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Extra-intestinal pathogenic E. coli (ExPEC) infections are common in mammals and birds.

The predominant ExPEC types are avian pathogenic E. coli (APEC), neonatal meningitis

causing E. coli/meningitis associated E. coli (NMEC/MAEC), and uropathogenic E. coli

(UPEC). Many reviews have described current knowledge on ExPEC infection strategies

and virulence factors, especially for UPEC. However, surprisingly little has been reported

on the regulatory modules that have been identified as critical in ExPEC pathogenesis.

Two-component systems (TCSs) comprise the predominant method by which bacteria

respond to changing environments and play significant roles in modulating bacterial

fitness in diverse niches. Recent studies have highlighted the potential of manipulating

signal transduction systems as a means to chemically re-wire bacterial pathogens,

thereby reducing selective pressure and avoiding the emergence of antibiotic resistance.

This review begins by providing a brief introduction to characterized infection strategies

and common virulence factors among APEC, NMEC, and UPEC and continues with a

comprehensive overview of two-component signal transduction networks that have been

shown to influence ExPEC pathogenesis.
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INTRODUCTION TO EXTRAINTESTINAL PATHOGENIC E. COLI

(ExPEC)

Since the discovery by Theodor Escherich in 1885, Escherichia coli has become one of the most
tractable model organisms for study and utilization in the lab. For this reason, numerous studies
use laboratory strains of E. coli for comparative and analytical studies, sometimes over-simplifying
the complexity and diversity of the E. coli species. To date, over 3,600 genomes have been sequenced
in part or in full, revealing seven major phylogenetic groups—A, B1, B2, C, D, E, and F—with the
remaining unclassified subtypes placed in an eighth group, Escherichia cryptic clade I (Herzer et al.,
1990; Clermont et al., 2013).

E. coli colonize the gastrointestinal (GI) tracts of humans and other warm-blooded mammals,
and in this context, they comprise part of the organism’s normal flora (Dubos and Schaedle,
1964), or microbiome, as coined by Joshua Lederberg in 2001. However, the acquisition of
genetic elements, primarily through horizontal gene transfer, gives rise to several different
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pathogenic E. coli with distinct virulence strategies.
Gastrointestinal or diarrhegenic E. coli pathotypes include
diffusely adherent (DAEC), enteroaggregative (EAEC),
enterohemorrhagic (EHEC), enteroinvasive (EIEC),
enteropathogenic (EPEC), and enterotoxigenic (ETEC).
However, extra-intestinal pathogenic E. coli (ExPEC) pathotypes
have emerged (Russo and Johnson, 2000), and they include
avian pathogenic E. coli (APEC), neonatal meningitis
causing or meningitis-associated E. coli (NMEC/MAEC),
and uropathogenic E. coli (UPEC). The steady, yet up
until recently under-appreciated, rise in antimicrobial
resistant E. coli has played a significant role in the
increasing incidence and lethality of extra-intestinal E. coli
infections.

The human ExPEC strains predominantly cluster in the
B2 and D phylogenetic groups while APEC strains have also
expanded into C and F groups (Johnson et al., 2001; Sokurenko
et al., 2004; Coque et al., 2008; Nicolas-Chanoine et al., 2008;
Totsika et al., 2011). ExPECs colonize and infect a wide range
of host species, using an armamentarium of virulence factors
that are not restricted to the ExPEC pathotype (Figure 1). The
presence of certain combinations of virulence factors can result
in extra-intestinal pathogenesis, but among the different ExPEC
pathotypes, there is little or no distinct set of virulence factors
that is specific to UPEC, APEC, or NMEC. Rather, differential
regulation of common virulence factorsmay be a key driver in the
hierarchical expression of specific gene sets that enable/enhance
colonization in distinct extra-intestinal niches (Figures 2, 3). As
is true for all bacteria, ExPECs deftly respond to environmental
stimuli using several signaling networks; the best characterized
of these signaling systems are two-component systems (TCSs;
Figure 4). This review will outline the infection strategies of
APEC, NMEC, and UPEC (Figures 2, 3) and will discuss TCSs
that have been shown to contribute to the pathogenesis of these
ExPEC pathotypes.

DISEASES IN ANIMALS AND HUMANS
CAUSED BY ExPECS

Most E. coli are commensal bacteria colonizing the gut of many
mammals and birds (Jones andNisbet, 1980); when these bacteria
enter sites other than the GI, they may cause disease.

Disease in Birds
Infections by emerging avian pathogenic E. coli (APEC) strains
(Moulin-Schouleur et al., 2007) cause high morbidity and
mortality in flocks and account for considerable economic losses
in the poultry industry (de Brito et al., 2003). Interestingly,
recent studies show that human consumption of infected
poultry meat or eggs can result in food-borne, extra-intestinal
diseases in humans (Mitchell et al., 2015; See Section Additional
Reservoirs and Research Models: Zoonotic Potential for Urinary
Tract Infection), which adds an additional concern for the
poultry industry regarding food safety. APEC are the etiologic
agent associated with colibacillosis, however severity of disease
increases with co-morbid viral infections, such as Newcastle

virus and avian infectious bronchitis virus, as well as with
bacterial infections byMycoplasma gallisepticum (Merck and Co.,
1955). Disease manifestations include colibacillosis, an infection
that includes acute fatal septicemia or colisepticemia, sub-acute
pericarditis, airsacculitis, salpingitis, and peritonitis (de Brito
et al., 2003). Current treatment relies on the use of antibiotics, as
well as some commercially available heat-killed vaccines (Merck
and Co., 1955).

Disease in Household Pets
Cats and dogs are susceptible to urinary tract infections (UTIs)
and recurrent UTIs (Johnson et al., 2001; Hutchins et al.,
2014). In dogs, ExPEC strains are most commonly associated
with uncomplicated UTIs, but have also been the cause of
pyometra, mastitis, otitis, prostatitis, bacteremia, skin diseases,
cholecystitis, and pneumonia (Oluoch et al., 2001; Ewers et al.,
2014). Interestingly, while cats experience idiopathic lower UTI
symptoms, no known association with UPEC or UPEC-like
strains has been established to date (Bell and Lulich, 2015).
However, bronchopneumonia caused by E. coli harboring α-
hemolysin and cytotoxic necrotizing factor (CNF) has also been
reported in cats and dogs (Handt et al., 2003; Sura et al.,
2007). Finally, recent reports have documented UTIs in big
cats such as snow- and black-leopards, indicating that animals
in captivity (such as zoo animals), and potentially in the
wild, are susceptible to infections by ExPEC (Carvalho et al.,
2012).

Disease in Large Ruminants and Domestic
Farm Animals (Cattle, Horses, Pigs)
Studies have shown that calves and cows are both likely to
develop UTIs, and E. coli is the most predominant etiologic
agent (Yeruham et al., 2006). UTI symptoms in cattle include
depression, muscle wasting and weakness, reduced feed intake,
reduced milk production, and weight loss (Yeruham et al.,
2006), all of which impact the dairy and meat industries.
Additionally, cows are frequently catheterized to collect total
urine for nutritional analyses. This repetitive catheterization
results in increased risk for ascending UTIs (Tamura et al., 2014).
In addition to UTIs, another costly disease in cows is clinical
mastitis (Rollin et al., 2015). Clinical mastitis in an inflammation
of the udders due to blockage or infection that results in visually
abnormal milk production (Thompson-Crispi et al., 2014). The
mammary pathogenic E. coli or MPEC are predominant bacteria
in clinical mastitis (Shpigel et al., 2008).

Horses have been reported to have both hemorrhagic
pneumonia and soft tissue ExPEC infections (DebRoy et al.,
2008; Ewers et al., 2014). Clinical symptoms of infection include
animals lying on their side, abdominal breathing, shaking,
convulsion, lameness, and death (Liu et al., 2015). Recently,
Liu et al. (2015) performed the first genomic analyses of a
porcine-specific ExPEC, PCN033, isolated from the brain of a
pig (suggesting a meningitis-causing isolate; Tan et al., 2011).
The genomic data placed PCN033 in the D phylogeny group
and studies using an ear vein piglet (4–5 weeks) infection model
demonstrated the pathogenic potential of this strain (Liu et al.,
2015).
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FIGURE 1 | Virulence factors involved in ExPEC infections. The Venn Diagram represents the most commonly reported, shared and individual, virulence factors

for APEC (blue), MAEC/NMEC (purple), and UPEC (orange). (Knöbl et al., 2001; Johnson et al., 2006; Lloyd et al., 2007; Wiles et al., 2008; Zhu et al., 2010; Nazemi

et al., 2011; Spurbeck et al., 2011; Logue et al., 2012; Zhu Ge et al., 2014; Huja et al., 2015; Wang et al., 2015; Wijetunge et al., 2015).

Disease in Humans
The most common diseases caused by ExPEC in humans include
neonatal meningitis, UTIs, sepsis, pneumonia, and surgical site
infections (Riley, 1972; Russo and Johnson, 2003; Kaper, 2005;
Mellata, 2013). NMEC is the leading Gram-negative cause of
neonatal meningitis cases (Kim, 2016), while UPEC strains
are responsible for 75–90% of uncomplicated UTIs and are
the leading cause of catheter-associated UTIs (Foxman, 2014;
Becknell et al., 2015). In addition, UTIs are a leading cause
of E. coli bacteremia (Jackson et al., 2005; Al-Hasan et al.,
2010). The most common clinical symptoms for UTIs, as is
reported in college age women, include increased frequency and
urgency of urination, abdominal discomfort, dysuria, nocturia,
and hematuria (Vincent et al., 2013).

VIRULENCE STRATEGIES IN ExPEC: SAME
SOLDIERS, DIFFERENT COMMANDERS

Despite the different tissue/host tropism, APEC, NMEC, and
UPEC share many common virulence factors (Figure 1). Among
these common virulence factors are pili assembled by the

chaperone-usher pathway (CUP), protein adhesins, toxins, iron
acquisition systems, transport systems, and other non-essential
factors (Russo and Johnson, 2000). However, these virulence
factors are subject to distinct regulation depending on the host
niche that each ExPEC pathotype harbors. Below, is a brief
outline of the infection cascades followed by NMEC, APEC,
and UPEC utilizing common virulence factors as they have been
described using murine models of infection (Section Additional
Reservoirs and Research: Murine Model).

Avian Pathogenic E. coli (APEC)
Entering through respiratory inhalation, APEC strains use type 1
pili to adhere to and invade epithelial cells lining the pharynx and
trachea (Figures 2, 3A; Mellata et al., 2003). In addition to type 1
pili, Yqi pili were identified as another key adhesion factor during
initial stages of avian infection of the lung (Kaper, 2005; Antão
et al., 2009). P pili are used later during infection to facilitate
dissemination to other parts of the lower respiratory tract or
into the bloodstream. Besides the three CUP pili above, APEC
also utilize curli amyloid fibers during the early steps of infection
(Mellata et al., 2003). APEC can replicate within epithelial cells,
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FIGURE 2 | ExPEC infection strategies. Diagram depicts a generalized schematic of the known and relevant aspects of ExPEC infections. The leftmost green

arrow depicts the typical route of infection from point of entry. APEC attach to upper respiratory epithelial cells using type 1 pili. APEC can replicate and transverse the

respiratory tract to the bloodstream by means of avian macrophages. NMEC/MAEC exit the bloodstream and attach via type 1 pili to brain micro-vascular endothelial

cells that comprise the blood brain barrier. NMEC enter the endothelial cells through OmpA receptor-mediated entry. From here, NMEC are able to colonize the brain

and meninges. UPEC attach to urothelial cells in a type 1 pili-dependent manner. UPEC are then endocytosed and escape into the cytosol where they replicate into

intracellular bacterial communities (IBC). UPEC escape the IBC state by filamenting and fluxing out of the infected host cell. Dispersing UPEC can infect neighboring or

underlying transitional cells, and/or can ascend the ureters to colonize and infect the kidneys.

avian granulocytes called heterophils, and macrophages (Mellata
et al., 2003). Subsequent escape from phagocytes allows APEC
entry into the bloodstream at sites of gas exchange in the air sacs
(Mellata et al., 2003).

In a comparative genomic study, only five virulence factors,
an outer membrane protein, AatA, and components of an
iron transporter system, EitA-D, were specific to APEC isolates
compared to other ExPEC (Figure 1; Zhu Ge et al., 2014).
Since APEC and UPEC virulence factors are similar, APEC
plasmids in E. coli can also contribute to UTI in mice and have
been recently associated with food-borne UTIs (Johnson et al.,
2006; Nordstrom et al., 2013; See Section Additional Reservoirs
and Research: Zoonotic Potential for Foodborne Urinary Tract
Infection).

Neonatal Meningitis-Causing E. coli

(NMEC)/Meningitis Associated E. coli

(MAEC)
NMEC infection begins with bacteria entering the bloodstream
and replicating to levels above 103 colony-forming units (CFU)
per milliliter of blood. Bacteria are then able to breach the
blood-brain barrier via binding to receptors on brain micro-
vascular endothelial cells. Like in APEC and UPEC strains,
CUP pili (Waksman and Hultgren, 2009) are critical for NMEC
pathogenesis. Specifically, NMEC type 1 pili mediate attachment

to the brain epithelial layer and are critical for biofilm formation,
as shown in in vitro and in vivo studies (Yamamoto et al., 1990;
Connell et al., 1996b; Martinez et al., 2000; Mellata et al., 2003;
Klemm and Schembri, 2004;Mittal et al., 2011). OmpA is another
important NMEC virulence factor, aiding in bacterial invasion
into brain micro-vascular epithelial cells (Prasadarao et al.,
1996). Following pili- and OmpA-mediated adherence, NMEC
become internalized in a process mediated by the CNF1 toxin
(Figures 2, 3B).Within host cells, the K1 capsule surrounding the
bacteria prevents lysosomal fusion and allowsNMEC to infect the
subarachnoid space of the meninges (Kim et al., 1992; Xie et al.,
2004). NMEC can also invademacrophages, using them as Trojan
horses to cross the blood brain barrier (Mittal et al., 2010, 2011).

Uropathogenic E. coli (UPEC)
UPEC typically cause ascending infections, entering the urinary
tract through the urethra, and colonizing the bladder and kidneys
(Figures 2, 3C). While UTIs in humans are prevalent among
women in the community, catheter-associated UTIs afflict both
genders equally and can cause serious adverse effects, as well as
prolong hospital stays and health-related expenses. In the last 10
years, an alarming rise in multi-drug resistant isolates, especially
of the sequence type (ST) 131 has further complicated treatment
strategies as discussed in the next section (Coque et al., 2008;
Nicolas-Chanoine et al., 2008; Totsika et al., 2011).
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FIGURE 3 | Two-component systems involved in UPEC pathogenesis. The two-component systems are listed in the general order in which they are reported as

critical for each infection strategy. (A) depicts a generalized view of APEC pathogenesis infecting an avian respiratory tract. Early infection is denoted by green color.

Late infection is outlined by purple color. (B) depicts a generalized view of MAEC/NMEC infection in a human brain by crossing the blood brain barrier. Following

bacteria entering the blood stream, early meningitis infection is denoted by blue background where E. coli cells bind and traverse the blood brain barrier. Late infection

is outlined by green background, which includes infection of the meninges. There are no publications on TCS involved in MAEC/NMEC pathogenesis; however,

capsule, pili, and other virulence factors are required for pathogenesis and these are known to be regulated in part by TCS. (C) depicts a generalized view of UPEC

infecting a human urinary tract. Blue background indicates entry and initiation of UPEC infection. Green depicts infection in the bladder. Purple depicts the ascension

into and infection of the kidney.

Studies utilizing human bladder cell lines and the murine
infection models (Section Additional Reservoirs and Research
Models: Murine Model) have revealed that during the initial
stages of infection UPEC use type 1 pili to bind to uroplakin
and integrins on superficial umbrella cells that line the bladder
(Yamamoto et al., 1990; Connell et al., 1996a; Mulvey et al., 1998;
Martinez et al., 2000; Mellata et al., 2003; Klemm and Schembri,
2004; Eto et al., 2007). These same pili are subsequently used
to form intracellular bacterial communities (IBCs), which are
biofilm-like structures within the bladder cell during early and
middle stages of infection, between 2 and 8 h in the C3H/HeN
and C3H/HeJ mouse models (Anderson et al., 2003; Justice et al.,
2004; Hannan et al., 2012). Responding to yet uncharacterized
signals, UPEC can egress from the transient intracellular state by
filamenting and fluxing out of the infected host cell (Justice et al.,

2004). The bladder cell can alternatively trigger an apoptotic-
like cell death (Mulvey et al., 1998; Nagamatsu et al., 2015) and
become exfoliated prior to UPEC filamentation, shedding the
IBC into the bladder lumen. Bladder cell exfoliation exposes
underlying host cell layers to invasion by UPEC that can remain
quiescent for prolonged periods of time (Mulvey et al., 2000,
2001; Mysorekar and Hultgren, 2006). Quiescent intracellular
reservoirs (QIRs) can cause recurrent infections (Mulvey et al.,
2001; Figure 2). UPEC cells egressing from non-exfoliated
bladder cells can re-initiate infection by engaging neighboring,
naïve bladder cells, or by ascending to and colonizing the
kidney. Studies with murine mouse models of UTI have also
elucidated that UTI leads to urothelial remodeling and may
fail to regenerate even weeks after treatment. RNA-seq revealed
that immune-related pathways, as well as pathways pertaining
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FIGURE 4 | Overview of two-component system signal transduction. In most cases studied to date, the sensor histidine kinase is membrane-embedded. The

sensor kinase detects signals or stimuli and undergoes auto-phosphorylation at a conserved histidine residue. The phosphoryl-group is then transferred to the cognate

cytoplasmic response regulator at a conserved aspartate residue. Phosphorylated response regulators form an active dimer that can then regulate gene transcription.

Following the appropriate cellular response, the sensor exhibits phosphatase or reverse phosphotransferase activity removing the phosphoryl-group from the response

regulator to “reset” the system. While most kinases are found as a dimer in the membrane, dynamic interactions between the mono- and di-meric state may occur.

to tissue morphology, cellular development, and cellular growth
and proliferationwere significantly enriched (Hannan et al., 2012;
O’Brien et al., 2016).

In addition to type 1 pili, curli amyloid fibers, and P pili are
critical for pathogenesis (Svenson et al., 1983; Dodson et al., 1993;
Schilling et al., 2001; Barnhart and Chapman, 2006), along with
other potentially uncharacterized adhesive fibers. UPEC strains
can harbor more than one dozen different types of CUP pili, each
with distinct adhesion specificities and differential regulation
patterns (Welch et al., 2002; Chen et al., 2006; Spurbeck et al.,
2011). The function and regulation of these fibers during UTIs
are beginning to be elucidated (Spurbeck et al., 2011). In addition
to adherence factors, iron acquisition is critical for UPEC
pathogenesis, as is for almost all bacterial infections (Henderson
et al., 2009; Cassat and Skaar, 2013).

Similar to APEC and NMEC, the presence of K1 capsule
plays a role in pathogenesis during IBC formation (Anderson
et al., 2010), while several toxins, such as hemolysin A, have
been associated with fine-tuning host cell exfoliation during
infection. Several recent studies have revealed that despite being

facultative anaerobes, UPEC require aerobic respiration during
acute UTIs (Alteri et al., 2009; Hadjifrangiskou et al., 2011; Floyd
et al., 2015, 2016), indicating the presence of oxygen-sensing
mechanisms that modulate virulence by production of type 1 pili,
and possibly other factors, in response to altered oxygen levels.
Furthermore, Shepherd et al. demonstrated that in addition
to aerobic respiration, cytochrome bd oxidase is required for
alleviating nitrosative stress during infection in the hypoxic
bladder (Shepherd et al., 2016).

TREATMENT STRATEGIES AGAINST
ExPEC INFECTION

Currently, there are no approved human vaccines against
ExPEC; however, vaccines are used in farming practices against
E. coli (Sadeyen et al., 2015). ExPEC infections in all afflicted
populations are typically treated with antibiotics. Although this
practice has been effective for many years both in the healthcare
setting and in the poultry/farm industry, overuse, and misuse of
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antibiotics in the twentieth century has led to the emergence of
multi-drug resistant ExPEC strains that are extremely difficult to
eradicate. The recently emerged antibiotic resistant ST131 isolate
harbors the blaCTX−M−15 gene producing extended spectrum
beta-lactamases. ST131 isolates also harbor H4 serotype flagellar
antigen, which augments adherence and invasion of bladder cells,
and stimulation of IL-10 (Kakkanat et al., 2015). In addition to
the multi-drug resistant ST131 isolates, cases of colistin-resistant
uropathogenic and avian pathogenic E. coli are also emerging
(McGann et al., 2016; Lima Barbieri et al., 2017). The first United
States report of a colistin-resistant E. coli was released in early
2016, with an ST457 urine isolate from a Pennsylvanian woman
with a UTI (McGann et al., 2016).

In the farm/poultry industry, a classic example of antibiotic
resistance emergence is highlighted in the Yeruham study
(Yeruham et al., 2006): a short 3-day antibiotic treatment resulted
in many recurrent cases of UTIs in cattle, indicating the presence
or the emergence of a resistant ExPEC population (Yeruham
et al., 2006). In addition, the administration of antibiotics to farm
animals increases the likelihood for asymptomatic colonization
of animals by multidrug resistant ExPEC that can then colonize
humans who come into contact with the cattle. Finally, thought-
provoking studies by the Blaser group and colleagues are
beginning to elucidate possible correlations between antibiotic
use in farm animals and increasing obesity in humans (Blaser
and Falkow, 2009), raising concerns about continued use of
antibiotics in livestock.

Combined, these concerns are beginning to shift the focus of
current research, not only to the development of new antibiotics,
but also to the generation of agents that will have anti-virulence
potential by targeting bacterial behavior as opposed to bacterial
viability. For such agents to be effective, information about how
bacteria, such as ExPECs, behave in response to environmental
stimuli is crucial. Perhaps the most critical element in successful
colonization and persistence in a specific niche is the ability of
a pathogen to appropriately coordinate production of relevant
virulence factors. This regulationmust occur simultaneously with
repression of other genes, the products of which are not needed in
the particular environment. Bacteria are constantly bombarded
with changing stimuli from within and outside the host. Within
the host, these stimuli may come from innate immune defenses
such as bursts of reactive oxygen species, cationic polypeptides
and metal sequestration, as well as exogenous stressors such as
antibiotics. In addition, the different stages of each infection
cascade are accompanied by niche-specific changes in oxygen
levels, nutrients, osmolality, and temperature. Each of these cues
is sensed by one or more bacterial signaling systems that will then
coordinate bacterial behavior. Below, we provide an overview of
the signal transduction networks identified as important for the
pathogenesis of NMEC, APEC, and UPEC focusing on TCSs.

TWO-COMPONENT SYSTEM SIGNALING
NETWORKS INVOLVED IN ExPEC
PATHOGENESIS

Although eukaryotic-like serine/threonine kinases (Lux and Shi,
2005) are found within bacterial species, the majority of TCSs

receptors are histidine kinases (Stock et al., 1989, 2000; Bijlsma
and Groisman, 2003). TCSs encompass the predominant method
by which bacteria sense and respond to the many different
environments they encounter (Bourret et al., 1989; Stock et al.,
1989, 2000). Prototypical TCSs comprise a membrane-embedded
bacterial signaling receptor that is responsible for intercepting
one or more specific stimuli or ligands. Signal transduction from
the membrane-embedded receptor to the response regulator
occurs via a phosphorelay event to a cognate partner protein,
termed the response regulator, that will carry the output response
(Bourret et al., 1989; Stock et al., 1989, 2000; Igo et al., 1990). The
response regulator almost always resides in the cytoplasm and,
in the majority of documented examples, acts as a transcriptional
regulator (Stock et al., 1989, 2000).

Histidine kinases typically function as dimeric membrane
receptors and consist of a sensing domain, a kinase domain,
and a catalytic domain that binds and hydrolyzes ATP. Upon
signal interception, the histidine kinase hydrolyzes ATP and
undergoes auto-phosphorylation at a conserved histidine residue
within the kinase domain (Figure 4). Histidine kinase auto-
phosphorylation stimulates the transfer of the phosphoryl group
to a conserved aspartate residue on the cognate response
regulator (Figure 4), thus activating function.

Many sensor histidine kinases are bi-functional, having the
ability to also act as phosphatases or reverse phosphotransferases,
dephosphorylating the response regulator. Response regulator
de-phosphorylation by the cognate sensor histidine kinase
“resets” the signaling cascade, allowing the bacteria to respond
again to the same stimulus upon re-exposure. Swift de-
phosphorylation of the response regulator by the cognate
histidine kinase also prevents aberrant activation of the response
regulator by non-cognate kinases or other phosphor-donor
molecules. Not much work has been performed in delineating
the role of TCSs in ExPEC pathogenesis. Of the 62 conserved
TCSs genes harbored by E. coli strains (Capra and Laub, 2012),
only a handful have been studied in the context of pathogenesis.
Notably, there also are strain-specific TCSs, harbored only by
certain strains or pathotypes, which are of particular interest,
such as the KguRS TCS (Cai et al., 2013). Below, we discuss key
TCSs that have been shown experimentally to be important for
UPEC, APEC, or NMEC pathogenesis (Figure 3).

EnvZ-OmpR
The prototypical TCS, owing to the early characterization, is the
OmpR-EnvZ system (Hall and Silhavy, 1981). The sensor kinase
EnvZ is phosphorylated under hypo-osmotic conditions and
phosphotransfers to the response regulator OmpR. Activation of
OmpR leads to upregulation of outer membrane porin proteins,
such as OmpF or OmpC (Igo and Silhavy, 1988; Forst et al.,
1989; Cai and Inouye, 2002). OmpR has been shown to influence
the expression of type 1 pili through transcriptional regulation
of fimB, one of the site-specific recombinases that control the
orientation of the type 1 pili promoter (Gally et al., 1996).
In a murine model of UTI, deletion of ompR in the UPEC
clinical isolate NU149 had a significant, two-log reduction in
colony forming units in both the bladder and kidney, indicating
a role of EnvZ-OmpR in pathogenesis (Schwan, 2009). UPEC
encounter a significant change in extracellular osmolality as they
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exit the gut and ascend the urethra, so one can extrapolate that
EnvZ-OmpR function is important during the early stages of
infection (Schwan, 2009).

CpxAR
The CpxAR system is comprised of the sensor kinase CpxA and
the response regulator CpxR and is one of the E. coli systems
responsible for sensing and coordinating the response to cell
envelope stress (Pogliano et al., 1997; Raivio and Silhavy, 1997).
Notably, the CpxAR system was one of the three TCSs shown to
be indispensable for E. coli fitness in the murine gut (Lasaro et al.,
2014). In UPEC, CpxAR has been shown to play multiple roles in
pathogenesis. Originally identified by the Silhavy group, CpxAR
activation was shown to occur upon binding of commensal E. coli
to hydrophobic surfaces. CpxAR activation was shown to depend
on the presence of the outer membrane lipoprotein NlpE, and
this was the first demonstration of a function for NlpE (Otto
and Silhavy, 2002). A follow up study revealed that activation of
the Cpx system can occur in an NlpE-independent manner by
inducing cues other than surface attachment (DiGiuseppe and
Silhavy, 2003). CpxAR was also shown to sense and respond to
misfolded pilin subunits during the assembly of P pili, which
are adorned with the adhesin protein PapG that binds glycolipid
receptors on urothelial cells lining the kidney (Hung et al.,
2001; Lee et al., 2004). Joint collaborations from the Silhavy
and Hultgren groups showed that the N-terminal extension
of the PapE pilin subunit activated CpxAR (Lee et al., 2004).
Mis-folded PapE and PapG also activate the CpxAR system;
upon activation, the periplasmic protein CpxP is upregulated
to alleviate membrane stress by guiding mis-folded proteins
to be degraded by proteolysis (DiGiuseppe and Silhavy, 2003;
Isaac et al., 2005). Most recently, the CpxAR system has been
implicated in responding to antibiotics by altering the membrane
integrity and increasing antimicrobial resistance (Raivio et al.,
2013). CpxA has also been shown to sense high osmolality
conditions and result in the repression of curli expression, an
important component in the production of biofilms (Hou et al.,
2014).

In UPEC, deletion of cpxAR impairs UPEC colonization
of the murine bladder (Debnath et al., 2013). More recent
studies demonstrated that CpxAR regulates expression of α-
hemolysin (HlyA), though only about 50% of UPEC isolates
encode this pore-forming toxin. HlyA causes cytotoxicity in
urothelial cells. Nagamatsu et al. (2015) showed that loss of
CpxR unleashes expression of HlyA and increases exfoliation
of the host urothelium during infection, suggesting that CpxAR
exerts a negative effect on hlyA expression, possibly fine-tuning
cytotoxicity in urothelial cells for HlyA-harboring UPEC strains.

RstAB
A recently described system thought to be involved in APEC
pathogenesis, though relatively poorly understood to date, is the
RstAB system. The RstA response regulator specifically appears
to be important for APEC persistence in chicken macrophages
and respiratory infection (Gao et al., 2015). RstAB is under the
control of another TCSs called PhoPQ. The PhoQ sensor is
activated in response to high levels of cationic polypeptides or

low levels of magnesium, both of which are signals that have been
suggested to directly interact with the PhoQ dimer (Miller et al.,
1989; Prost et al., 2007). Expression of the rstAB gene pair has
been shown to increase under low Mg2+ conditions in a PhoPQ-
dependent manner (Minagawa et al., 2003). RstAB, in turn,
modulates APEC survival under harsh conditions and adaptation
to the extra-intestinal environment; deletion of the response
regulator RstA shows decreased colonization of organs during
systemic infection in chickens. Additionally, while the rstA
mutant and the wild type parent were taken up bymacrophages at
similar levels, the rstA mutant could not persist within or escape
the macrophages as well as the wild type strain (Gao et al., 2015).

KguRS
A more recently discovered, primarily UPEC-encoded system
is KguRS. The KguS sensor kinase was reported to sense the
presence of α-ketoglutarate in the UPEC strain CFT073 (Cai
et al., 2013). In amousemodel, deletion a CFT073mutant deleted
for kguRS colonized the urinary tract less efficiently. Given that
α-ketoglutarate is primarily utilized in the tubules of the kidneys,
the studies by Cai et al. implied that utilization of α-ketoglutarate
enhances the ability of UPEC to adapt to the urinary tract
environment (Cai et al., 2013).

ArcA/B
The aerobic respiratory control system, or ArcA/B TCS, is a
global regulator that facilitates adaptation from anoxic to aerobic
conditions and mediates defense against reactive oxygen species
(Loui et al., 2009). Unlike other TCSs, ArcB, and ArcA are not
co-transcribed; ArcB is a tripartite sensor kinase that undergoes a
phosphorelay event under anaerobic conditions. ArcA represses
expression of many genes involved in aerobic respiration. In
most cases, ArcA acts as a transcriptional repressor of enzymes
involved in aerobic carbon metabolism. ArcA is a positive
regulator of cytochrome d and pyruvate formate lyase involved in
fermentation (Gunsalus and Park, 1994; Georgellis et al., 2001).
Oxidation of cytosolic cysteine residues found within the ArcB
histidine kinase, results in the formation of disulfide bonds,
resulting in reverse phosphotransfer under aerobic conditions,
de-activating ArcA (Georgellis et al., 2001; Morales et al., 2013).
While most TCSs contain a large periplasmic sensing domain
for the detection of stimuli, the short sensing domain of ArcB
is necessary for detection of the physiological redox state of
quinones in the electron transport chain in the cytoplasmic
membrane (Georgellis et al., 2001). In APEC, loss of the ArcA
response regulator severely attenuates virulence, due to loss of
flagellar motility, chemotaxis, and proper metabolic function
(Jiang et al., 2015).

BarA-UvrY
While not located on the same operon, the BarA and UvrY
proteins have been shown to function as a TCS (Pernestig et al.,
2001). The BarA-UvrY TCS regulates the expression of the
carbon storage regulation system, a master regulator between
glycolysis and gluconeogenesis, which is necessary for bacterial
function and long-term survival (Pernestig et al., 2003). The
BarA (bacterial adaptive response) tripartite sensor is involved in
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protection from hydrogen peroxide stress through the activation
of RpoS sigma factor. Functioning slightly differently from
typical TCSs, tripartite sensors undergo a phosphorelay event:
the phosphate group is transferred from the histidine residue to
an aspartate residue to a second histidine residue, all of which
are located in different domains of BarA, before transferring
the phosphoryl-group to UvrY, the cognate partner (Suzuki
et al., 2002). UvrY, while part of the uvrYAC operon has
no apparent role in DNA repair (Suzuki et al., 2002). UvrY
does, however, activate the CsrB protein, which increases the
activation of biofilms. Deletion of BarA or UvrY results in a
similar hydrogen peroxide hypersensitivity (Pernestig et al., 2001,
2003).

In a macaque cystitis model, competition profiles suggest
that the BarA-UvrY TCS is crucial for the switch between
different carbon sources present in the urine (Tomenius et al.,
2006). In chicken embryos and in the murine model, UPEC
strain CFT073 with a barA or uvrY deletion displayed reduced
virulence through decreased production of hemolysin and LPS
(Palaniyandi et al., 2012). Likewise, in APEC, the BarA-UvrY
TCS has been shown to play a role in the chicken embryo
infection model. Deletion of either barA or uvrY resulted
in decreased expression of type 1 and P pili, diminishing
adherence and persistence within embryonic tissues (Herren
et al., 2006).

QseBC
The QseBC system, comprised of the sensor kinase QseC and the
response regulator QseB, was reported to be involved in quorum
sensing in enterohemorrhagic E. coli (EHEC; Sperandio et al.,
2002). EHEC QseC was shown to respond to norepinephrine,
epinephrine, and autoinducer-3 (Clarke et al., 2006) and this
deletion severely attenuates EHEC virulence (Hughes et al.,
2009). In UPEC, deletion of qseC results in severe attenuation
of UPEC due to reduced expression of motility genes, several
CUP systems including type 1 pili, curli fibers, and several
metabolic pathways (Kostakioti et al., 2009; Hadjifrangiskou
et al., 2011). This misregulation of virulence factors occurs only
in the absence of QseC, but not in the absence of QseB or the
entire QseBC system. Recent studies have uncovered non-partner
interactions that occur between the QseB response regulator and
another TCS, PmrAB (Guckes et al., 2013). The PmrB sensor
kinase of the polymyxin resistant (Pmr) AB TCS constitutively
phosphotransfers to QseB in the absence of the QseC sensor
(Guckes et al., 2013). This constitutive activation leads to aberrant
gene repression by QseB and attenuation of virulence, making
the QseBC system an excellent target for anti-virulence strategy
development.

Interestingly, the PmrB sensor is known to respond to ferric
iron and mediates alterations to the lipopolysaccharide (LPS)
layer of the outer membrane to protect the cell against cationic
polypeptide stress (Groisman et al., 1997; Wösten et al., 2000;
Chen and Groisman, 2013). In wild-type strains of UPEC,
elevated ferric iron, used as a proxy for cationic polypeptide
stress, activates both PmrA and QseB response regulators in a
PmrB-dependent manner, suggesting that in UPEC the PmrAB
and QseBC systems naturally interact (Guckes et al., 2017).

Understanding how these bacterial networks communicate
during infection will elucidate new avenues for targeting bacterial
virulence without applying selective pressure.

ADDITIONAL RESERVOIRS AND
RESEARCH MODELS

Zoonotic Potential for Urinary Tract
Infection
Zoonotic transmission of ExPECs from animals to humans
through the consumption of infected animal products is a
newly identified route of transmission (Nordstrom et al.,
2013). In addition to the typical, well-known ExPEC routes
of transmission, recent studies have suggested the acquisition
of an ExPEC infection through consumption of contaminated
food products. One such example is the zoonotic potential of
foodborne UTIs (FUTIs) in humans. A study published in 2015
shows that 129 out of 282 E. coli isolates sequence-typed as
ExPEC strains. Status was determined by isolates containing 2 or
more of the following ExPEC-associated genes: adhesins (afaE8,
bmaE, fimH, gafD, hra, papA, papC, papEF, papG, sfa, and/or
focDE, sfaS), toxins (cdtB, cnf1, astA, hlyA, hlF, pic, tsh, sat),
siderophores (fyuA, ireA, iroN, iutA), protectins (cvaC, iss, kpsM
K1, K2, and/or K100, kfiC K5, rfc, traT), and miscellaneous genes
typically associated with extraintestinal E. coli (H7 fliC, ibeA,
ompT, malX, usp; Mitchell et al., 2015). The mcr-1 gene has also
been isolated from E. coli found in pigs and chicken raised for
retail meat consumption (Liu et al., 2016). Increased antibiotic
use in feed or antibiotic misuse in treating bacterial disease
in farm animals will increase the likelihood of transmission of
antibiotic resistant E. coli. While not harmful in the human
intestine, these ExPECs may cause subsequent infections if or
when they enter different niches.

Murine Model
Small rodents have been used as models for neonatal meningitis
(Kim et al., 1992; Mittal et al., 2011; Wijetunge et al., 2014), as
well as UTIs (Yasuda et al., 1994; Kao et al., 1997; Hung et al.,
2009; Hannan et al., 2012). In the meningitis model, 3-day old
mice or 5-day old rats are orally inoculated with bacteria and
are then followed over time (Mittal et al., 2010; Lemaître et al.,
2014). In these models, animals become increasingly lethargic
and show clinical signs of systemic infection, such as weight
loss and behavioral abnormalities (Mushtaq et al., 2004). UTI
models use 7–9 week old female mice, which are transurethrally
inoculated with UPEC and followed over time (Hung et al.,
2009). Murine models have been used to track the acute stages
of UTI, using colony-forming unit (CFU) analyses, microscopy
and immunological analyses (Hung et al., 2009; O’Brien et al.,
2016); sub-acute stages and multi-strain infections (Alteri et al.,
2015); or chronic, recurrent or catheter-associated phenotypes
(Mysorekar and Hultgren, 2006; Hannan et al., 2010; Guiton
et al., 2012). Studies have also used 7–8 week or older female mice
as a menopause model to study UPEC infections (Wang et al.,
2013; Kline et al., 2014).
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CONCLUDING REMARKS

While TCSs are not the only sensory mechanism in bacteria, they
provide a great infrastructure for signal detection and bacterial
response. Combined with other signal detection mechanisms,
TCSs modulate differential gene expression in response to the
microenvironment surrounding the bacteria. The expanding
genomic and transcriptomic/proteomic data are demonstrating a
striking diversity in the extent and the kinetics of virulence factor
expression, even among different strains of the same ExPEC
pathotype. This is partly due to additional genetic elements
that may impact the expression, abundance, or activity of a
particular signaling system. For example, while epinephrine has
been shown to serve as an activating signal for EHEC QseBC
system (Clarke et al., 2006), the UPEC QseBC TCS does not
respond to epinephrine, but becomes engaged in response to
PmrAB activation via ferric iron (Guckes et al., 2013, 2017).
Combined with the different stresses encountered in a niche-
specific manner, these differences may be a function of different
genetic elements between the GI and ExPEC pathotypes. Slight
nuances in signaling between or within strains can alter the
pathogenesis. Future studies may need to look at how strains that
contain certain combinations of virulence factors are regulated
and behave in vivo. Understanding the genetic profile and

mechanisms of infection will help to generate anti-virulence
therapeutics that do not kill bacteria, but rather re-wire their
expression, allowing their recognition and elimination by host
immune defenses.
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