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Abstract: The application of artificial intelligence techniques to wearable sensor data may facilitate
accurate analysis outside of controlled laboratory settings—the holy grail for gait clinicians and
sports scientists looking to bridge the lab to field divide. Using these techniques, parameters that
are difficult to directly measure in-the-wild, may be predicted using surrogate lower resolution
inputs. One example is the prediction of joint kinematics and kinetics based on inputs from inertial
measurement unit (IMU) sensors. Despite increased research, there is a paucity of information
examining the most suitable artificial neural network (ANN) for predicting gait kinematics and
kinetics from IMUs. This paper compares the performance of three commonly employed ANNs
used to predict gait kinematics and kinetics: multilayer perceptron (MLP); long short-term memory
(LSTM); and convolutional neural networks (CNN). Overall high correlations between ground truth
and predicted kinematic and kinetic data were found across all investigated ANNs. However, the
optimal ANN should be based on the prediction task and the intended use-case application. For the
prediction of joint angles, CNNs appear favourable, however these ANNs do not show an advantage
over an MLP network for the prediction of joint moments. If real-time joint angle and joint moment
prediction is desirable an LSTM network should be utilised.

Keywords: machine learning; wearable sensors; joint kinematics; joint kinetics

1. Introduction

Inertial measurement unit (IMU) sensors are gaining traction as a clinical gait analysis
tool due to their improved accuracy, feasibility, ease-of-use, and importantly, applicability
outside of the laboratory environment [1,2]. A meta-analysis of inertial sensor based gait
analysis research concluded limited evidence in their application for determining joint
kinematics, especially in non-sagittal (flexion-extension) motion [3]. Traditional biomechanical
modelling methods developed using gold-standard three-dimensional (3D) motion capture
marker data require the user to establish an underlying anatomical model [4]. To do this using
IMU sensors, it is necessary to determine the sensor orientation with respect to the segment
orientation in a global reference system (sensor-to-segment alignment). A variety of meth-
ods can be adopted for this purpose, all of which are dependent on sensor fusion algorithms

Sensors 2021, 21, 4535. https://doi.org/10.3390/s21134535 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6624-2895
https://orcid.org/0000-0002-6401-4597
https://orcid.org/0000-0001-7893-6229
https://orcid.org/0000-0002-8866-0913
https://doi.org/10.3390/s21134535
https://doi.org/10.3390/s21134535
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134535
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134535?type=check_update&version=2


Sensors 2021, 21, 4535 2 of 14

and determining the initial sensor-to-segment alignment via the implementation of calibra-
tion postures or functional movements that the participant must execute [5]. Acceptable
levels of within- and between-participant, and within- and between-tester repeatability,
can only be achieved with appropriate sensor fusion algorithm application and accurate
and reliable calibration procedures [6–8]. A limited number of papers have attempted to
directly estimate joint moments and ground reaction forces (GRF) using inertial sensors,
with efforts to predict GRFs limited in accuracy and constrained to predictions of vertical
component or peak values only. The direct determination of GRFs based on Newton’s
equations is challenging as their solution is indeterminate during the double support phase.
The sensors provide the acceleration of segments or the body’s centre of mass (COM) (if
they are attached close to the COM) which can be used as a surrogate measure of force
during the single support phase, however more advanced algorithms are required for the
determination of the GRF during the double support phase. A variety of methods have
been proposed for this purpose, and reviewed by Ancillao et al. [9]. To overcome accuracy
limitations and the restricted subsets of parameters that can be determined, researchers
have focused on applying machine learning methods to improve the prediction of GRFs,
joint angles and joint moments [2,10–15], with initial efforts focused on predicting smaller
subsets of data, such as single GRF and joint moment components [10–12], or in the case
of Stetter et al. [13] by predicting sagittal and frontal plane moments in isolation. Very re-
cently gait researchers have trained machine learning models to predict all component
joint angles [14,15] and moments across all lower limb joints [14].

ANNs learn connections between given (IMU data) input and target data (e.g., joint
kinematics/kinetics). For training purposes, datasets need to contain IMU data (inputs)
and 3D marker motion capture data (targets), so the target data for the ANN model is
anatomically standardised, a requirement for gold-standard biomechanical models [4].
Subsequently, the trained model can be used to predict the target parameters, hence only
inertial sensors are required. On the downside, ANN models can only predict relationships
they have learned during the training process. This means, if an ANN has been trained
on IMU data collected with a specified sensor-to-segment alignment, it will only predict
accurate joint kinematics/kinetics when the alignment in new data is replicated. To over-
come this, a large variance in IMU sensor-to-segment alignment in the training dataset
is necessary. In addition to the requirement of an adequate dataset, the choice of ANN
model is important. Three different classes (and hybrids) of ANNs have been been used
in biomechanics with each having advantages and disadvantages as summarily outlined
below. For a more detailed explanation of ANNs please refer to Goodfellow et al. [16].

• Multilayer perceptron (MLP) networks are the simplest and classical class of ANNs.
They are flexible and are used to learn relationships between inputs and outputs
for classification or regression tasks. By flattening image or time series data, MLP
networks can be used to process time-sequence input data. They are easy to train but
are limited to time-normalised data and are computationally expensive. They provide
baseline information for the predictability of all types of data. IMU sensor data has
been used as input into this type of ANN for the prediction of joint angles and joint
moments [12–14,17].

• Convolutional Neural Networks (CNNs) were originally designed to map image data
to a single output variable, a classification task. They learn from raw image data by
exploiting correlations between local pixels. They work especially well on data with a
spatial relationship, and due to the fact an ordered relationship can also be found in
time series data, this makes CNNs suitable for time series prediction of human motion.
CNNs have been used with inertial sensor data inputs to predict joint kinematics and
kinetics [11,15]. Different open-access models have been trained on large datasets for
image classification previously, enabling the use of transfer learning or fine tuning of
a model instead of training a CNN from scratch. To be able to use models trained on
large image databases and apply transfer learning rather than training from scratch,
Johnson et al. [18,19] transformed motion time sequences to images for the prediction
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of three dimensional knee joint moments and ground reaction force sequences based
on motion capture data inputs.

• Recurrent Neural Networks, such as Long Short-Term Memory (LSTM) networks,
were designed for sequence prediction problems. They make use of time dependencies
in data which explains their success in natural language processing. Hence, they are
also convenient for tasks involving the prediction of motion sequences. Unfortunately,
LSTM networks are intensive to train and require large datasets, something rarely
available in biomechanics [2]. Using inertial sensor data as inputs, LSTM networks
have also been previously used to predict joint angles and moments [15,17,20].

No previous study has recommended which class of ANN is optimal for the prediction
of biomechanical time series data. This paper aims to compare the prediction accuracy
of three ANNs by applying the proposed technique to the same source dataset. For this
purpose, inertial sensor data—acceleration and angular rate—is simulated based on marker
trajectories captured using a 3D retro-reflective camera-based motion analysis set-up.
This data is used to leverage a sparse dataset of level walking trials using inertial sensors.
Three dimensional angles and moments of the hip, knee and ankle joint are predicted
based on the inertial sensor data from the pelvis, and bilateral thighs and shanks. An MLP,
LSTM and CNN is trained for the prediction task. Since a rather large dataset is available,
the CNN is trained from scratch and a pretrained CNN is used. Based on the results of
previous research, we expect the (pretrained) CNN to outperform the MLP and LSTM
neural networks.

2. Materials and Methods
2.1. Dataset

The dataset comprised aggregated level walking data, sourced from a series of inde-
pendent studies [14,21–23]. All data was sourced by the German Sport University Cologne
and was approved by the University Ethics Committee (approval no. 025/2014, 010/2017,
154/2018, 133/2019) with all participants providing informed written consent. The dataset
comprised 116 participants (48 female, 37.6 ± 17.1 years, 72.5 ± 11.9 kg, 1.73 ± 0.09 m).
Each participant executed level walking trials at self-selected speeds ranging from 0.8 to
2.0 m s−1. All participants’ motion was recorded using an opto-electronic motion capture
system (VICON®, MX F40, Oxford, UK, 100–125 Hz) and two force plates (Kistler Instru-
mente AG, Winterthur, Switzerland, 1000 Hz). Twenty-eight retro-reflective markers were
attached to defined bony landmarks of the lower body to create a rigid body model [24].
Concurrent with the optical motion capture, 23 of the 116 participants were additionally fit-
ted with five custom inertial sensors to record the linear acceleration and angular rate of the
pelvis, and bilateral thigh and shank (100 Hz, TinyCircuits, Akron, OH, USA). An Android
based custom application collected the IMU data on a smartphone [14,23].

2.2. Data Processing

The optical motion capture data wee filtered using a zero-lag fourth-order low-pass
Butterworth filter with a cut-off frequency of 6 Hz. The 3D joint moments of the hip, knee,
and ankle joint were calculated using the AnyBody®Modeling System (Version 6.0, Any-
Body Technology, Aalborg, Denmark) and normalised to each participant’s body weight
and height. The joint angles were calculated using a custom MATLAB script based on the
recommendations of the International Society of Biomechanics [4,24,25]. IMU acceleration
and angular rate was filtered using a zero-lag first-order low-pass Butterworth filter with a
cut-off frequency of 5 Hz. Both inertial and motion capture data were synchronised using
an optimisation approach [14].

Inertial sensor data were simulated based on marker trajectories placed on the pelvis,
thighs and shanks in a multi-step process. In step one, the segment coordinate systems of
the hip, knee and ankle joints are determined [4] as quaternions. These coordinate systems
are translated and rotated in the subsequent step to match sensor positions and initial orien-
tations used during the data collection using an optimisation approach. The dataset used in
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this study contains ground-truth inertial sensor data from 23 participants. To ensure a wide
variability in the range of synthesised IMU data, the initial position and orientation were
optimised to match each participant’s ground truth sensor position and orientation. Thus,
all 23 slightly different positions and orientations of the ground truth data were simulated
for each participant in the motion capture dataset. This resulted in data augmentation
by a factor of 23. In a final step, the quaternion derivative was calculated to determine
the angular rate, and the second derivative of the simulated sensor’s origin was used
to calculate the acceleration of the simulated sensor. For a more detailed description of
the simulation refer to Mundt et al. [14]. The simulated data comprised 3D acceleration
and 3D angular rate of five sensors—an input matrix containing 30 time series features.
The output matrix (joint angles or joint moments of the bilateral hip, knee and ankle joint)
contained 18 time series features. All data was time normalised to stance (kinetics) or step
(kinematics) phases resulting in time series of 101 data points.

The multiple ANNs required different data input configurations. To apply an MLP,
the motion sequences needed to be flattened as this type of ANN cannot model time
dependencies. During the flattening process the third dimension (time) was removed from
the data by concatenating the time series. This results in a two-dimensional input and
output matrix of size [number of samples × number of features] with numbers of features
being (number of input/output features × time steps). As an LSTM learns time dependen-
cies, this dimension needs to be maintained in the input and output data which results
in a three-dimensional input and output matrix of size [number of samples × number of
input/output features × time steps]. Conversely, CNNs are primarily used for classifying
image data. To be adopted for our purpose, the motion sequences were transformed to
RGB images with each channel displaying one direction of the sensor signals. The resulting
matrix is interpolated to match the size of previously used images. The four dimensional
input matrix is of size [number of samples × 224 × 224 × 3] and the two-dimensional
output matrix of size [number of samples × (number of output features × time steps)].
For further information on the transformation of motion sequences to images please refer
to Johnson et al. [18,19].

A sanity check was performed on all input and output features to avoid low prediction
accuracy attributed to low data quality. The simulation process and the optimisation
approach to synchronise the time sequences might result in discrepancies in the data.
These sequences were excluded from the dataset by only using those samples within a 95%
confidence interval.

2.3. Neural Network Application

The process of training the ANN was divided into two steps: in the first, the best
hyperparameters for the models were determined using simulated inertial sensor data (i.e.,
synthesised IMU data) from the participants who had 3D motion capture data but did not
have recorded (ground-truth) inertial sensor data. The dataset was split into a training and
validation set while the ground truth IMU data was used as the test set. To determine the
best hyperparameters for the multilayer perceptron (MLP), the long short-term memory
(LSTM) and the final two dense layers of the convolutional neural network (CNN) an
automated hyperband search [20,26] was executed (Figure 1).

In the second step, a leave-one-subject-out (LOSO) validation was performed. All sim-
ulated IMU data plus all ground-truth IMU data, excluding the trials of one participant,
were used to train the ANN using the optimised hyperparameter set. Hence, no validation
set was necessary. The trials from the participant left out in the training process were used
then as test set (Figure 2).

The MLP and LSTM were trained from scratch. The CNN was trained from scratch and
transfer learning was applied. For this purpose, the weights of the convolutional layers of a
publicly available pretrained caffenet mode [https://github.com/BVLC/caffe/tree/master/
models/bvlc_reference_caffenet, accessed on 1 October 2020] were applied (Figure 3).

https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
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Training set: 93 subjects, 2,000 samples (augmented by a factor of 23 (46,000 samples))
Test set: 23 subjects, 3,128 samples
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Inputs: 
flattened sequence (3,030 features)
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flattened sequence (1,818 features)
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sequence (30 features x 101 frames)
Outputs: 
sequence (18 features x 101 frames)
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RGB image (224x224x3 features) 
Outputs: 
flattened sequence (1,818 features)

Figure 1. Exemplar overview of the work flow for the determination of the kinematics hyperparameters. First, the dataset
consisting of 3D acceleration and 3D angular rate of five inertial sensors, and bilateral hip, knee and ankle joint 3D joint
angles is split into training and test sets. Different preprocessing steps are then undertaken to create appropriate input and
output data shapes for the training and testing of the three neural networks: MLP, LSTM and CNN.
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Training set: 93 subjects, 2,000 simulated samples (augmented by a factor of 23 (46,000 samples))  
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Figure 2. Overview of the work flow for the validation of the trained models. A leave-one-subject-out (LOSO) validation
exemplar is displayed for the kinematics and was performed using the optimised hyperparameters for the four different
models: MLP, LSTM, CNN and pretrained CNN. Based on this validation the model performance was assessed.
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Figure 3. Architecture of the applied convolutional neural network. The size of the dense layers was found during the
hyperband search and differs for the joint angle and joint moment prediction. For the pretrained model, the convolutional
and pooling layers were set to be non-trainable.

The caffenet model files were transformed to be compatible with the Tensorflow frame-
work used throughout this study [27]. To use the pretrained weights, the convolutional
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and pooling layers of the ANN were defined as non-trainable, hence only the dense layers’
weights were adapted during the training process.

To compare the predictions of the different ANNs, the root-mean-square error nor-
malised to the range of the data (nRMSE) and the correlation coefficient were analysed.
The evaluation of the nRMSE rather than the root-mean-square error allows for the compar-
ison between kinematic and kinetic predictions, in addition to direct comparisons between
different motion planes. As walking gait comprises small ranges of motion in the non-
sagittal motion planes, small deviations in joint angle prediction can lead to large nRMSE
values. Joint moments were normalised to body weight and height and consequently
between motion plane differences were less pronounced. The correlation coefficient does
not take differences in range into consideration but cannot account for offsets between
predicted and measured time series. Therefore, correlation coefficients and nRMSE values
are presented to provide a comprehensive overview of model performance. The results are
presented for all data within a 95% confidence interval.

3. Results

The optimal results for the architecture and hyperparameter search for all models are
presented in Table 1. It was ensured that none of the found parameters equal the upper or
lower boundaries of the search.

Table 1. Neural Network architectures and hyperparameters.

Joint Angles
ANN Layers Learning Rate Dropout Activation

MLP 6000–4000 0.0003 0.5 relu
LSTM 32–32 0.0003 0.7 tanh
CNN 3000–6000 0.00003 0.4 relu

Joint Moments
ANN Layers Learning Rate Dropout Activation

MLP 3000–1000 0.0003 0.5 relu
LSTM 128–1024 0.0003 0.4 tanh
CNN 2000–4000 0.0001 0.4 relu

Using these architectures and hyperparameters, all ANNs were trained for 40 epochs.
The training and validation loss were a performance measure for ANNs and described
the mean absolute error between the ground truth and predicted values for each epoch of
the training process. The training loss decreased throughout the whole training process.
If the model perfectly learned the features in the training set, it would tend towards zero.
The validation loss was an indicator for overfitting: it increased at some point during
the training, when the ANN started learning features that were specific in the training
data but not in the validation data. To find the optimum number of training epochs both
training and validation loss needed to be considered [16]. To avoid overfitting and a reduced
generalisability of the model, the training was stopped as soon as the validation loss did
not decrease any further. No overfitting was observed during the training process for any
ANN (Figures 4 and 5). For the joint kinematics, the final loss of the LSTM network was
distinctly higher than for the other ANN. The pretrained CNN performed slightly worse
than the MLP and CNN, which returned similar loss values. For the joint kinetics, the final
loss was very similar for the MLP, LSTM and pretrained CNN, while the CNN loss was
even smaller.
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Figure 4. Loss curve of the joint angle training process of an exemplary LOSO validation for all ANNs. The training loss is
displayed by a dashed line, while the validation loss is displayed by a solid line.
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Figure 5. Loss curve of the joint moment training process of an exemplary LOSO validation for all ANNs. The training loss
is displayed by a dashed line, while the validation loss is displayed by a solid line.

To compare the performance of the different ANNs on the same task, the distribution
of the nRMSE is displayed in joint kinematic (Figure 6) and joint kinetic (Figure 7) violin
plots. While the distribution of the nRMSE was similar for the kinetics prediction, differ-
ences between the LSTM and MLP model violin shapes were observed for the kinematic
prediction. This was to be expected given the higher final loss value reported for the LSTM.

The MLP, as the simplest ANN, was considered the baseline network for performance
comparisons. Compared with the MLP, the LSTM performed worse overall for the pre-
diction of joint angles (−2.70%). The LSTM performed better than the MLP in predicting
hip flexion-extension and adduction-abduction angles, and knee flexion-extension an-
gles. However, prediction performance was worse for hip internal-external rotation, knee
adduction-abduction and internal-external rotation angles, and for all ankle joint angles.
A CNN trained from-scratch model resulted in a consistent overall improvement in predic-
tion (11.89%) across all lower limb joint angles (hip, knee and ankle). A pretrained CNN
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resulted in an overall worse performance when compared to the prediction performance
of the CNN trained from scratch (−3.76%). Only hip and knee internal-external rotation
angle predictions were improved. All other pretrained CNN joint angle predictions were
poorer than the CNN trained from scratch (Table 2, Figure 6).
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Figure 6. Distribution of the nRMSE values for the joint angle prediction.

When considering joint kinetic prediction ANN performance, overall the LSTM per-
formed slightly worse (−1.73%) than the MLP network. On closer examination, the LSTM
outperformed the MLP on the prediction of hip flexion-extension and adduction-abduction
moments, knee adduction-abduction moments and ankle plantar-dorsiflexion moments.
The CNN overall performed nearly ten percent better than the MLP (9.63%). Only for the
prediction of ankle inversion-eversion moments the CNN did not outperform the MLP.
Overall, using a pretrained CNN did not result in a better joint moment prediction per-
formance than a CNN trained from scratch (−2.80%), with only ankle inversion-eversion
moments using a pretrained CNN reporting superior prediction results (Table 2, Figure 7).
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Table 2. Comparison of the different neural networks. Values display the difference in nRMSE values. Positive values show
an improvement compared to the baseline (MLP or CNN from scratch).

Joint Angles

LSTM vs. MLP [%] CNN vs. MLP [%] Pretrained CNN vs. CNN [%]

flex/ext 20.25 35.57 −5.79
hip add/abd 7.47 13.43 −4.81

int/ext rot −25.20 2.80 5.40
flex/ext 11.41 27.70 −6.38

knee add/abd −8.55 5.31 −9.50
int/ext rot −14.03 4.18 1.21
plantar−dorsiflex −2.38 12.53 −9.88

ankle inv/ev −5.61 2.87 −3.03
int/ext rot −7.67 2.61 −1.08

Joint Moments

LSTM vs. MLP [%] CNN vs. MLP [%] Pretrained CNN vs. CNN [%]

flex/ext 4.13 20.64 −9.27
hip add/abd 3.07 17.29 −1.83

int/ext rot −5.73 6.37 −2.07
flex/ext −10.49 5.59 −4.01

knee add/abd 0.18 12.17 −5.76
int/ext rot −1.81 7.89 −2.39
plantar−dorsiflex 7.30 13.90 −0.83

ankle inv/ev −7.39 −0.62 4.92
int/ext rot −4.79 3.37 −3.99
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Figure 7. Cont.
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Figure 7. Distribution of the joint moment prediction RMSE values.

The analysis of single LOSO validations, as well as the median correlation coefficients
for all joint angles are presented in Figure 8 and for joint moments in Figure 9. Joint angle
prediction was more difficult than joint moment prediction for all the ANNs with mean
model correlation coefficients ranging between 0.788 and 0.874. Although flexion-extension
angles were predicted with high correlations (>0.911), knee adduction-abduction angles
presented a major challenge for all ANNs, resulting in correlation coefficients ranging be-
tween 0.389 to 0.625. A huge variance was found between the single LOSO validation runs
and, generally, all ANNs showed similar variance pattern trends. The trained from-scratch
CNN outperformed all other ANNs, the pretrained CNN and MLP performed equally well,
while the LSTM achieved the lowest correlation coefficient. The average combined model
joint moment correlations exceeded 0.939. Only knee internal-external rotation and ankle
inversion-eversion moments returned correlations below 0.8 for single LOSO validations,
a trend observed across all ANN prediction results. Generally, the performance of the
from-scratch CNN, the pretrained CNN and the MLP were relatively similar, while the
LSTM was the worst performing ANN when LOSO validation was applied.
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Figure 8. Median and single LOSO validation correlation coefficients for the prediction of joint angles.



Sensors 2021, 21, 4535 11 of 14

co
rr

el
at

io
n 

co
ef

fi
ci

en
t

CNN CNN pretrained LSTM MLP

plantar/dorsiflex inv/ev int/ext rot

ankle

1.0

0.8

0.6

knee

1.0

0.8

0.6
flex/ext abd/add int/ext rot

hip

1.0

0.8

0.6
flex/ext abd/add int/ext rot

Figure 9. Median and single LOSO validation results of the correlation coefficient for the prediction of joint moments.

4. Discussion

This paper aimed to provide insight into the performance of different ANNs when
applied to the task of predicting joint angles and joint moments based on acceleration and
angular rate signals of the lower limbs. The dataset used was augmented by simulated
inertial data based on gold-standard optical motion capture 3D data. The adoption of this
approach meant that the simulated data enhanced the generalisability of the training set to
suitably accommodate all of the measured IMU data. This resulted in a training dataset of
close to 50,000 samples of more than 100 participants. The prediction was evaluated using
directly recorded inertial sensor data–acceleration and angular rate–using a LOSO cross-
validation. In previous studies it has been shown that predictions from models trained and
tested using simulated data overestimate prediction accuracy [17], but simulated data can
be used to support predictions based on measured data [14].

In contrast to previous work by the current authors [14,17], the model architecture
and hyperparameter search was automated for improved time-efficiency. This resulted in
the identification of different architectures and hyperparameters than adopted previously
using a manual approach analysing the same task and dataset [14]. Previously published
joint angle prediction correlations were slightly higher (0.85 [14] vs. 0.832 current) and joint
moment prediction lower (0.95 [14] vs. 0.962 current) than those observed in the present
work. Mundt et al. [17,28] previously published LSTM networks that used simulated
inertial sensor data or joint angle data as inputs to predict joint moments. This previously
published data returned lower correlations than the comparator MLP network, a finding
consistent with the results of the present study. However, LSTM neural networks excel
in dealing with data comprising arbitrary sequence lengths. In order to ensure the tested
ANNs received the exactly same data in this study, input data was required to be time-
normalised, despite it being previously shown that this leads to an underestimation of the
prediction capabilities of an LSTM network [20].

Johnson et al. [29] applied transfer-learning to the same CNN used in this study,
[https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet, accessed on
1 October 2020] to predict the three dimensional knee joint moments based on 3D retro-
reflective marker trajectories. When compared with the results from the present study,
they reported very high correlations for knee flexion-extension and adduction-abduction
joint moments (0.98 [29] vs. 0.96 current, 0.96 [29] vs. 0.95 current) but a lower correlation
for knee internal-external rotation (0.68 [29] vs. 0.91 current). The CNN model in the
present study was trained from scratch and transfer-learning was used. During this process

https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
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the weights of the convolutional part of the ANN trained for an image classification task
were used, while the final dense layers were replaced by trainable layers of the optimum
size found during the automated search. The CNN trained from scratch joint moment
correlation coefficients were similar to the pretrained CNN and the MLP network. This in-
dicates that the final dense layers of the model are more important for the prediction task
than the convolutional structures. For the prediction of joint angles, the CNN trained
from scratch outperformed the pretrained CNN, and both CNNs performed better than
the MLP. Contrary to the joint moment prediction this may show that the convolutional
layers are able to extract the relevant features from the input images, allowing for overall
better performance. One possible explanation for this result is the variability in the initial
start values of the joint angles. While joint moments time-normalised to the stance phase
will always display an initial value very close to zero, time normalised joint angle data
will have varying initial values at foot contact–the commencement of the stance phase.
This behaviour cannot be captured well by MLP networks (and LSTM networks), hence
the CNN’s strength in feature extraction is likely exploited to overcome this problem.

The LOSO validation correlation coefficients show high variability. This variability
was consistently observed in all tested ANNs. Possible explanations include that specific
participants show a movement pattern that substantially digresses from the majority of
other participants, and consequently this motion was not well covered by the training set.
A second explanation may be that specific participant data is of lower quality. To mitigate
against this an accuracy risk attributed to low quality input data, an automated data sanity
check was performed during preprocessing and only those steps within a 95% confidence
interval were evaluated. This sanity check did exclude faulty sequences but may have also
served to reduce the variability in the dataset.

All ANNs evaluated in this study show very good overall results for the prediction of
both joint kinematics and kinetics. These results are encouraging given the prediction of
joint kinetics is of high relevance to gait practitioners and those looking to advance sports
biomechanics outside of the laboratory. Especially given the difficulty in predicting joint
kinetics, which are prone to significant error when directly estimated from inertial sensor
data in isolation (i.e., without using advanced analytics or machine learning techniques).
This study provides an overview of the applicability, advantages, and disadvantages, of
three commonly used neural networks, but cannot deliver a distinct recommendation of
which network to use for different datasets or applications. In future work, the applicability
of different ANNs on datasets of different tasks and different sizes should be analysed.
Additionally, the influence of filtering techniques on the inertial data should be evaluated.

5. Conclusions

For the dataset presented in this study the application of a CNN trained from scratch
returned the most favourable predictions. However, this requires a large dataset and
elaborate preprocessing steps to convert inertial sensor data to images. An MLP shows
similar or only slightly worse prediction capabilities, with significantly fewer preprocessing
stages. The performance of an LSTM was inferior but demands even less preprocessing and
facilitates near real-time application. This was the first study that applied three different
types of commonly used neural networks to the same dataset. The results showed that a
high prediction accuracy could be achieved with all three neural networks suggesting that
the dataset itself and the prediction task is more relevant than the neural network used.
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