGC AATAATGTGCATTCTCACCCT
NFATC2 AGCTAACTCTGATAATGGGCT AGAGACGGCATTAACCCTATGA
NRG1 ACATCAGAGTACCAGCCT CCGGCTATTGGTGACTTTC
GLI2 CTGGTTCTCATGGTGTGG CACAGTATATTCAGGCATGACG
GAPDH GCGAGATCCCGCTAACATCA CTCGTGGTTCACACCCATCA
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