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Abstract: Crop yield is challenged every year worldwide by changing climatic conditions. The fore-
casted climatic scenario urgently demands stress-tolerant crop varieties to feed the ever-increasing
global population. Molecular breeding and genetic engineering approaches have been frequently
exploited for developing crops with desired agronomic traits. Recently, microRNAs (miRNAs)
have emerged as powerful molecules, which potentially serve as expression markers during stress
conditions. The miRNAs are small non-coding endogenous RNAs, usually 20–24 nucleotides long,
which mediate post-transcriptional gene silencing and fine-tune the regulation of many abiotic-
and biotic-stress responsive genes in plants. The miRNAs usually function by specifically pairing
with the target mRNAs, inducing their cleavage or repressing their translation. This review fo-
cuses on the exploration of the functional role of miRNAs in regulating plant responses to abiotic
and biotic stresses. Moreover, a methodology is also discussed to mine stress-responsive miRNAs
from the enormous amount of transcriptome data available in the public domain generated us-
ing next-generation sequencing (NGS). Considering the functional role of miRNAs in mediating
stress responses, these molecules may be explored as novel targets for engineering stress-tolerant
crop varieties.

Keywords: microRNA; abiotic stresses; biotic stresses; crop improvement; NGS; transcriptome

1. Introduction

Increasing global population and livestock demand a substantial increase in the
production of food and fodder. According to the United Nations Population Division, the
global population will touch the mark of 8.3 billion by 2030. To serve better quality food
and feed the ever-growing population is the imperative task for the scientific community
in the 21st century. Furthermore, changing climatic conditions adversely affect agricultural
productivity worldwide. Extreme climatic conditions are the major cause of abiotic and
biotic stresses, and more than 50% crop yield loss per annum worldwide [1]. Therefore,
plant biology research activities require the development of high yielding, stress-tolerant
crop varieties with desired nutrients to face food security challenges in the coming times.
Classical crop breeding has been practiced for hundreds of years to generate high yielding
crop varieties, and significant progress has been made to utilize genetic variations available
in germplasm resources to develop crops with desirable agronomical traits. However, the
long generation time and self-crossing of crops make the classical breeding techniques
more time consuming and cumbersome. In that scenario, alternate efficient strategies are
required to develop crop varieties with high yield and stress resistance. Genetic engineering
is one such strategy that is currently being utilized and practiced worldwide to enhance the
yield of crops through the development of environmental stress- and disease-resistant crop
varieties [2]. However, since a single trait might be controlled by many genes or vice-versa,
the so-called pleiotropic effect makes the agronomical traits genetically complex. Therefore,
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improving a trait via genetic engineering sometimes may adversely affect other important
traits. Moreover, many agronomical traits such as high yield and stress tolerance are
regulated by a group of genes or pathways, making selection of gene(s) for desirable trait(s)
rather difficult. Thus, the manipulation of agronomical traits to improve crop production
requires genetic modulators that act precisely and target in a specific manner.

In the recent past, microRNAs (miRNAs) emerged as a novel target in the field of
genetic engineering and have been exploited to develop high yield and stress-tolerant crop
varieties [3–6]. MiRNAs are 20–24 nucleotide long non-coding endogenous regulatory
RNAs which regulate many biological processes by gene silencing at the transcriptional
and post-transcriptional level [7]. The miRNAs induce gene regulation through pairing
and cleavage of their targeted mRNA or by inhibiting protein translation [7]. In plants,
primary miRNA (pri-miRNA) is encoded by endogenous miRNA coding genes, transcribed
by RNA polymerase II (Pol II). After a series of enzymatic reactions, pri-miRNAs fold
into a stem-loop secondary structure to form mature miRNAs, which pair with respective
target mRNAs/transcripts to destabilize them or inhibit protein translation [7–9].Several
studies in the recent past have suggested versatile roles of miRNAs in plants, where they
are involved in almost all biological and metabolic processes, including plant growth and
development timing, tissue and organ differentiation, plant architecture, organ polarity,
and response to various abiotic and biotic stresses [7,10–14]. Moreover, many studies
have reported the differential expression of miRNAs and their targeted genes during
different stages of plant development and tissue differentiation [15–18], organ phase transi-
tion [16], and under various environmental stresses [4,19,20]. The differential expression of
miRNA further helps in the selection and identification of miRNAs and their target genes
responsible for agronomical traits of interest.

Evidence has been collected in the recent past from miRNA analysis in various plant
species including crops such as rice, maize, wheat, sorghum, sunflower, and cotton under
different stresses, suggesting the potential role of miRNAs in regulating stress response in
plants [4,11,21–25]. Manipulation of a single miRNA may enhance tolerance to multiple
abiotic stresses in plants. For instance, overexpression of miR408 in Arabidopsis enhanced
tolerance to salinity, cold, and oxidative stress [26]. Similarly, various miRNAs have been
reported with altered expression in response to various fungal and viral infections in crop
plants [27,28]. Therefore, plant miRNAs may serve as major candidates for further enhanc-
ing our understanding of plant stress responses at the molecular level [3,4]. Understanding
plant miRNA regulatory pathways equips us with novel tools for genetic engineering to
further improve crop yield, quality, and abiotic and biotic stress tolerance in crop varieties.

2. Biogenesis and Mode of Action of Plant miRNAs

The biogenesis of miRNAs is initiated inside the nucleus. A brief graphical representa-
tion of the biogenesis of plant miRNAs is provided in Figure 1. In general, genes encoding
plant miRNAs, called microRNA genes (MIR genes), are found in intergenic areas or in an-
tisense/sense orientation within introns of other genes [7]. The MIR genes are transcribed
by RNA polymerase II to form a long RNA transcript called pri-miRNA [7]. Like other
transcripts, the pri-miRNAs are capped at 5’ end and polyadenylated at 3′ end. The partial
sequence of long single stranded pri-miRNA folds into a perfectly stem-loop structure,
which is stabilized by RNA-binding protein, DAWDLE (DDL), to form precursor miRNA
(pre-miRNA) [7,11]. The one arm of the stem-loop structure of pre-miRNA represents
the mature miRNA sequence, which is further recognized by an endoribonuclease called
Dicer-like (DCL1), an RNAIII type enzyme, with other proteins such as HYPONASTIC
LEAVES 1 (HYL1), and SERRATE (SE) [29,30]. The DCL, HYL1, and SE processed the
stem-loop structure of pre-miRNA to generate miRNA:miRNA* duplex structure inside
the nucleus [7,29–31]. To stabilize and protect this newly synthesized miRNA:miRNA*
duplex from degradation, it is methylated at 3′ terminus by a small RNA methyltransferase
protein named HUA ENHANCER 1 (HEN1) and exported to the cytoplasm with the help
of HASTY (HST1), a plant homolog of animal EXPORTIN-5 [32–35].
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Figure 1. MicroRNA (miRNA) biogenesis and mode of action. Briefly, a miRNA gene (MIR gene), is transcribed into
long single stranded preliminary-miRNA (pri-miRNA) transcript with the help of RNA polymerase II (RNA Pol II) in the
nucleus. The pri-miRNA is converted into stem loop structure called precursor-miRNA (pre-miRNA), which is stabilized
by the DAWDLE (DDL) enzyme. The Dicer-like 1 (DCL1), with the help of other proteins, generates miRNA:miRNA*
duplex structure from pre-miRNA. The 3′ ends of miRNA:miRNA* duplex are methylated (stars) by HUA ENHANCER 1
(HEN1) and exported to the cytoplasm with the help of HASTY (HST1) enzyme. In the cytoplasm, the duplex is cleaved
into mature miRNA from one strand, and the other strand miRNA* gets degraded. The mature miRNA is further processed
by ARGONAUTE 1 (AGO1) and loaded into RNA-induced gene silence complex (RISC) to form miR-RISC complex.
Depending upon the complementary sequence of the target mRNA, miR-RISC complex acts either by cleaving target
mRNA or by inhibiting its translation. The figure is created with BioRender app (https://app.biorender.com/; accessed on
30 April 2020).

Finally, the mature miRNA in cytoplasm unwinds and is loaded to RNA-induced gene
silencing complex (RISC), where it regulates expression of genes by forming the miR-RISC
complex. The miR-RISC complex is stabilized by the ARGONAUTE 1 (AGO1) protein.
The miRNA:miRNA* duplex then primarily unwinds with the help of AGO1 protein, and
one strand is directed to exosomes for degradation, whereas the other strand of mature
miRNA remains attached to the RISC with AGO1 protein [36–38]. The mature miRNA
finally guides the AGO1-containing RISC complex, either to direct site-specific cleavage of
complimentary mRNA with high homology or inhibit the translation of the targeted mRNA
by imperfect base pairing. Regarding gene regulation by miRNA, the previous assumption
suggested that only mature miRNA inhibits the mRNAs and translation. However, recent
studies have demonstrated that another miRNA* strand also has its own targeted mRNA
and regulates expression of respective genes [39].

https://app.biorender.com/
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In the recent past, there has been an increase in the number of reports investigating
the mechanism of miRNA-based regulation of gene expression [5,40,41]. Plant miRNAs
generally regulate gene expression at transcriptional and post-transcriptional level through
perfect complementary sequence pairing [11,40]. The two modes of mechanism include
cleavage of target mRNA, which is the result of a perfect pairing, and translation inhibition,
a consequence of imperfect pairing. In the first mode, miRNA cleaves the poly-(A) tail
of the target mRNA leading to its destabilization and decay [11,40,42]. Additionally,
miRNA helps to influence various biological processes at transcriptional level by silencing
transcription activity and decreasing the level of random fluctuation in the transcripts’ copy
number [5,43]. Experimental data from overexpression or loss of function analyses suggest
that miRNAs fine-tune the expression of diverse class regulatory genes. Approximately
66% and 24.2% of miRNA targets are transcription factors (TFs) and major class of R
(resistance) genes suggesting the role of miRNAs in diverse gene regulatory networks and
plant immune system [44].

3. Mining of miRNAs

Identification of MIR genes, miRNAs, and their target gene is the foremost step
to elucidating the miRNA-mediated gene regulatory network and underlying mecha-
nisms. The initial research on plant miRNA identification included direct cloning and
sequencing of small RNA population strategies [33,45]. In the past decade, advancement
in high-throughput sequencing, also called next generation sequencing (NGS) technol-
ogy, and computational strategies, has enhanced the discovery of novel and conserved
plant miRNAs dramatically in a tissue-, environment-, and time-specific manner. The
NGS technology has revolutionized plant miRNA research by enabling genome-wide or
transcriptome-wide identification of miRNAs with unrivalled coverage and depth [5,41,46].
Additionally, high sequence similarity with the target mRNAs and the conserved nature
of miRNAs makes computational tools, such as Basic Local Alignment Tool (BLAST)
(https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 9 March 2021) and other homology-
based tools, an alternative approach for the identification of miRNAs in many crop
plants [47–49].

3.1. Next Generation Sequencing-Based Methods for Identification of miRNAs

NGS technology, such as the RNA-sequencing (RNA-Seq) technique, is widely used
for transcriptome profiling and differential gene expression analysis requiring isolation
of poly(A)-tail mRNA. The presence of poly-(A) tail in pri-miRNA includes them in the
mRNA population used for RNA-Seq. Since pri-miRNAs are not stable enough for se-
quencing, it is difficult to fish out pre-miRNAs directly from RNA-Seq libraries. However,
the robust and high depth of the RNA-Seq technique enables the detection of lowly abun-
dant and weakly expressed transcripts. Therefore, pri-miRNA could be identified in the
RNA-Seq data, although the precise level and full length of pri-miRNA could not be
predicted in the RNA-Seq data [46]. To overcome the problem of detection of full-length
transcripts in RNA-Seq, its modification, called RNA-paired-end tag sequencing (RNA-
PET-Seq) [50,51], was evolved. RNA-PET-Seq enables capturing transcripts with 5′ and
3′ ends simultaneously and distinguishes the boundaries of transcription units, provid-
ing sufficient information to assemble full length transcripts [50,51]. The combination
of RNA-Seq and PET-tags can serve as a high-throughput strategy to elucidate the MIR
gene transcriptional regions and quantify the abundance of a pri-miRNA [46]. Another
revolutionary modification in the RNA-Seq technique occurred with the introduction of
small RNA-Sequencing (sRNA-Seq) [52,53]. Since the library for sRNA-Seq is prepared
from small RNA, it enables quantification of the abundance of miRNA in plant tissues, in
a condition- and time-dependent manner. Further, techniques such as double-stranded
RNA-Sequencing (dsRNA-Seq) and single stranded RNA-Sequencing (ssRNA-Seq) have
also been used in the discovery of miRNAs [54]. The dsRNA-Seq and ssRNA-Seq together
allow to elucidate the stem loop structure of the pre-miRNA efficiently [46]. Another

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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widely used high-throughput technique in miRNA research is degradome-sequencing
(degradome-Seq) [55,56]. The major application of degradome-Seq facilitates the iden-
tification of truncated transcripts generated from endonucleolytic cleavages, guided by
small RNAs and miRNAs. Therefore, the reads generated from degradome-Seq could
provide the information of the slicing sites residue in miRNA specific to their target
transcripts [46].

3.2. In Silico Mining of miRNAs

The present-day high-throughput techniques generate a huge amount of data from
diverse plant species, including crop plants. All the data so generated have been deposited in
public domains such as miRBase (http://www.mirbase.org, accessed on 9 March 2021) [57,58],
the Plant MicroRNA Database (PMRD; http://mirnablog.com/plant-micrornadatabase-goes-
online, accessed on 9 March 2021) [59], and the NCBI-Gene Expression Omnibus (GEO;
http://www.ncbi.nlm.nih.gov/geo/, accessed on 9 March 2021) [60]. Moreover, the con-
served nature of plant miRNA [31] provides reasonable results on homology-based in silico
analysis of potential miRNAs and their target genes [61]. Additionally, the developments in
computational biology approaches also provide significant support to handle a large amount
of raw data and make it biologically meaningful. A schematic representation for in silico
mining of miRNA is provided in Figure 2. Briefly, the sequence for mature plant miRNA can
be downloaded from miRBase (http://www.mirbase.org, accessed on 9 March 2021) [57,58],
followed by removal of redundant miRNA sequences. The raw reads generated from NGS can
also be downloaded from the public domain, such as NCBI-Gene Expression Omnibus (GEO;
http://www.ncbi.nlm.nih.gov/geo/, accessed on 9 March 2021) [60]. The reads after quality
filters are assembled into contigs/singletons. The unique contigs/singletons are further sub-
jected to nucleotide BLASTn (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 9 March
2021) with the unique plant miRNA to get aligned sequences. The candidate miRNA should
fulfil the two criteria as described by Panda et al., (2014) [62]: (i) at least 18-nt length with
no gap in between should be there in candidate miRNA, and (ii) the assembled sequences,
which match closely to the known miRNAs, are to be selected for further study [62]. The
aligned sequence is then further put to BLASTx with plant protein database (Uniport; https:
//www.uniprot.org/program/Plants, accessed on 9 March 2021) [63] to remove all coding se-
quences. After discarding the protein coding sequence, the secondary structure can be accessed
using MFOLD software (http://unafold.rna.albany.edu/?q=mfold, accessed on 9 March
2021) [64] with default parameters. The candidate pre-miRNA, left after discarding miRNA
that failed in MFOLD criteria, could be considered as novel potential miRNAs. The novel po-
tential miRNAs can further be used for the identification of their target genes based on comple-
mentary binding between miRNA and target gene sequences using the psRNATarget server
(http://plantgrn.noble.org/psRNATarget/?dowhat=Help, accessed on 9 March 2021) [65].
Finally, gene ontology (GO) terms using QuickGO (https://www.ebi.ac.uk/QuickGO/, ac-
cessed on 9 March 2021) can be assigned to the target genes to validate their functionality.

http://www.mirbase.org
http://mirnablog.com/plant-micrornadatabase-goes-online
http://mirnablog.com/plant-micrornadatabase-goes-online
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.mirbase.org
http://www.ncbi.nlm.nih.gov/geo/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.uniprot.org/program/Plants
https://www.uniprot.org/program/Plants
http://unafold.rna.albany.edu/?q=mfold
http://plantgrn.noble.org/psRNATarget/?dowhat=Help
https://www.ebi.ac.uk/QuickGO/
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Figure 2. Workflow for in silico mining of (a) plant miRNA, and (b) target genes from transcriptomic data generated using
next generation sequencing (NGS). The flowchart is modified from Panda et al. (2014) [62].
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4. Functional Role of miRNAs in Plant Stresses

Abiotic and biotic stresses have become the major factors in limiting crop productivity.
Many studies suggest the important role of plant miRNAs in response to abiotic and biotic
stresses [3,4,19,20,66,67]. Several miRNAs show differential expression under different
environmental conditions; however, these expression changes depend on many factors such
as the type and magnitude of stress, plant species, and miRNA involved [4]. Nevertheless,
an appropriate genetic engineering approach needs to be applied to validate the expression
and molecular mechanism underlying the response of plant miRNA to stresses.

4.1. Role of Plant miRNAs in Abiotic Stress

Plants, during their entire life cycle, encounter several abiotic stresses including
drought, salinity, heavy metals, oxidative stress, and extreme temperatures. Abiotic stresses
pose serious deleterious implications on plant growth and development caused due to the
oxidative damage of lipids, protein, and DNA, as well as the accumulation or abnormal
increase in the levels of molecules such as osmolytes (during drought and salinity stress)
or reactive oxygen species (in case of oxidative stress) within the plant [24,68,69]. Over the
years, miRNA has emerged as an important candidate in managing plants’ responses to
abiotic stress [4,12,39]. The first report that provided a direct link between the levels of
miRNA and plant stress responses was the miR398 that targets two closely related Cu/Zn
superoxide dismutase coding genes (CSD1 and CSD2) and miR395 and miR399, which tar-
get the sulfate transporter (AST68) and the phosphate transporter (PHO1), respectively [70].
Later, more and more evidence accumulated showing the aberrant expression of miRNA
under abiotic stress in various crop plants, including wheat, maize, rice, cotton, barley,
and many others. Table 1 lists the major findings regarding role of miRNA in response to
abiotic and biotic stresses in various crop plants. Manipulating a single miRNA in plants
significantly changes the stress tolerance capability; thus, among various miRNAs, some
are identified as promising targets for developing transgenics with improved abiotic stress
tolerance [4,39]. For instance, overexpression of miR169 leads to higher tolerance to water
deficiency during early plant development in tomatoes [71]. The transgenic tomatoes
developed the ability to retain more water inside the cell and require less water from the
soil [71]. The study further showed that overexpression of miR169 causes a reduction in
the stomatal aperture index and stomatal conductance thereby significantly reducing the
transpiration rate in transgenic tomato. Subsequently, overexpression of miR169, the largest
and most conserved family of miRNAs, was validated under different abiotic stresses in
several other plant species, including some crops also. For example, overexpression of
miR169 led to enhanced tolerance capacity against drought and salinity in Agrotis stolonifera
(bentgrass) [72]. Moreover, overexpression of miR169 increases cold stress tolerance in
rice [73]. In Arabidopsis, overexpression of miR169 makes the plant hypersensitive to
nitrogen starvation [74].

The role of other miRNA families viz. miR156, miR159, miR319, miR393, miR394,
miR395, miR395, miR396, miR402, miR417, and miR828, in abiotic stress response has
also been validated following a transgenic approach in several plant species [4,24]. For
example, overexpression of miR156 and miR159 enhanced the heat stress tolerance in
Arabidopsis [75] and rice [76], respectively. Similarly, manipulation of miR319 enhances
the multiple stress tolerance ability in plants. Over-expressed miR319 increases chilling
tolerance in rice [73] as well as drought tolerance in bentgrass [72]. The miR393 and miR396
mediate multiple stresses such as drought, heat, and salinity tolerance capacity in transgenic
rice [77–79]. Moreover, overexpressed miR828 helps sweet potato to tolerate oxidative
stress by exhibiting increased lignin biosynthesis and hydrogen peroxide production [80].
There is a long list of crop plants, which have been genetically engineered to improve abiotic
stress tolerance using overexpression or knock out of particular miRNA. The evidence
discussed above clearly demonstrate that miRNAs have become the new target for crop
improvement and in developing abiotic stress tolerance in crop varieties.
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4.2. Role of Plant miRNA in Biotic Stress

Like abiotic stresses, biotic stresses also adversely affect crop productivity. Several
studies reported differential expression of miRNAs and their target genes in crop plants
during the attack of insects, fungi, bacteria, viruses, and nematodes [19,20,66]. During
evolution, plants developed several sophisticated mechanisms to fight against biotic agents.
The regulation of gene expression and networking systems via miRNA is one such mech-
anism, which enhances the ability of plants to fight against various pathogens. Several
NGS studies conducted in biotic stress environments allowed the identification of miRNAs.
For instance, strip virus infection in rice downregulated the expression of miR160, miR166,
miR171, and miR396 families [67]. Some of these miRNAs were further employed in genetic
engineering to develop biotic stress tolerance in crops. For example, overexpression of
miR396 develops more tolerance against fungal infection in transgenic Medicago truncatula
as compared to wild type plant [67]. In another example, an Arabidopsis mutant repressed
for miR159 showed increased tolerance to root knot nematodes [66]. Other miRNA families
that have been exploited in genetic engineering approaches against biotic stress include
miR160, miR398, miR393, and miR397 in rice [81,82], miR482 in tomato [83], miR396 in
tobacco [84], and miR171 in Medicago truncatula [85].

Table 1. List of studies on the functional role of different miRNA/miRNA families in the regulation of abiotic and biotic
tresses in major crop species (List updated January 2011–December 2020).

Crop MicroRNAs Stress Responses Reference

Alfalfa (Medicago sativa)

multiple miRNAs Drought stress [86]

miR3512, miR3630, miR5213, miR5294, miR5368
and miR6173 Drought stress [87]

miR156 Heat stress [88]

Apple (Malus sylvestris) multiple miRNAs Drought stress [89]

Barley (Hordeum L.) multiple miRNAs Drought stress [90]

Hv-miR827 Drought stress [91]

Ath-miR169b, Osa-miR1432,
Hv-miRx5, Hv-miR166b/c Drought stress [92]

multiple miRNAs Drought stress [93]

multiple miRNAs Salt stress [94]

Bean (Phaseolus vulgaris)
multiple miRNAs Drought stress [95]

miR399 Phosphorus deficiency [96]

Brassica (Brassica juncea) multiple miRNAs Abiotic stresses [97]

Brassica (Brassica napus)

miR1885 Immune response [98]

miR397a, miR397b and miR6034 Various stresses [99]

multiple miRNAs Drought and salt stress [100]

Broccoli (Brassica oleracea) multiple miRNAs Heat stress [101]

Cabbage (Brassica L.)
multiple miRNAs Heat and drought stress [102]

multiple miRNAs Turnip Mosaic Virus infection [103]

Cassava (Manihot esculenta) miR160, miR393 Anthracnose disease [104]

Celery (Apium graveolens) multiple miRNAs Heat and cold stress [105]

Chickpea (Cicer arietinum)
multiple miRNAs Ascochyta blight disease [106]

multiple miRNAs including miR5213, miR5232,
miR2111 and miR2118 Wilt and salt stress [107]
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Table 1. Cont.

Crop MicroRNAs Stress Responses Reference

Cotton (Gossypium L.)

miR414 Salinity stress [108]

ghr-miR399 and ghr-156e Salt stress [94]

miR319 Abiotic stress signaling [109]

ghr-miR5272a Immune response [110]

multiple miRNAs Salt stress [111]

multiple miRNAs High temperature [112]

multiple miRNAs Low and high temperature stress [113]

miR156a/d/e, miR167a, miR169, miR397a/b, miR399a,
miR535a/b, miR827b, Salt stress [114]

Cowpea (Vigna unguiculata) multiple miRNAs Drought stress [115]

Date Palm (Phoenix dactylifera) multiple miRNAs Salinity stress [116]

Flax ( Linum usitatissimum) miR319, miR390, and miR393 Aluminum stress [117]

Foxtail Millet (Setaria italica)
multiple miRNAs Drought stress [118]

multiple miRNAs Dehydration stress [119]

Java waterdropwort
(Oenanthe javanica) multiple miRNAs Various abiotic stress [120]

Maize (Zea mays)

multiple miRNAs Chilling stress [121]

multiple miRNAs Heat stress [122]

multiple miRNAs Nitrogen stress [123]

multiple miRNAs Drought stress [82]

multiple miRNAs Cadmium stress [124]

multiple miRNAs Phosphate deficiency [125]

multiple miRNAs Water logging [126]

multiple miRNAs Nitrogen deficiency [127]

multiple miRNAs Short term water logging [128]

miR160, miR164, miR167, miR168, miR169, miR172,
miR169, miR395, miR397, miR398, miR399, miR408,

miR528, miR827
Low nitrate availability [129]

Peach (Prunus persica) multiple miRNAs UVB radiations response [130]

Pear (Pyrus pyrifolia) multiple miRNAs Apple stem grooving virus
infection and high temperature [131]

Potato (Solanum tuberosum)

multiple miRNAs Nitrogen stress [132]

Stu-mi164 Osmotic stress [133]

miR172, miR396a, miR396c, miR4233, miR2673,
miR6461 Drought stress [134]

Radish (Raphanus sativus)

ath-miR159b-3p, athmiR159c, ath-miR398a-3p,
athmiR398b-3p, ath-miR165a-5p, ath-miR169g-3p,
novel_86, novel_107, novel_21, ath-miR171b-3p

Heat stress [135]

multiple miRNAs Cadmium stress [136]

multiple miRNAs Chromium stress [137]

multiple miRNAs Salt stress [138]

multiple miRNAs Cadmium stress [139]
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Table 1. Cont.

Crop MicroRNAs Stress Responses Reference

Rice (Oryza sativa)

miR408, miR528 Cadmium stress [140]

multiple miRNAs Arsenic stress [141]

multiple miRNAs High temperature and salt stress [142]

multiple miRNAs Cold stress [143]

miR169, osa-miR444a.4-3p Nitrogen starvation [144]

miR529a Oxidative stress [145]

miR393, miR390 Multiple stress [146]

Osa-miR820 Salt stress [147]

multiple miRNAs Phosphate Starvation [148]

miR399, miR530 Nitrogen starvation [149]

miR156, miR164, miR167, miR168, miR528, miR820,
miR821, miR1318 Low-nitrogen stress [150]

multiple miRNAs Abiotic stress [151]

osa-miR414, osa-miR164e, osa-miR408 Salt stress [152]

Soybean (Glycine max) multiple miRNAs Water deficit [153]

Sugarcane (Saccharum L.)

multiple miRNAs Water-deficit stress [154]

multiple miRNAs Low temperature stress [155]

multiple miRNAs Waterlogging condition [156]

multiple miRNAs Drought stress [157]

multiple miRNAs Drought stress [158]

Sweet Potato (Ipomoea batatas)
multiple miRNAs Drought and CO2 stress [159]

multiple miRNAs Salt stress [160]

Switchgrass (Panicum virgatum) multiple miRNAs Drought and heat stress [161]

multiple miRNAs Salt stress [162]

Tobacco (Nicotiana tabacum) multiple miRNAs Salt and alkali stress [163]

Tomato (Solanum lycopersicum)
multiple miRNAs Drought and heat stress [164]

multiple miRNAs Drought stress [165]

Turnip (Brassica rapa)
miR166h-3p-1, miR398b-3p, miR398b-3p-1, miR408d,

miR156a-5p, miR396h, miR845a-1, miR166u,
Bra-novel-miR3153-5p and Bra-novel-miR3172-5p

Cold stress [166]

Wheat (Triticum aestivum)

multiple miRNAs Reactive oxygen species
(ROS) response [167]

multiple miRNAs Water deficit and heat stress [168]

TaemiR408 Phosphate deprivation and
salt stress [169]

TamiR1139 Phosphate starvation [170]

multiple miRNAs Cold stress [171]

multiple miRNAs Drought stress [172]

miR159, miR160, miR166, miR169, miR172, miR395,
miR396, miR408, miR472, miR477, miR482, miR1858,

miR2118, miR5049
Drought stress [173]

multiple miRNAs including miR159, miR393, miR398 Cold, wound, and salt stress [174]

Tae-miR408 Salinity, cupric metal, and stripe
rust stress [175]

5. Current miRNA-Based Strategies for Crop Improvement

Several miRNA-based strategies are currently being exploited in the field of crop
improvement. Genetic tools such as high throughput sequencing, quantitative-real time
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polymerase chain reaction (qRT-PCR), and other gene expression analytic tools are used
to elucidate the functional role of plant miRNAs. However, these tools do not provide
any direct evidence of gene functionality but are utilized for the identification and re-
validation of the related function of plant miRNAs. Another strategy utilized for exploring
miRNA function in crop improvement is the traditional transgenic approach. Earlier, many
studies recorded the overexpression or repression changes in the miRNA and related gene
function in transgenic plants. However, since a single miRNA may regulate several genes,
its overexpression or repression sometimes produces undesirable phenotypic changes
also. Furthermore, over-abundance of miRNA may alter the expression of respective
target genes having different roles in plant development, resulting in a deleterious effect
on the host plant. Therefore, the implementation of target specific genetic engineering
is required for miRNA-based strategies of crop improvement. In the recent past, target
specific approaches such as the use of specific promoters rather than whole genes have
enabled miRNA-based strategies to be more precise to introduce desirable traits in crop
plants. The various miRNA-based strategies currently utilizing for crop improvement is
presented in Figure 3.

5.1. Traditional Transgenic Strategy

Earlier plant science researchers overexpressed plant miRNA in several crop and
model plants to study the role of miRNA and its related gene function. However, the
small size of plant miRNA and the requirement of the exact miRNA sequence makes it
rather difficult to manipulate. Therefore, following an alternative approach, plant scientists
started transferring the long pri-miRNA sequence instead of mature miRNA. This strategy
helped in expressing direct mature miRNA rather than manipulating the MIR gene. Further,
pre-miRNA from model plant species can be utilized easily for crop plants with unknown
genetic information [39]. For instance, the miR156 gene from Arabidopsis can be transferred
to eggplants with unknown genetic information to study the function of this miRNA [39].

5.2. Artificial miRNA (amiRNA) Strategy

To overcome the problem of affecting non-target gene in the plant miRNA traditional
transgenic approach, alternative artificial miRNA (amiRNA) was developed [176,177]. The
amiRNA approach produces miRNAs and specifically silences the target genes without
interfering with the function of other genes [177]. In the amiRNA approach, the gene
sequence can be utilized to construct mature amiRNA having the conserved stem-loop
structure like original pre-miRNA and complementary sequence to target mRNA. The
artificial miRNA:miRNA* duplex can be inserted into the transgenic plant directly in the
stem-loop structure to target specific mRNA. In this way, amiRNA can be transferred
to target mRNA with high specificity without effecting a non-target gene function as
compared to the traditional transgenic approach. An amiRNA has also been utilized
in many studies, including knocking out genes for phytopathogens in Arabidopsis and
tobacco [178–181].

5.3. Short Tandem Target MIMIC (STTM) Strategy

Like overexpression of plant miRNA using the amiRNA approach, another artificial
technique called short tandem target MIMIC (STTM) that modulates the accumulation of
miRNA and controls related biological processes was developed. The SSTM, by inhibiting
specific miRNA activity, has been employed in several plant species [182,183]. In the STTM
strategy, either engineered long non-coding RNA (lncRNA) or circular RNA (circRNA),
also called miRNA recognition elements (MRE) with high sequence similarity with target
miRNA is transferred to the transgenic plant [184]. This engineered lncRNA or circRNA has
two or more conserved binding sites with target miRNA and minor differences in sequences
at the cleavage site. This prevents its miRNA cleavage, which remains hybridized but
biologically inactive [184,185]. Recently, several MIR genes have been targeted by the
STTM approach in crop plants to explore the function of miRNAs [83,92,93]. For example,
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the function of 35 miRNA families related to important agronomical traits has been studied
using STTM strategy in rice [183]. Like STTM, another artificial transcript called miRNA
SPONGES having multiple miRNA binding sites, was also engineered in some plant
species [184,186]. These miRNA SPONGES are sometimes utilized to inhibit the function
of the whole plant miRNA family [83,183].

5.4. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR Associated Gene 9
(CRISPR/Cas 9) Approach

Plant miRNAs have more than one member in a family, and each member plays
an important function in a group or individually. The above-mentioned miRNA-based
strategies target miRNA without differentiating among members of the miRNA family. To
elucidate the role of individual miRNA from a miRNA family, recently developed clustered
regularly interspaced short palindromic repeats/CRISPR associated gene 9 (CRISPR/Cas
9) [187,188] proved to be a powerful tool. In protein coding genes, CRISPR/Cas 9 deletes a
few nucleotides adjacent to the protospacer motif (PAM) sequence resulting in a frameshift
and finally gene silencing. However, the removal of a few nucleotides in miRNA does not
efficiently silence MIR genes, which makes it challenging to apply CRISPR/Cas 9. There-
fore, only a small number of studies have been reported for the successful implementation
of the CRISPR/Cas 9 approach for knocking out miRNA genes [189,190]. For example,
miR1514 and miR1509 have successfully been targeted in soybean by CRISPR/Cas 9 [191].
The miRNA1514 and miRNA1509 were targeted using biolistic delivery of a CRISPR/Cas
9 vector for the transient expression [192]. Likewise, in rice, a specific mutation has been
induced in miRNA156 recognition sites of the ipa1 gene using CRISPR/Cas 9 to improve
the number of traits related to plant architecture [102]. In another report, mono-allelic
and bi-allelic mutations in several miRNA genes of the T0 line of rice have successfully
been incorporated using CRISPR/Cas 9, resulting in the loss of function of miRNA [193].
Though the genome editing approach has been successfully implemented in some miRNA
studies, there are still some gaps needing improvement to thoroughly amend CRISPR/Cas
9 technology for miRNA-based crop improvement.

Figure 3. Cont.
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Figure 3. Overview of miRNA-based strategies for crop improvement. Illustrating (a) the traditional transgenic approach
targeting directly primary-miRNA (pri-miRNA) in plants; (b) the artificial miRNA (amiRNA) strategy to enhance or repress
miRNA expression in plants (Sablok et al., 2011). The amiRNA is designed to have a complementary sequence to the target
mRNA and stem-loop structure like the original miRNA. The amiRNA then transfers into the plant cell using traditional
transformation techniques, where its biogenesis occurs like original miRNA. Finally, amiRNA targets the mRNA without
affecting non-target genes; (c) target MIMIC strategy where target MIMIC instead of target mRNA is recognized by miRNA;
(MRE site: miRNA recognition site) [194]; (d) miRNA-targeting CRISPR/Cas9 approach to manipulate the miRNA gene
using sgRNA-Cas9 complex. CRISPR/Cas9 techniques based on two components, (i) sgRNA: single guide RNA, and (ii)
Cas9 endonucleases. The sgRNA consists of a 20-nt-long spacer sequence which is highly specific to target DNA having a
5′-NGG-3′PAM (protospacer adjacent motif). The Cas9 vector construct and sgRNA complex transfer into a plant cell using
a transformation technique. In the plant cell, sgRNA-Cas9 complex target and cleave the DNA and degrade the targeted
gene. This figure was created with the BioRender app (https://app.biorender.com/; accessed on 30 April 2020).

6. Conclusions

In addition to the fundamental role of gene silencing, plant miRNAs play diverse
roles in almost all biological (molecular) networks. The potential of plant miRNAs in
regulating stress-responsive genes makes them a suitable candidate for developing stress-
tolerant crop varieties. A deeper understanding of the molecular mechanism regulated by
miRNA in the complex molecular networking systems would enable agricultural scientists
to manipulate specific agronomical traits in crops. However, the regulation of multiple
genes and networks by single miRNA in plants makes the selection of candidate miRNA
to target specific agronomically important trait challenging for the scientists. For such
traits, efficient tools are required to decipher pri-miRNA-mediated regulatory networks.
Undoubtedly, miRNA-based approaches have huge potential for crop improvement to mo-
tivate future inter-disciplinary collaborations between scientists of different expertise. For
example, a successful miRNA-mediated genome editing effort requires active collaborative
efforts from molecular biologists, geneticists, genome editors, miRNA scientists, and plant
breeders. Furthermore, appropriate laboratory experiments and confined field trials are
required before realizing the actual potential of miRNA-based genome editing in the field
of agriculture. Nevertheless, it is also pertinent to be aware of unwanted side effects arising
while using genetic modification approaches using miRNAs in the future.

https://app.biorender.com/
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