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Abstract

Complex models of infectious diseases are used to understand the transmission dynamics of the 

disease, project the course of an epidemic, predict the effect of interventions and/or provide 

information for power calculations of community level intervention studies. However, there have 

been relatively few opportunities to rigorously evaluate the predictions of such models till now. 

Indeed, while there is a large literature on calibration (fitting model parameters) and validation 

(comparing model outputs to data) of complex models based on empirical data, the lack of 

uniformity in accepted criteria for such procedures for models of infectious diseases has led to 

simple procedures being prevalent for such steps. However, recently, several community level 

randomized trials of combination HIV intervention have been planned and/or initiated, and in 

each case, significant epidemic modeling efforts were conducted during trial planning which 

were integral to the design of these trials. The existence of these models and the (anticipated) 

availability of results from the related trials, provide a unique opportunity to evaluate the models 

and their usefulness in trial design. In this project, we outline a framework for evaluating the 

predictions of complex epidemiological models and describe experiments that can be used to test 

their predictions.
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1. Introduction

Complex nonlinear simulation models have been widely used in applied scientific 

disciplines, including the study of climate, geophysics, soil and air pollution, epidemiology, 
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ecology, and other fields (see for example Caswell, 1976; Guttorp and Walden, 1987; 

Sampson and Guttorp, 1999; Poole and Raftery, 2000). Different types of models are 

available for this purpose, including stochastic, agent-based and deterministic differential 

equation models, the choice of which must be suited to the question of interest (see Halloran 

et al., 2017). While stochastic and agent based models incorporate random variation adding 

individual interactions such as partnership formation/dissolution, differential equation 

models are typically simpler and run faster, and are quite useful for analyses that require 

multiple runs of the model.

These models have also dominated the field of epidemic modeling, especially in complex 

diseases like HIV/AIDS (Johnson and White, 2011). In HIV epidemiology, these complex, 

dynamic models of infectious disease are used to understand the transmission dynamics of 

the disease, to obtain estimates and short-term projections of HIV epidemics (see Stanecki 

et al., 2012; Dorrington et al., 2005), to predict the effect of interventions (Case et al., 

2018; de Montigny et al., 2018), to evaluate program implementation costs (Eaton et al., 

2014; Schwartlander et al., 2011), to interpret clinical trial results (Adamson et al., 2019; 

Dimitrov et al., 2019) and to provide information for power calculations of community level 

intervention studies (Hayes and Moulton, 2017). For example, the increase in availability of 

antiretroviral therapy (ART) to individuals with HIV (WHO, 2013; Johnson et al., 2013) has 

opened up questions about the trajectory of the epidemic in presence of ART, including the 

probability of, and the level of coverage necessary for, complete eradication of the disease. 

To answer these questions, several models have been proposed to quantify the short and long 

term consequences of widespread ART availability and use on HIV prevalence, incidence 

and mortality, and to assess the level of coverage of ART necessary to substantially reduce 

or eliminate HIV (Granich et al., 2009; Kretzschmar et al., 2013).

Validity of results from a model is greatly dependent on the accuracy of the model structure 

and the input parameters, so a key goal during model development is to quantify and reduce 

the uncertainty about the structure and select model parameters which reproduce available 

epidemic data, using all of the available sources of evidence. This step is called calibration, 

and it involves careful tuning of the model structure to epidemiological endpoints, informed 

by available knowledge in the literature, and establishes credibility of the model (Ramin 

and Arhonditsis, 2013). Another important step in epidemiological model building is model 

validation, which is defined as a set of methods that help assess a model’s performance in 

making predictions. There are different types of validation processes, including face validity 

(the extent to which a model and its assumptions correspond to the current science as judged 

by experts), internal validity (whether the model behaves as intended and has been properly 

implemented), cross validity (how the model behaves when calibrated to one part of the 

data and used to predict the other), and external validity (to compare the predicted outcomes 

to measurable results). Each type of validation has its own sets of methods, strengths, 

limitations, and best practices (see Eddy et al., 2012).

For a clinical trial that was conducted based on insights gained from a model(s) in the 

planning phase, it can be quite useful to check how accurately the model(s) predicted the 

outcomes of interest when the trial is over. This is a possible external validation step. It 

is also quite useful to see if any source of bias in the model can be re-accounted for, and 
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whether the model structure can be recalibrated to ensure its re-usability in the future (Eddy 

et al., 2012). The results of these analyses can help investigators determine applicability of 

the model in the public-health decision making process, and in planning of future trials.

In this article, we propose a framework for model comparison and evaluation based on 

observed data. To be precise, we are interested in external validation (will be called 

validation hereon) and re-calibration of a model, based on observed data. It is clear that 

the most powerful way to validate the prediction of a mathematical model is to record the 

model and its predictions in advance of new observations. Recently several community level 

randomized trials of combination HIV intervention have been planned and/or initiated (Boily 

et al., 2012). Significant epidemic modeling efforts were conducted during trial planning 

and became integral to the design of these trials. The existence of these models that have 

been designed to predict trial results in a specific setting, and the (anticipated) availability 

of results from those trials, provides a unique opportunity to evaluate those models and their 

usefulness in trial design through an external validation step. In this type of analysis, the 

goal is to test and potentially validate the model predictions of intervention with the trial 

results at the end of the trial. If the trial results are similar to the model predictions, then this 

validates the model for the trial in question, and the model can be used for further analyses 

with more confidence (Boily et al., 2012).

Interestingly, there have been relatively few such opportunities to rigorously evaluate the 

predictions of HIV epidemic models until now. Indeed, while there are multiple theoretical 

methods for calibration and external validation of complex models (see Bayarri et al., 2007; 

Kennedy and O’Hagan, 2001; Poole and Raftery, 2000), fairly simple procedures have been 

used for calibration and validation of models partially due to lack of substantial high quality, 

population-level data on HIV incidence, HIV prevalence and sexual behavior. The main goal 

of this article is to develop a step-by-step methodological framework for model validation, 

comparison and selection, when detailed data are available. Our approach takes into account 

the key uncertainties in model parameters, allowing for subsequent recalibration of the 

model, if needed and/or possible. An additional objective is to determine the extent to 

which external data can be used to reject a complex epidemiological model. The key 

components of the approach include the use of Gaussian process response-surface method, 

and introduction of Bayesian representations of model bias and uncertainty, following the 

works of Bayarri et al. (2007), Kennedy and O’Hagan (2001) and Kennedy et al. (2002).

In Section 2, we formulate the problem and propose our methodological framework for 

validation of a dynamic epidemic model based on the Bayesian validation framework of 

Bayarri et al. (2007). Additionally, we propose a way to make decisions regarding model 

fit based on Bayesian credible intervals. In Section 3, we describe a mathematical model 

(MW) of a heterosexual HIV epidemic originally considered in Woods et al. (2018) to 

investigate how the proportion of early transmission affects the impact of ART on reducing 

HIV incidence. The model includes stages of HIV infection, flexible sexual mixing, and 

changes in risk behavior over the epidemic, and was calibrated to HIV prevalence data from 

South Africa. Next, we apply the proposed methodology to evaluate the performance of this 

model under departures of different model assumptions. In other words, we try to falsify this 

model under null and alternative conditions, and note how it performs in such situations. In 
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Section 4, we discuss the implications of our results. Some additional results are provided in 

Appendix.

2. Methods

2.1. Model framework

2.1.1. Epidemiological model definition—In this article, we consider 

epidemiological models of the form yM = M(x, θ). Here yM ∈ ΩM, the model output, 

typically emulates a population level outcome of interest, such as HIV prevalence. Each 

entry in yM represent the projected outcome at different times within different demographics 

or different risk subgroups. The model M is a complex non-linear function, typically defined 

as a solution to a system of ordinary differential equations, which translates a vector of 

community-specific parameters x ∈ Ωx and a vector of global parameters θ ∈ Ωθ into the 

outcome yM.

Throughout this paper a community will be any population within which an epidemic can be 

modeled independently from other communities. A community may be all individuals in a 

given city or region or may only be a subset, such as people who inject drugs, within which 

the epidemic may be evolving independently. A community may be divided into several 

interconnected sub-populations, for example divided by demography.

The community-specific parameters x (a vector of size px) denote information about 

attributes of a given community within which we wish to calculate the model output yM. 

In the context of HIV prevention trials, y can be the projected HIV prevalence by gender 

and age group, and x might include community-specific information about level of ART 

usage, initial testing coverage (that differ by subgroups or communities), HIV prevalence 

for that site at some previous time point. The joint spaces Ωx and ΩM together represent 

the granularity of the model, the class of all possible sub-populations and communities for 

which the model M, after calibration, can predict the population-level outcome separately.

The ‘global’ parameters θ (of size pθ) describe the part of the model that is universal, or 

fixed across different communities. For example, in the context of a HIV trial, θ contain 

various biologic, behavioral or intervention characteristics (e.g., parameters for intervention 

efficacy, transmission risk per act, sexual mixing, background level of male circumcision 

etc.) which are shared between community-specific simulations.

The components of yM, x, and θ depend on the modeling context and intended granularity. 

For example, it may be crucial for a model on HIV transmission to predict the response 

separately for men who have sex with men (MSMs) and transgender women (TGW), 

two crucial sub-populations at risk for the disease. However that distinction may be 

inconsequential in the context of some other disease (say cancer), and a universal response 

may be preferred under a model aiming to predict the disease for these sub-populations. We 

define the ‘model structure’ of M to be the three spaces Ωx, Ωθ, and ΩM.

2.1.2. Sources of error in the model—In principle, if x for a given sub-population 

and θ are known precisely, and the model is exactly ‘true’, then yM or M(x, θ) should be 
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able to predict the underlying truth without error. In practice, however, it is quite likely that 

there will be uncertainty regarding the true values of x and θ, and the model structure M is 

only a useful approximation of the underlying mechanics. Ideally, we would assess a model 

M by comparing the modeled epidemiological value yM with the true value (denoted by yR), 

though this may not be possible, as the reality will have to be estimated with error from a 

sample of the population. All these sources of uncertainties must be considered in assessing 

the model predictions.

2.1.3. Field data vs. reality—Suppose we are interested in evaluating our model for 

K different subgroups, stratified under one or more baseline/longitudinal characteristics or 

communities, based on model projections at a given time during the study and the true 

outcome at that time. As mentioned before, we assume that the outcome is not observed 

directly, but it can be measured without bias. Let yR,k be the true outcome for community k, 

k = 1,…,K, at the specified time, and assume that we observe yF,k, the ‘field data’ for this 

community at that time, as reality measured with error, that is,

yF , k = yR, k + ϵF(yR, k), (1)

where ϵF (yR,k) are mean 0 errors with variance 1∕λF (yR,k), for a precision process λF (·), 

which may or may not be explicitly known (we discuss this in details in Section 2.3.1). 

Further distributional assumptions can be made on ϵF (yR,k) under specific problem setups, 

for example, one operational assumption often used in validation problems is that ϵF (yR,k)’s 

are independent normal random errors (see Bayarri et al., 2007). However, one might have 

to consider transformations of the responses yR,k and yF,k to enable easier distributional 

assumptions and interpretation of the error function ϵF (·) in Eq. (1).

Note: Note that although yF and yM can be evaluated at several times during the study, we 

consider only one fixed time point here to compare the model projections with observed 

data, and as a result to simplify notations, we have dropped the suffix t from yF, yM as well 

as yR.

2.1.4. Induced prior for yM—Information about different parameters of a model are 

often available from previously conducted trials or relevant observational studies in the 

literature. Knowledge from these various sources are combined for the quantification of 

the community-specific and global parameters, and the model is then carefully calibrated, 

resulting in well-informed prior distributions for these quantities. Thus, in this article, we 

assume that Xk,1 the community-specific parameters for the kth subgroup, and Θ, the 

global parameter vector, are random variables with distributions GXk( ⋅ ; ηXk) and ℋΘ ⋅ ; ηΘ

respectively, and with underlying hyperparameters ηXk and ηΘ. These distributions quantify 

the level of uncertainties about the different model inputs, the community-specific and 

global parameters. Also note, that the distributions of Xk and Θ jointly induce a distribution, 

denoted by ℱXk, Θ
M , on the random model function M(Xk,Θ).

1We will use Xk, Θ etc to denote Random Variables, while xk and θ will be reserved to denote observed realizations of such, and/or to 
denote fixed quantities.
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Note: Simplification of the above setup is possible too, for example, if information about 

Xk is available through high quality estimates xk, we can assume that the true underlying 

community-specific parameter set is known apriori, and Xk = xk. Similarly, information 

about ℋΘ can be available only as scalars, Θ = θ , that are available as estimates/calibrated 

values for the ‘true’ structural parameters of the model. In such cases, we may choose to use 

these scalars directly as ‘true’ (or best known) values in the analysis.

2.2. Model discrepancy

2.2.1. The discrepancy function, DM—Statistical assessment of a model prediction is 

based on the difference between the true value yR and the model prediction. To that effect, 

we define the discrepancy function DM, which we will use throughout this article. For a 

given model M with an instance of community-specific parameters x and global parameters 

θ, the discrepancy between the model output and the relevant response process y is given as,

DM(y, x, θ) = y − M(x, θ) . (2)

In our problem setup, as previously mentioned in Section 2.1.4, Xk, the community-specific 

parameters for the kth subgroup, and Θ, the global parameter vector, are random variables, 

while the true response for is yR,k. Hence, the ‘random’ discrepancy function for subgroup k 
becomes DM(yR,k,Xk,Θ) = yR,k − M(Xk,Θ). We can analyze the distribution of DM(yR,k) 

for k = 1,…,K (for each of the different subgroups/communities) to evaluate model 

performance. The variation in DM(yR,k) between these communities can be useful in 

identifying areas where the model has failed to adequately capture the effect of factors 

on the response.

Note: Although we are interested in learning about DM(yR,k), in the absence of concrete 

knowledge about yR, we typically have to rely on DM(yF,k) to infer about this quantity.

2.2.2. A Bayesian approach to evaluate DM—Since DM(Xk,Θ) is a function of the 

random variables Xk and Θ, for which we have distributions of the form of GXk( ⋅ ; ηXk)

and ℋΘ ⋅ ; ηΘ , one trivial way to obtain and analyze the distribution of DM is through the 

transformation DM(Xk,Θ) = yR,k − M(Xk,Θ) on the induced distribution ℱXk, Θ
M . Although 

the true response yR,k is typically unknown, one can replace yR,k by its observed estimate 

yF,k. Although the resultant distribution is well-defined, it can only be used to assess the 

model in its current state. However, our interests may also lie in identifying the possible 

sources of error in the model, and if possible, recalibrate these faulty parts, based on 

observed data, to improve model performance.

Hence, using a Bayesian analysis described in the next section (Section 2.3), we propose 

to estimate the posterior distribution of the community-specific parameters Xk, global 

parameters Θ, and the discrepancy function DM(Xk,Θ), to assess the model for community 

k and identify its sources of discrepancy. Ideally, the distribution of DM should be centered 

around zero with small variance. We will show how to quantitatively evaluate this property, 

even in high dimensions using the idea of posterior tail probability (or pT P). We will also 
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show how to use this procedure to identify the different sources of error or bias in model 

parameters, both community-specific and global, and model structure.

2.2.3. Gaussian Stochastic Processes (GaSP) model as a prior for DM—We 

define a functional prior PDM(x, θ) on DM(x, θ) for each pair (X = x,Θ = θ) using a Gaussian 

Stochastic Process (GaSP). A GaSP is useful in modeling functional outputs like DM that 

depend smoothly on its arguments, x and θ (see Sacks et al., 1989; Currin et al., 1991). 

Although a GaSP is most helpful when all of the model arguments are continuous, it can 

also handle cases when one or more (but not all) of its arguments are discrete, by specifying 

a separate Gaussian response surface at each level of the discrete factors. This, combined 

with the priors on X and Θ, produces a prior for DM(X,Θ).

Consider our setup of K subgroups (or communities), with community-specific random 

variables Xk and a global random variable Θ. Suppose we want to run the model M for 

Xk = xk, for k ∈ {1,…,K}, and Θ = θ, and evaluate the discrepancy of the model for these 

subgroups for the given realizations. Define the K × 1 vector of discrepancies for the 

K subgroups as dM = DM x1, θ , …, DM xK, θ T . Let Zk denote the multivariate random 

variable Zk = (Xk,Θ), such that z: = z1
T , …, zK

T T
 forms a K × pz matrix, where pz = px 

+ pθ and zk = xk, θ  is a realization of ZK. The GaSP formulation assigns a K-variate 

Gaussian distribution for the vector dM with mean function μd(z) = μd z1 , …, μd zK
T . The 

covariance function Cd(·,·) for the Gaussian process is given as,

Cd zk, zl = 1
λd

exp − ∑
j = 1

pz
βd, j zk, j − zl, j

αd, j (3)

for parameters βd = βd, 1, …, βd, pz  and αd = αd, 1, …, αd, pz  that control the amount of 

correlation between DM(zk) and DM(zl), and with λd controlling the precision of the 

Gaussian surface. Note that for elements zk = xk, θ  and zl = xl, θ  (where k,l ∈ {1,…,K}), 

the last pθ elements in the sum ∑j = 1
pz βd, j zk, j − zl, j

αd, j are 0, as zk, j + px = zl, j + px = θj for 

j = 1,…,pθ. Hence the above simplifies to Cd zk, zl = 1
λd

exp −∑j = 1
px βd, j xk, j − xl, j

αd, j  and 

as a result only the first px elements of the hyperparameters βd and αd need to be specified.

Now let us briefly discuss the specifications of the hyperparameters μd, λd, αd and βd. First, 

to limit the number of hyperparameters in the model, the components of αd are fixed. For 

example, αd = 2 gives us the standard Gaussian process formulation (see Bayarri et al., 

2007), and for the rest of the article, we will consider the elements of αd to be fixed at 

that value. The mean function of the GaSP, μd(·), can be chosen to be fixed at a constant 

μ, the most intuitive choice being μ = 0. To generalize the analysis further, we can specify 

symmetric mean 0 distributions to be used as priors if required. For elements of βd, we 

can either specify priors for them though another set of hyperparameters, or fix them at 

estimates, determined using data driven methods. However, the precision parameter λd is 

typically kept stochastic, and we can specify priors like inverse gamma for λd with the 
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hyperparameters (shape and scale) determined in a data-driven manner. Please see a more 

detailed discussion on how to choose these hyperparameters for a practical setting as our 

simulation example in Section 3.2.

2.3. Assessing the model

2.3.1. Specification for λF in the Bayesian analysis—Often λF (yR,k) can be 

determined by the sampling design of the field data yF,k for a given subgroup or community 

k. Consider the case of a epidemiological model that predicts HIV prevalence, where reality 

yR,k is a proportion in the interval (0,1), and is estimated through sampling. Now if the 

observed ‘field data’ yF is collected based on a set of N samples, then it will be distributed as 

NyF , k Bin(N, yR, k) . Here the precision parameter λF has an explicit expression,

λF(yR, k) = 1
V ar(yF , k) = N

yR, k 1 − yR, k) . (4)

Note that for a large enough sample size, yF,k is approximately distributed as Gaussian with 

variance 1∕λF (yR,k). A natural estimate for λF (yR,k) can be produced by replacing yR,k 

in (4) by its estimate yF,k. However in case the error structure is unknown or the estimates 

are unreliable, standard priors like 1∕λF can be used if replicates are available, otherwise 

data dependent priors centered at a suitably defined estimate of λF (yR,k) can be used in the 

analysis instead.

2.3.2. Calculation of posterior of DM—Using the multivariate (K-variate) prior for 

DM, the induced model prior ℱXk, Θ
M , and the error process λF, we evaluate the posterior 

distribution of DM at each of the K communities. Below we give details for the full Bayesian 

analysis. This analysis can be further modified based on different distributional assumptions 

on the various parts of the model (community-specific and/or global) and the observed 

data (error variance). One such modified analysis has been discussed in the Appendix, 

which was used in our simulation exercise. From here on, we will also assume that ϵF 

(yR,k)’s are independent normal random errors. This assumption is certainly valid in many 

cases of epidemiological modeling, when model predictions are of standard forms (for 

example, binomial proportions like prevalence or rates like log-incidence) and the field data 

estimates are obtained using survey data or other standard methods, as the estimation error is 

approximately Gaussian due to the Central Limit Theorem. This is the case in our simulation 

example that we will study in detail later.

Suppose we want to run the analysis for K different communities with random community-

specific parameters for the kth community, Xk, with Xk GXk, and a random global 

parameter set Θ, with distribution ℋΘ. Recall the equations that connect yR,k, yF,k and 

M; for community k,

yF , k = yR, k + ϵF (yR, k),
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yR, k = M(Xk, Θ) + DM(Xk, Θ),

where ϵF(yR, k) N(0, 1/λF(yR, k)) . (5)

Also, suppose that the precision process is unknown, and we have prior distributions 

of the form λF (yR,k) ~ P(λF |yR,k) for community k. Given the unknowns, 

these produce a multivariate normal density for the collection of all field data 

yF,k for k ∈ {1,…,K}, denoted by f(yF , 1, …, yF , K ∣ Θ, X1, …, XK, λF(yR, 1), …, λF(yR, K),
DM(X1, Θ), …, DM(XK, Θ), λd, μd, βd, αd). Removing the known (or fixed) quantities from the 

likelihood, the posterior density of the unknowns given the data yF,k for k ∈ {1,…,K} can be 

written as

P (Θ, X1, …, XK, λF(yR, 1), …, λF(yR, K), DM(X1, Θ), …, DM
× (XK, Θ), λd ∣ yF , 1, …, yF , K)

∝ f(yF , 1, …, yF , K ∣ Θ, X1, …, XK, λF(yR, 1), …, λF(yR, K),
DM(X1, Θ), …, DM(XK, Θ), λd)

P (Θ, X1, …, XK, λF(yR, 1), …, λF(yR, K),
DM(X1, Θ), …, DM(XK, Θ), λd) .

(6)

Note that the prior P (Θ, X1, …, XK, λF(yR, 1), …, λF(yR, K), DM(X1, Θ), …, DM(XK, Θ), λd) can 

be written as

P (Θ, X1, …, XK, λF(yR, 1), …, λF(yR, K), DM(X1, Θ), …, DM(XK, Θ), λd)
= ℋΘGX1…GXKP (λF ∣ yR, 1)…P (λF ∣ yR, K)P (λd)P (DM ∣ Θ, X1, …, XK, λd), (7)

where P (DM ∣ Θ, X1, …, XK, λd) is the multivariate GASP prior for the discrepancy at all K 

communities. From here onward, we will refer to the k-variate discrepancy random variable 

as DM : = DM(X1, Θ), …, DM(XK, Θ) .

The posterior distribution can be determined through MCMC techniques (Robert and 

Casella, 2004). The MCMC step can be performed in a number of different ways. In our 

simulation study, we have used the Metropolis Hastings (MH) algorithm to calculate the 

posterior distribution, however alternative techniques like Bayesian Melding (see Poole and 

Raftery, 2000), Hamiltonian Monte Carlo or HMC (see Chatzilena et al., 2019; Betancourt, 

2017) can be used instead. For example, in comparison with the traditional MH algorithm, 

HMC can offer greater computational efficiency, especially in higher dimensional or more 

complex modeling situations. Please also see Robert and Changye (2020) for a comparative 

analysis of these methods to determine the most optimal framework for a given problem. In 

the Appendix, we describe the MH procedure for a simplified setup, which will be the setup 

for the simulation example presented in Section 3.

2.3.3. Identifying sources of error—The Bayesian procedure employed to obtain the 

posterior distribution of discrepancy vector DM = DM X1, Θ , …, DM XK, Θ  can be run in 

a number of different ways depending on the targeted goals of the validation procedure, 

Dasgupta et al. Page 9

Epidemics. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as described below. We first describe what we mean by ‘updating a prior’ in this context. 

Note that the main goal of our Bayesian analysis is to obtain the posterior distribution of 

DM. This posterior distribution is informed by the priors on DM, the model structure M, 

the stochastic distributions GXk on Xk for k ∈ {1,…,K} and ℋΘ on Θ, and the observed 

data yF,k for k ∈ {1,…,K}. Now, in the process of obtaining the posterior distribution of 

DM, we can additionally choose to obtain the posterior distributions of any, some or all of 

the random variables X1,…,XK,Θ. For parameters that we choose to update, their stochastic 

distributions are considered as priors and the relevant posteriors are obtained through the 

MCMC procedure. Parameters which are not being updated are not considered directly in 

the MCMC procedure. While, we do have to generate realizations of these parameters from 

their current stochastic distributions for calculating the likelihood in each MCMC update. 

Their distributions are not updated in the MCMC steps. In the Appendix, we have described 

how to achieve this in our simulation setup through the Metropolis Hastings procedure. 

Although the flow chart in Fig. 1 shows the flow of the analysis when the objective is to 

re-calibrate all parameters (if necessary to obtain a better model fit), Researchers may be 

interested in running only part of the analysis flow depending on study objectives. Below we 

present a few such ways to run the analysis:

1. Evaluation of current model To assess the model in its current state, we can run 

the analysis without updating the priors ℋΘ or GX. As a result we only obtain 

the posterior distribution of DM along with the posteriors of the hyperparameters 

controlling the discrepancy distribution in the model.

2. Recalibration of community-specific parameters If we are interested in 

assessing the model after allowing for recalibration/re-tuning of the community-

specific parameters, we can update GXk to obtain GXk
post , the posterior distribution 

of Xk along with the posterior distribution of DM. Note that one might choose 

to update all of the community-specific parameters at a time together, or one by 

one, or in groups of more than one.

3. Recalibration of community-specific and global parameters If we are 

interested in assessing the model after allowing for recalibration of both the 

global and the community-specific parameters, we can choose to update ℋΘ

to obtain ℋΘ
post, the posterior distribution of Θ as well, along with GXk

post , the 

posterior distribution of Xk and the posterior distribution of DM. Like in step 2, 

one might choose to update any combination of community-specific and global 

parameters at a time together, or in steps (for which new data become available 

after the last model evaluation), or till they are all updated.

Note: The entire analysis can be conducted in a single step or in a series of several 

steps, with each step devoted to updating and analyzing a specific parameter or a group of 

parameters. The order in which the community-specific and global parameters are updated 

in the analysis above is interchangeable, depending on the context and necessity. For 

example, the order can be determined by running sensitivity analyses to gauge the influence 
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of each parameter (or parameter set) on the final model outputs, and then updating them in 

order of importance.

After running the analysis in one of the aforementioned ways, the posterior distribution of 

the discrepancy, Ppost(DM), is assessed carefully to see if it is considerably removed from 

being centered at 0, which may suggest (depending on the analysis run) that any or all of (i) 

the structure of the model, (ii) the priors for Θ and (iii) the priors for XK need to be updated. 

A step by step flowchart for the entire scope of the analysis under the discussed setup is 

given in Fig. 1.

2.3.4. Quantification of model performance with Posterior Tail Probability 
(pT P)—When the model assumptions are satisfied, that is, when we have informative 

and precise priors on X1,…,XK,Θ and the model is a close approximation of the reality, 

we expect the posterior distribution of the discrepancy to be roughly centered around 

0. However, under violation(s) of any one or more of these assumptions, the posterior 

distribution will either suffer a shift in mean, or show inflated variance, be multimodal, or 

any combination of the above. In this section, we will concern ourselves only with the first 

type of alternative, that is, when the posterior distribution suffers a mean shift. The goal is 

to quantify the extent of this shift as a model validation metric. Note that our interests may 

lie in validating the model for (i) all K communities together, (ii) for a given subset of these 

K communities, or (iii) for each community separately. We present methods for the second 

situation here, and it is easy to see that the first and the third situations can be viewed as 

special cases of the second.

Let us assume that we want to assess the discrepancy of the model M at J out of K 
communities, Xi1, Xi2, …, XiJ  with i1,i2,…,iJ ∈ {1,2,…,K} and 1 ≤ J ≤ K. Let DM be the 

multivariate random variable (of size J × 1) representing discrepancy at these communities. 

The Mahalonobis distance for a discrepancy vector DM = d from a given center μ and a 

given covariance matrix V is

Δμ, V (d) = (d − μ)′V −1(d − μ) (8)

The Posterior Tail Probability (pT P) measures the probability that an observation drawn 

at random from the posterior distribution of DM lies further away from the mean of that 

distribution than does 0, the expected discrepancy under the null hypothesis that the Model 

is true. Effectively, it is a (two-sided) tail probability, calculated based on the relative 

location of 0 with respect to the posterior distribution of DM.

Let η and V be the posterior mean and covariance matrix for the posterior distribution for 

DM, and d is the sample mean of discrepancies from the MCMC analysis, while V  is a 

sample estimate for V. Now note that the Mahalonobis distance for a discrepancy sample 

DM = d from the center η and for the given covariance matrix V is given as

Δη, V (d) = (d − η)′V −1(d − η) .
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To estimate pT P from the MCMC data, dj, we:

1. Calculate δ = {δ1,…,δN}, where δj is the distance between sample dj and d. That 

is, δj = dj − d ′V −1 dj − d .

2. Compute δ0, the distance between 0 and d, as δ0 = d′V −1d.

3. Calculate pTP = ∑j = 1
N δj ≥ δ0 /N.

Note that pT P estimates the probability that Δη, V DM ≥ Δη, V (0), that is,

pTP = ℙ(Δd, V (DM) ≥ Δd, V (0)). Fig. 2 gives us an overview of how the posterior tail 

probability might look like when discrepancy is univariate (for a single community). Under 

H0, the true center (mean) of the posterior discrepancy is 0, hence the distance between 

the true center and 0 is also trivially 0, that is, Δη=0,V (0) = 0. Thus for any sample, its 

Mahalonobis distance from the true center (or its mean) will be greater than or equal to 

the distance between the true center and 0, and its posterior tail probability will be 1 (the 

probability under the shaded region A in the leftmost figure in Fig. 2). On the other hand, 

under a hypothetical alternative situation when the model is not valid (H1) and that the true 

center (or mean) is at K, the Mahalonobis distance between a randomly chosen sample and 

the center will be greater than that between the center and 0 if the sample belongs to either 

of the shaded regions A and C, and will be lesser than that between the center and 0 if it 

belongs to region B.

Now, observe from Fig. 2, that the area of the region B is exactly 1 − pT P, and that the 

interval that bounds it forms a credible interval of level pT P for the posterior discrepancy 

around its posterior mean, that is, the interval (0,2K) is a CpTP  for the posterior discrepancy 

DM. Mahalonobis distance helps to extend this idea to multivariate discrepancy vectors, 

where pT P gives us the minimum α level of a credible region centered around the 

multivariate posterior mean that does not contain 0.

Because the MCMC chain consists of autocorrelated samples, we estimate V  using an 

approach based on batch means Wakefield (see Chapter 3 of 2013), Glynn and Iglehart (see 

Chapter 3 of 1990). We split the output of N MCMC samples into L batches each of length 

I, with I chosen large enough that the batch means have low serial correlation, and then 

estimate V using the variance of the batch means. In our simulation examples, the number 

of MCMC samples, N, is 5000 and thus we have used L = 50 and I = 100. The procedure is 

given below in steps:

1. Compute the mean of the function of interest (for us, it is the vector of 

discrepancies at J communities) within each batch. That is, for l = 1,…,L,

μl = 1
I ∑

i = (l − 1)I + 1

lI
di

2. The overall mean is then given as μ = 1
L ∑l = 1

L μl.
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3. Note that I μl − μ , l = 1, …, L are approximately independently distributed as 

NJ (0,V (DM)).

4. Thus, V (DM) can be estimated by V as

V = I
L − 1 ∑

l = 1

L
μl − μ 2 .

3. A simulation study

In this section, we study our formulation in the context of HIV epidemic models. We start 

off this section by describing the model, and then we discuss the simulation settings and the 

results.

3.1. An HIV transmission model

Antiretroviral therapy (ART) has been shown to reduce the infectiousness of HIV infected 

persons, but only after HIV testing and diagnosis, linkage to care, and successful viral 

suppression (Hallett et al., 2009; Johnson et al., 2013). Thus a large proportion of HIV 

transmissions may occur during a period of high infectiousness in the first few months 

after infection, and is perceived as a threat to the impact of HIV “treatment-as-prevention” 

strategies. Woods et al. (2018) considered a mathematical model (MW) of HIV epidemics 

in men through heterosexual contacts, to investigate and explore the population health 

implications of investing in evidence generation activities such as clinical trials, surveillance 

programs and health system performance measurement. The model is based on features of a 

generalized HIV epidemic in sub-Saharan Africa (SSA), and thus can be used as a simplified 

representation of HIV epidemiology in SSA to evaluate the HIV prevention and treatment 

strategies available there. More specifically, the model projects how the proportion of early 

transmission affects the impact of ART on reducing HIV incidence. It includes different 

stages of HIV infection, sexual mixing, and changes in risk behavior over the epidemic.

The model MW (see Fig. 3) simulates HIV prevalence in a hypothetical population since 

1980, in six different communities (see model diagram in Fig. 3). Prevalence of HIV in each 

community in 2013 forms the (scalar) community-specific parameter xk for that community 

(k ∈ {1,…,6}), given as x0 = {0.11,0.35,0.001,0.03,0.24,0.15}. The model estimates HIV 

transmission in each community, with parameters fit so that the prevalence in the model 

in 2013 is as specified in the input prevalence data (the community-specific parameter). 

If any intervention is applied within the study period, the model can project the effect of 

this intervention over the next period, compared to the scenario when no intervention is 

applied. In our hypothetical case, we assume that a combination intervention program is 

initiated in 2015, and the HIV prevalence is simulated up to 2030. The interventions that 

are modeled through this combination package in the model are (i) enhanced antiretroviral 

therapy (ART), which reduces the likelihood that a positive individual will transmit infection 

and the mortality rate from late-stage infections (ii) behavioral interventions (for example, 

counseling on condom use or other safe sex practices), which acts to modulate the force 

of infection; and (iii) medical male circumcision (MMC), which reduces the risk of men to 
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acquire HIV infection. Model equations can be found in the Appendix (and also in Woods 

et al., 2018). There are 10 global parameters (same for all communities) in the model 

integrated in the model structure, namely,

1. The reduction in the rate of transmission from individuals on ART, εA.

2. The reduction in the risk of acquisition of HIV in circumcised men, εC.

3. The rate of leaving the population (due to aging out or death due to caused 

unrelated to HIV), μ1.

4. The population growth rate, ε.

5. The rate of progression from infected state I1 to I2, σ1.

6. The mortality rate due to HIV in late stage positive individuals in I2, μ2.

7. The mortality rate due to HIV for individuals on ART, μ3.

8. The rate of transmission of HIV (per partnership), β(t), that controls the forces of 

infection, λ1 and λ2.

9. Background prevalence rate of HIV in the population in 1980, pini, considered 

same for all communities.

10. The proportion of people assumed to be already circumcised in 2013, same for 

each community, c.

The parameter τ, denoting the proportion of men entering the population at a given 

community who are not at risk, is fitted (using least squares) separately for each community, 

based on the population dynamics of that community at the time when the community-

specific parameter was recorded (in our case prevalence data for that community in 2013). 

Note that τ is not considered as community-specific or global parameter, as it is not an 

input for the model but rather it is fitted based on the input (community-specific and global) 

parameters. The parameters εA and εC directly affect the not-at-risk parameter τ, as well 

as the forces of infection, λ1 and λ2. The prevalence of HIV, as well as progression and 

mortality rates due to the disease at a given time t is determined by the (time varying) rate of 

transmission parameter, β(t), and the proportion of the population who are not at risk, τ. As 

mentioned before, the model was originally calibrated to HIV epidemics data from SSA, and 

the best point estimates for these parameters were calculated. We denote this estimate vector 

by θ0.

3.2. The analysis setup

Before we can apply the Bayesian validation procedure on MW, it is important to correctly 

define the response of interest, one which can give us a substantial idea about the fit of 

the model. In this analysis, the response was chosen to be the HIV prevalence in each 

community at the beginning of the year 2020, 5 years after the interventions were initiated 

in these communities. Next we need to define the distributions GXk and ℋΘ for Xk, k = 

1,…,6, and Θ respectively. To simplify things, we assume that there is no estimation error 

in x0 = {x1,…,x6}, that is, the available information on the HIV prevalence in 2013 in these 

6 communities reflect the actual truth, or in other words, Xk := xk. We next define priors 
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on the model parameters. Since all of the parameters are proportions between 0 and 1, we 

consider a logit-Gauss prior in our analysis, that is, logit(Θ) ~ N(μ,σ2), with μ := logit(θ0), 

and σ2 := p∕(θ0(1 − θ0)), for a given scale parameter p.

For a given instance Θ := θ and a given timepoint within 1980 and 2030, the model 

MW outputs the HIV prevalence vector MW x1, θ , …, MW x6, θ . We assume that HIV 

prevalence in 2020 for community k can be estimated through a simple random sample of 

size nk drawn from the population in question. Thus, given a true HIV prevalence of yk at 

community k in 2020, we have an unbiased estimate yk, which can be written as yk =
Zk
nk

, 

where Zk B nk, yk  with sampling variability V ar yk =
yk 1 − yk

nk
. We chose a sample size nk 

= 2000 for each community in our simulations. Since prevalence is a proportion between 0 

and 1, the HIV prevalence values are logit transformed, so that DM(x,θ) is distributed over 

the entire real line. We assume Eq. (5) from Section 2 hold with M = logit(MW ) and Xk := 

xk, where,

1. M xk, θ = logit MW xk, θ ,

2. yR, k = logit yk ,

3. yF , k = logit yk ,

for k = 1,…,6. Note that due to this transformation, λF yR, k = 1/V ar yF , k = nk
eyR, k

1 + eyR, k 2 , 

and also that λF yR, k = λF yF , k .

As discussed in Section 2.2.3, we assume a GaSP prior for the discrepancies DM. For the 

Bayesian analysis, we can specify priors on the GaSP hyperparameters, μd, βd and λd, 

as well. However, due to limited data availability, and owing to the fact that no direct 

data about model discrepancies are available, introducing too many hyperparameters in the 

model can increase collinearity between the GaSP parameters. Thus, we allow only λd 

to be stochastic, and fix the rest of the hyperparameters at reasonable values, following 

recommendations of Bayarri et al. (2007), and as discussed in Section 2.2.3. This is achieved 

in the following manner: the vector yF , 1 − M x1, θ0 , …, yF , 6 − M x6, θ0  is treated as a 

realization from a multivariate normal with constant mean vector μd and covariance matrix 

Cd zi, zj /λd + ΛF
−1, where zi = (xi,θ0) and ΛF is a diagonal matrix with kth diagonal entry 

λF (yF,k). We use standard GaSP fitting software to obtain MLE estimates βd, that are used 

as the fixed value for βd in this analysis. The mean function μd is fixed at 0. We assume 

an inverse gamma prior for λd with shape parameter αλd = 1 and scale parameter βλd = 5λd

where λd is the MLE estimate of λd obtained from the GaSP analysis described above, 

following suggestions from Bayarri et al. (2007). For the Metropolis Hastings algorithm, we 

also specify proposal distributions for unknown random variables, namely,

• A Gaussian distribution for DM(x,θ).

• A Beta distribution for Θ (since all are quantities between 0 and 1).
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• An Inverse Gamma distribution for λd.

3.3. The simulation scenarios

We evaluate the model MW under different scenarios, given by the following:

1. Setting 1: The Null scenario: The model is completely accurate, that is, 

both the model structure M and the parameter set θ0 are accurate, that is, 

yR,k = M(xk,θ0), for k = 1,…,6. The priors ℋΘ ⋅ ; ηΘ  with hyperparameters 

ηΘ = θ0, ηΘ*  reflect a valid quantification of the uncertainty regarding Θ. Plot for 

this setting is given in Fig. 4.

2. Setting 2: Faulty prior information on Θ: The model structure M is accurate, 

but information collected on one or more of the parameters is erroneous. To 

create this scenario, we start off with the assumption that θ0 is still the true 

parameter vector, but we calibrated the model at an incorrect value θ0*, which is 

created by perturbing some of the elements of θ0. The priors are now given by 

ℋΘ ⋅ ; θ0*, ηΘ* . In this scenario the following holds for each community k.

yR, k = M xk, θ0
= M xk, θ0* + M xk, θ0 − M xk, θ0*

= M xk, θ0* + D1 xk, θ0*

In this case, we should be able to falsify the model with running only step 1 of 

Section 2.3.3. Running step 3 however should recalibrate the parameter set. We 

can evaluate the accuracy of the parameters after the recalibration step.

To simplify the analyses, in this scenario, we will consider priors only on the 

faulty parameters, while keeping the others fixed at their estimates (given in θ0). 

This is, similar to what mentioned in Section 2.3.3, an effective simplification 

of step 3 of running the analysis, where we update the parameter set in multiple 

iterations, starting off with ones that we are most uncertain about while keeping 

others fixed at their priors or point estimates, and then moving onto the next 

batch if the validity of the model is not still achieved. Plots for this setting are 

given in Figs. 5–7.

3. Setting 3: Faulty model structure: The model structure itself is wrong, which 

means that M(x,θ) does not correctly specify the reality, even if efforts are made 

to recalibrate the model in its current form with its given community-specific 

and global parameters. We create this scenario by producing a reality which is a 

distortion of the model outputs, that is, we define the alternative (true underlying) 

model structure as (1+c)MW instead of the presumed structure MW, meaning we 

add 100c% bias to the untransformed model outputs, where c is a constant. Thus, 

we can write yR, k = M xk, θ0 + D2 xk, θ0 , where

D2 xk, θ0 = logit (1 + c)MW xk, θ0 − logit MW xk, θ0 .
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In this case, we should be able to falsify the model with running either of the steps 1 and 

3 from Section 2.3.3. Plot for this setting is given in Fig. 8. The value of c chosen for this 

exercise is c = 0.25.

3.4. Results

The results from the above analyses are presented in Figs. 4–8 and in Table 1. Each 

plot, except Fig. 7, shows the posterior distribution of the discrepancy DMW xk, Θ  for 

communities k = 1,…,6 under the different simulation scenarios. Fig. 7 shows the posterior 

distribution of the parameter σ1, the rate of progression from infected state I1 to I2, with 

and without performing the recalibration step under setting 2 (Faulty prior on Θ). The 

analyses are repeated for multiple realizations of the observed data, resulting in different 

density curves for the discrepancy in each community for each such realization. In Figs. 

4–8, 10 such curves are presented for each simulation scenario. We also calculate the 

posterior tail probability (as discussed in Section 2.3.4) for each scenario, aggregated over 

the different MCMC runs, and present the results in Table 1. Some of our observations can 

be summarized as the following:

3.4.1. Null case: both model and priors are accurate—Under the first simulation 

setting (the null scenario), the discrepancy for all six communities are centered around 0 

both when ℋΘ is not updated, and also when we do update it (see Fig. 4). This is expected, 

since the discrepancy distribution should be centered around 0 when model assumptions are 

satisfied. However, some individual runs are not centered at 0 at all communities, even after 

updating — this might be because in those runs, the sampling errors for the communities in 

question are large.

Updating the prior, increased pTP  from 0.83 to 0.88 Table 1. Under H0, pT P should 

eventually converge 1, given an infinite number of samples. Under finite sample setting, the 

posterior mean will never be exactly at 0 due to both random fluctuations in the MCMC 

algorithm and the prior on λd, and hence the estimated values pTP  will always be less than 

1. This provides a benchmark for how good we should expect a model to perform with 

respect to this metric, given that a ‘perfect’ model scores about 0.85 here.

3.4.2. Recalibrating faulty priors—Under the second simulation scenario, the prior 

for σ1, the rate of progression from infected state I1 to I2, is misspecified downwards by a 

margin of 50%. We consider two types of faulty priors, (i) Flat — logitgauss prior with scale 

p = 0.1 (Fig. 7A), (ii) Narrow — logitgauss prior with scale p = 0.01 (Fig. 7B). Although 

both of these priors for σ1 are shifted by the same amount, the flat prior assigns a substantial 

probability to the true value (black vertical line in 7 than the narrow prior, where it assigns 

no probability at all).

For both the narrow and flat prior, the model discrepancy is biased substantially away from 

zero in almost every community when the priors are not updated (as seen in Figs. 5 and 

6). However the posterior distribution of DM includes zero with a higher posterior tail 

probability in the flat prior than in the narrow prior. This is reflected in the moderately low 

pT P of 0.63 for the flat prior, compared to 5.3 × 10−4 for the narrow prior.
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When the prior of σ1 is updated in the MCMC analysis, we can obtain a posterior 

distribution (for σ1) centered around the true value only it is in the support for the faulty 

prior originally (Fig. 7). As a result, the posterior distribution of the discrepancy shifts 

towards 0 in the flat prior but not in the narrow prior (see Figs. 5 and 6), after the 

recalibration step is performed. After recalibration, the pT P of the flat prior improves to 

0.81, which is comparable to the null case. On the other hand, for the narrow prior, pT P only 

improves to 0.088. Thus, even though the model structure is correct, whether we are able 

to recalibrate the model and verify its validity against the collected data can depend purely 

on the quantification of uncertainty in the stored value of its parameters, and whether the 

support of their stored stochastic information contain their true values.

3.4.3. Faulty model structure—Under the third simulation setting, the underlying 

model structure itself is incorrect, producing biased model outputs, and as a result, 

the discrepancy is expected to be centered away from 0 even when updating the prior 

distributions ℋΘ for all parameters. Even though that is what we overwhelmingly see in 

Fig. 8, and that most simulations show a positive bias, one or two curves still appear to 

be centered around 0. So for those individual simulations, there are not any perceivable 

difference between the results and model predictions, even though the underlying model 

structure is faulty. Moreover, this mean shift is often less visible for some communities 

than others, for example in the case of community 3, which had the lowest prevalence in 

2013. Since this scenario was created by inflating the model outputs by 25%, very little 

discrepancy was introduced in this community, and thus if we were to make a decision 

about whether the posterior distribution for the discrepancy is centered away from 0 or not, 

based on individual Bayesian credible intervals at 5% level of error, the hypothesis may be 

rejected for some communities, but not for others. In addition, for communities with very 

low prevalence, the sampling error is much higher, and can sometimes dominate the actual 

discrepancy in the outputs. Under faulty model scenario, pTP  values are low, whether we 

update the priors or not, but one thing that we notice from Table 1 is that updating the priors 

(recalibrating) always results in higher values of pTP .

4. Discussion

In this article, we outline a framework for evaluating the predictions of complex 

epidemiological models and describe experiments that can be used to test them. We propose 

assessing models by calculating the posterior distribution of the model discrepancy using a 

Bayesian framework. This allows for rapid identification of communities and/or subgroups 

for which the model performs poorly, and allows for an overall (or locally for each 

community) goodness of fit evaluation using the posterior tail probability. This methodology 

can then be systematically applied to update model priors to improve fit.

We apply this framework to a simple model of a heterosexual HIV epidemic, MW, which 

was created to investigate how the proportion of early transmission affects the impact of 

ART on reducing HIV incidence. We test the model under various set of assumptions, 

including the null scenario when all the assumptions are satisfied, along with alternate 
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scenarios when one or more of those assumptions fail to hold, and discuss the scope of 

recalibration of its parameters when the model is false.

One interesting finding is the existence of ‘uninformative communities’, that is, 

communities that do not provide information on model validity. In our case, community 

3 acts in this way. It had very low prevalence initially, and also at each of the subsequent 

time points. Looking at the discrepancy plots for community 3 in Figs. 4–8, it becomes 

obvious that even if there is true discrepancy in the model output, due to a faulty model 

structure or because one or more of its parameter distributions are wrongly estimated, there 

is little or no visible sign of that in any of these plots, that is, most of the density plots 

can be seen to be centered around 0. If anything, the posterior distributions show a higher 

variability than that at other communities, hinting at the uninformativeness of this particular 

community.

The complexity of epidemiologic models creates a robustness that makes it quite challenging 

to falsify them. For example, in the posterior distribution plots for the discrepancy for 

the faulty model scenario (see Fig. 8), we see that even though most simulations show 

a positive bias, one or two of the curves do appear to be still centered around 0. So for 

those individual simulations, there are not any perceivable difference between the results 

and model predictions, even though the underlying model structure is faulty. Moreover, 

this mean shift is often less visible for some communities than others (like in the case 

of community 3), and hence if we were to make a decision about whether the posterior 

distribution for the discrepancy is centered away from 0 or not, based on individual Bayesian 

credible intervals at 5% level of error, the hypothesis may be rejected for some communities/

subgroups, but not for others. Although these individual inferences are crucial to figure out 

for which communities the model fails, it is also important to make inference on the overall 

strength of the model, that is, to aggregate the inferences over these different communities/

subgroups. The measure, pT P, defined in Section 2.3.4 based on Mahalonobis distances, 

helps mitigate that issue somewhat. Delineating faulty model structure from insufficient 

calibration is a crucial aspect of model validation. This motivated our focus on these 

scenarios separately.

The methods developed here are for a fixed point of time at which model outputs are 

recorded and compared with external data. However, these methods can potentially be 

extended to incorporate comparison of model projections at multiple time points with 

real-time data as it becomes available over time. For this, one needs to also account for 

inter-person correlation and time series effects, and it might be worthwhile to pursue this 

extension in future research. Also note that the (prior) distribution for λd, the precision 

parameter for DM was chosen in a data-driven manner, and the rest of the hyperparameters 

for the GASP prior on DM were either fixed at pre-specified or data-driven values. It might 

be an interesting exercise to conduct a sensitivity analysis to explore the effect of this 

formulation on the analysis, for example by considering non-data-driven priors for λd with 

varying width, and see how that affects the results.

Note that there can be many different ways a model can have a faulty structure. A faulty 

structure for an ODE model means that mechanisms and processes which are essential 
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for the population and transmission dynamics are not properly represented in the model. 

This can be due to multiple factors, including (i) not capturing essential confounders in 

the model, (ii) not accounting for human mobility patterns in the ODEs, (iii) unexpected 

events (for example a pandemic, intervention rollout, changes in standards of care) that 

might render the model structure outdated. Incorporating those factors in the model requires 

extensive structural changes which were outside the scope of this project. Instead, we 

assumed that whenever the model structure is wrong, the final effect will necessarily be seen 

in the predictions, which will be biased estimates (the bias coming from the faulty structure) 

of the reality. Hence, we decided to mimic the faulty structure by introducing bias in model 

outputs, without discussing the source of the bias, which can be due to any of the above 

reasons, or other sources.

Also note that from Section 2, our methods will continue to work for any model of the 

form y = M(x, θ), where M(·, ·) is essentially a function with arguments x and θ. Thus, the 

Bayesian validation framework will work for other types of models such as network models 

and stochastic agent-based models, as long as their parameter sets x and θ have concrete 

forms and are estimable (identifiable). However, one limitation the Bayesian validation 

framework is the fact that the MCMC analysis relies on multiple model runs over different 

instances of x and θ generated from the priors. ODE models are generally simple to run 

and computationally less expensive compared to other models (like agent-based models, 

network models), which might make the validation procedure extremely computationally 

burdensome, and therefore, infeasible to run in practice.

It is also worthwhile to mention that in the context of HIV transmission models, reduction in 

HIV incidence is a better choice as an outcome of interest for evaluation of the impact 

of real-world interventions. Although the HIV transmission model that we use in our 

simulation settings was designed to project HIV prevalence, our methods are applicable 

to modeling analyses where incidence is being estimated. In addition, we note that while 

incidence is a more desirable metric than prevalence, it is also much harder to estimate than 

prevalence.

Given a model structure and its parameter priors in their current states and the observed data, 

‘optimal’ discrepancy is achieved through re-calibration of its parameters in the Bayesian 

validation framework but re-calibration is unlikely to reduce the discrepancy to 0. Rather, 

re-calibration would ensure the smallest possible discrepancy is achieved based on what 

we knew before (the model) and what we know now (the observed data). To achieve this 

‘optimal’ discrepancy, our suggestion is to re-calibrate the parameters in steps, possibly one 

at a time, where the order can be determined by running sensitivity analyses to gauge the 

influence of each of these parameters on the final model outputs, and then updating the 

parameters in order of importance.

For parameters that have identifiability issues, model validation will have to endure some of 

the same challenges that model calibration face. For example, multimodality in a parameter 

distribution might indicate presence of latent groups or other structural issues in the model, 

which may or may not result in multimodality in the discrepancy distribution as well, all of 

which are important issues to consider in model validation, and we believe that the Bayesian 
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validation framework can be used to diagnose these issues further. As far as the posterior tail 

probability is concerned, it should be noted that the posterior tail probability alone should 

not be the only aspect considered in making a decision on model validation, and other visual 

aspects like multimodality suggesting presence of latent groups or other issues should be 

taken into consideration as well. Multimodality in the discrepancy distribution may affect 

the posterior tail probability, for example in the scenario when the discrepancy distribution 

is bimodal, and the two modes of the discrepancy distribution lie on either side of 0, and 

the mean lies in between and closer to 0, we might obtain high ptp indicating good model 

fit when clearly there are structural issues in the model. This is because ptp in its current 

form is effective only when the discrepancy distribution is unimodal, as it defined around 

the mean of the discrepancy distribution assuming unimodality (see Section 2.3.4). So, when 

the discrepancy distribution is indeed multimodal, it will be more useful to redefine it in 

terms of the modes of the discrepancy distribution, and run multiple posterior tail probability 

analyses, one for each mode.

The HIV Modeling Consortium (www.hivmodelling.org) is a large network of mathematical 

modelers that aims to strengthen the use of models in decision making in HIV. In the past 

it has brought together models from different groups to quantify and characterize the extent 

to which different models predict different impacts of the same interventions (Eaton et al., 

2015). The project has revealed a large amount of variation in model outputs, which has led 

to urgent questions being asked about whether models can be validated. To investigate this 

further, the Consortium developed a protocol for archiving models and their predictions in 

2012, and invited researchers to submit their mathematical models for this exercise. With the 

methods described in this article, these models can be meaningfully tested and validated, and 

possibly even recalibrated for future use.
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Appendix A. Details of the modified Bayesian procedure

Here we present the details of the Bayesian analysis under certain modified conditions that 

we have adopted in our simulation setting. Here, we assume that a) we have high level 

estimates for the community-specific parameters in each community k, that is, Xk;= x0,k, 

and b) λF is explicitly known through the design. Denote x0 = {x0,1,…,x0,K}.

The multivariate normal density for the collection of all field data yF,1, …, yF.K can now be 

denoted by f yF , 1, …, yF , K ∣ Θ, x0, λF x0 DM, λd, μd, βd, αd , and the posterior density of the 

unknowns given the data yF can be simplified (after removing the fixed quantities from the 

conditional distributions) as
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P (Θ, DM(x0, 1, Θ), …, DM(x0, K, Θ), λd ∣ yF , 1, …, yF , K, x0)
∝ f(yF , 1, …, yF , K ∣ Θ, x0, DM(x0, 1, Θ), …, DM(x0, K, λd))

× P (Θ, DM(x0, 1, Θ), …, DM(x0, K, Θ), λd ∣ x0) .
(9)

Appendix B. Metropolis Hastings algorithm

The Metropolis Hastings (MH) is an efficient method for sampling of the random variables 

(Θ,DM,λd) from their posterior distribution. We divide our parameters into three classes, Θ 
= {Θ1,Θ2,Θ3}, where (i) Θ1 are parameters that we want to fix at degenerate values (prior 

means)θ1, that is, Θ1: = θ1, (ii) Θ2 are parameters with prior distribution ℋ2 θ2  which we 

do not want to update, and (iii) Θ3 are parameters with prior distribution ℋ3 θ3  which 

we want to update. The posterior distribution that we want to sample from is given as 

P Θ3, DM, λd ∣ yF , x0, θ1, Θ2 .

At each step in the MH algorithm, we define a proposal distribution for each 

of the random variables whose joint posterior distribution is of interest to us. 

Thus, we assume we have proposal distributions qΘ3, qDM, and qλd for Θ3, 

DM and λd such that we can draw values θ3i qΘ ⋅ ∣ η0 , dMi qdM ⋅ ∣ dM0 , and 

λdi qλd ⋅ ∣ λd0  given some parameters η0, dM0 and λd0. In the first step, we 

draw initial values (θ2
(0), θ3

(0), dM
(0), λd

(0)) for (Θ2,Θ3,DM,λd) directly from the prior, 

that is,(θ2
(0), θ3

(0), dM
(0), λd

(0)) ℋ2(θ2)ℋ3(θ3)P (DM, λd ∣ x0): = P (Θ2, Θ3, DM, λd ∣ x0). Then the ith 

iteration of the algorithm is conducted in the following steps:-

1. Generate candidate proposals (θ3
(c), dM

(c), λd
(c)) as θ3

(c) qΘ3( ⋅ ∣ θ(i − 1)), 

dM
(c) qDM( ⋅ ∣ dM

(i − 1)), and λd
(c) qλd( ⋅ ∣ λd

(i − 1)).

2. Generate θ2
(i) as θ2

(i) ℋ2(θ2).

3. Calculate the acceptance probability at the ith step, αi, as Eq. (10) given in Box I.

4. Accept the candidate sample (θ3
(i): = θ3

(c), dM
(i) : = dM

(c), λd
(i): = λd

(c)) with probability 

αi or reject it (θ3
(i): = θ3

(i − 1), dM
(i) : = dM

(i − 1), λd
(i): = λd

(i − 1)) with probability 1 − αi.

After a mandatory burn-in period, the resulting samples (a set of N draws) are drawn from 

the posterior distribution of Θ3, λd, DM (and resultantly (x0,Θ)).

Appendix C. Model equations for the HIV transmission model MW

The Model diagram in Fig. 3 is described by a set of eight ordinary differential equations 

described below.

dS1
dt = Bτc − μ1S1

Dasgupta et al. Page 22

Epidemics. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dS2
dt = B(1 − τ)c − (λ1 + μ1)S2

dS3
dt = B(1 − τ)(1 − c) − (λ2 + μ1)S3

dS4
dt = Bτ(1 − c) − μ1S4

dI1
dt = λ1S2 + λ2S3 − (μ1 + σ1)I1

dI2
dt = σ1I1 − (1 + μ1 + μ2)I2

dAI
dt = αI2 − (μ1 + μ3)AI

dNAI
dt = (1 − α)I2 − (μ1 + μ2)NAI

where S1 denotes circumcised and susceptible men who are not at risk of infection, 

S2 denotes circumcised and susceptible men who are at risk of infection, S3 denotes 

uncircumsized and susceptible men who are at risk of infection, S4 denotes uncircumcised 

and susceptible men who are not at risk of infection, I1 denotes men in the first HIV 

infection state, I2 denotes individuals in the second (late stage) infection state, AI denotes 

infected men who will receive the antiretroviral therapy (as part of the intervention package) 

in 2015, and NAI denotes infected men who will never receive ART or other interventions.

The number of individuals entering the population is denoted by B, while the rate of 

individuals leaving the population is denoted by μ1. The proportion of individuals entering 

the population who are not at risk is denoted by τ, and c is the proportion of those entering 

the population who are circumcised men. λ1 and λ2 describe the force of infection in 

circumcised and uncircumcised individuals respectively. σ1 describes the rate of progression 

from infected state I1 to I2, and α is the proportion of individuals in state I2 who will receive 

ART. μ2 is the rate of death in late stage positive individuals (I2) and μ3 is the rate of death 

for individuals on ART treatment.

The force of infection is described by the following equations:
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λ1 = 1 − εC β(t)η
I1 + I2 + NAI + 1 − εA AI

S1 + S2 + S3 + S4 + I1 + I2 + AI + NAI

λ2 = β(t)η
I1 + I2 + NAI + 1 − εA AI

S1 + S2 + S3 + S4 + I1 + I2 + AI + NAI

where εC is the reduction in the risk of acquisition of HIV in circumcised men, β(t) is the 

rate of transmission, η is used to modulate the force of infection to simulate a behavior 

change intervention, and εA is the reduction in the rate of transmission from individuals on 

treatment. The number of individuals entering the population is described by:

B = −μ1 + ε P

where ε represents the population growth rate and P represents the population size 15 

years prior to the current time period. P was defined in this way to avoid differences in 

prevalence caused by interventions affecting the birth rate. The population at the year of the 

intervention is scaled to ensure that all regions have the same population size at the start of 

the intervention period.

There is also an additional parameter ‘beta trend parameter’ which is applied in all 

communities and is used to scale the rate of transmission β. This is separate from the other 

parameters so that it may be incorporated into uncertainty analyses. If time t is less than the 

time when the trend is turned on (ttrend), β is equal to the initial value specified, if time is 

greater than ttrend, β is modified using the beta trend parameter (ω).

If t ≤ ttrend,

β(t) = β,

If t > ttrend,

β(t) = β 1 − ω t − ttrend − 1

where ttrend corresponds to the year 2015 and as such this modulation only occurs once the 

fitting has been completed (we fit the model to 2013 prevalence). Both β and ω are the same 

across all communities.
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Box I.

αi = α θ3
(c), dM

(c), λd
(c) ∣ θ1, θ2

(i), θ2
(i − 1), θ3

(i − 1), dM
(i − 1), λd

(i − 1)

= min

qΘ3 θ3
(c) ∣ θ3

(i − 1) qdM dM
(c) ∣ dM

(i − 1) qλd λd
(c) ∣ λd

(i − 1) P θ(c), dM
(c), λd

(c) ∣ yF , x0, θ1, θ2
(i)

qΘ3 θ3
(i − 1) ∣ θ3

(c) qdM dM
(i − 1) ∣ dM

(c) qλd λd
(i − 1) ∣ λd

(c) P θ(i − 1), dM
(i − 1), λd

(i − 1) ∣ yF , x0, θ1, θ2
(i − 1) ,

1

.

(10)
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Fig. 1. 
One possible schematic of the Bayesian analysis for model validation.
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Fig. 2. 
Posterior tail probabilities (pT P), as denoted by the colored regions, under the Null and 

an hypothetical Faulty model structure scenario for discrepancy at a single community: 

(i) Under the Null, the mean of the discrepancy distribution is 0 itself, so any random 

sample from the discrepancy distribution will have Mahalonobis distance from its center 

greater than that between 0 and the center, and thus the posterior tail probability region will 

cover the entire discrepancy distribution, as shown by the shaded region A. (ii) Under the 

alternative, when the center of the discrepancy is at K units away from 0, the Mahalonobis 

distance between a randomly chosen sample and the center will be greater than that between 

the center and 0 if the sample belongs to either of the shaded regions A and C, and will be 

lesser than that between the center and 0 if it belongs to region B. Thus the posterior tail 

probability region will cover regions A and C. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. 
Model Diagram, S1 denotes circumcised and susceptible men who are not at risk of 

infection, S2 denotes circumcised and susceptible men who are at risk of infection, S3 

denotes uncircumsized and susceptible men who are at risk of infection, S4 denotes 

uncircumcised and susceptible men who are not at risk of infection, I1 denotes men in the 

first HIV infection state, I2 denotes individuals in the second (late stage) infection state, AI 
denotes infected men who will receive the antiretroviral therapy (as part of the intervention 

package) in 2015, and NAI denotes infected men who will never receive ART or other 

interventions.
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Fig. 4. 
Setting 1: Posterior distribution of discrepancy in the null scenario for 10 MCMC chains, 

each run with a different realization of the observed data.
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Fig. 5. 
Setting 2: Posterior distribution of discrepancy when σ1 is negatively biased and the prior 

width is flat under 10 MCMC chains, each run with a different realization of the observed 

data.
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Fig. 6. 
Setting 2: Posterior distribution of discrepancy when σ1 is negatively biased and the prior 

width is narrow under 10 MCMC chains, each run with a different realization of the 

observed data.
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Fig. 7. 
Setting 2: Posterior distribution of negatively biased σ1 when we update ℋΘ and the 

prior width is (A) flat and (B) narrow under 10 MCMC chains, each run with a different 

realization of the observed data.
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Fig. 8. 
Setting 3: Posterior distribution of discrepancy under faulty model structure for 10 MCMC 

chains, each run with a different realization of the observed data.
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Table 1

pTP measures using Mahalonobis distance for (i) the Null scenario (ii) the Faulty model structure and (iii) 

Faulty prior information on Θ with different prior widths averaged over different MCMC runs.

Update
HΘ

Null
case

Recalibrating faulty prior Faulty model structure

Flat prior Narrow prior

False 0.837 0.631 5.33e–04 0.148

True 0.886 0.810 0.088 0.212
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