
sensors

Article

A Heterogeneous Edge-Fog Environment Supporting
Digital Twins for Remote Inspections

Luiz A. Z. da Silva 1, Vinicius F. Vidal 1 , Leonardo M. Honório 1,* , Mário A. R. Dantas 2 ,
Milena Faria Pinto 3 and Miriam Capretz 4

1 Department of Electrical Engineering, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil;
luiz.zillmann@engenharia.ufjf.br (L.A.Z.d.S.); vinicius.vidal@engenharia.ufjf.br (V.F.V.)

2 Department of Computer Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil;
mario.dantas@ice.ufjf.br

3 Department of Electronics Engineering, Federal Center for Technological Education of Rio de Janeiro,
Rio de Janeiro 20271-110, Brazil; milena.pinto@cefet-rj.br

4 Department of Electrical and Computer Engineering, Faculty of Engineering, Western University,
London, ON N6G 1G8, Canada; mcapretz@uwo.ca

* Correspondence: leonardo.honorio@ufjf.edu.br

Received: 15 July 2020; Accepted: 8 September 2020; Published: 16 September 2020
����������
�������

Abstract: The increase in the development of digital twins brings several advantages to inspection
and maintenance, but also new challenges. Digital models capable of representing real equipment
for full remote inspection demand the synchronization, integration, and fusion of several sensors
and methodologies such as stereo vision, monocular Simultaneous Localization and Mapping
(SLAM), laser and RGB-D camera readings, texture analysis, filters, thermal, and multi-spectral
images. This multidimensional information makes it possible to have a full understanding of
given equipment, enabling remote diagnosis. To solve this problem, the present work uses an
edge-fog-cloud architecture running over a publisher-subscriber communication framework to
optimize the computational costs and throughput. In this approach, each process is embedded in
an edge node responsible for prepossessing a given amount of data that optimizes the trade-off of
processing capabilities and throughput delays. All information is integrated with different levels of
fog nodes and a cloud server to maximize performance. To demonstrate this proposal, a real-time 3D
reconstruction problem using moving cameras is shown. In this scenario, a stereo and RDB-D cameras
run over edge nodes, filtering, and prepossessing the initial data. Furthermore, the point cloud and
image registration, odometry, and filtering run over fog clusters. A cloud server is responsible for
texturing and processing the final results. This approach enables us to optimize the time lag between
data acquisition and operator visualization, and it is easily scalable if new sensors and algorithms
must be added. The experimental results will demonstrate precision by comparing the results with
ground-truth data, scalability by adding further readings and performance.

Keywords: fog-edge computing; distribuited 3D reconstruction; heterogeneous environment; digital
twins; remote inspection

1. Introduction

Equipment maintenance is part of several engineering environments, from power plants to
industrial production lines. This task accomplishment demands skilled professionals, being part of
the staff or outsourced. Therefore, several courses and training are required to offer the employee the
appropriate skills. An interesting approach is to provide a detailed and safe environment through
the virtual reality [1,2]. There are several different methods of creating a virtual environment and

Sensors 2020, 20, 5296; doi:10.3390/s20185296 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2576-2760
https://orcid.org/0000-0003-2735-4792
https://orcid.org/0000-0002-2312-7042
https://orcid.org/0000-0001-6916-700X
https://orcid.org/0000-0002-1380-971X
http://www.mdpi.com/1424-8220/20/18/5296?type=check_update&version=1
http://dx.doi.org/10.3390/s20185296
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 5296 2 of 20

the three-dimensional objects which compose it. Traditional computer-aided design software method
(e.g., AutoCAD and SolidWorks) often demands skilled labor from designers, and a long time for
development. Nowadays, however, there are more sophisticated methods that utilize images captured
from an object to reconstruct it, called three-dimensional reconstruction, or just 3D reconstruction [3].
This method can be seen in the literature being used in several applications, from medical to robotics
and 3D games development [4–7]. As an example, self-driving vehicles use the images captured
from multiple cameras to provide 3D mapping and 3D obstacle detection to navigate in complex
environments [8]. Häne et al. [9] employed several low-cost cameras to achieve 360-degree coverage
and an accurate multi-view stereo. Their software stack is based on the Robot Operating System
(ROS) framework and they applied multi-view geometry and 3D geometric mapping to navigate in
multi-level structures. A similar work is presented in Cui et al. [10], where the authors presented
a real-time dense geometric mapping algorithm for 3D scene perception for self-driving vehicle.
Milella and Reina al. [11] implemented a 3D scene reconstruction from a multi-baseline stereo frame,
classifying the scenes into navigable and non-navigable areas.

Regarding 3D reconstruction methods, the most commonly found in the literature are those based
on multiple views. In other words, where views are captured from a scene or an object, as an offline
method, also called Multi-View Stereo (MVS). Other commonly seen methods are the real-time dense
Simultaneous Localization and Mapping (SLAM) [12,13]. The first one, even producing exciting results
in the point cloud quality, was not conceived for real-time applications and is very heavy and node in
most cases. On the other hand, the second kind is based on SLAM, proposing a motion tracking in
real-time while also mapping the environment. It generates a dense reconstruction through the frames
sequentially acquired, and also demands the use of a GPU in many cases [14–16].

The number of devices required in these reconstruction processes could be exceptionally large
and with different types of architectures. Therefore, an orchestration is necessary to gather [17]
information from these devices and to produce a synchronized differentiated result from these
nodes. This issue is common in IoT architectures, where many devices with limited computational
power are distributed along with the network [18–20]. Those limited devices need strategies to
allow the tasks distribution without affecting the data’s capability. As mentioned in the case study
presented in [21], edge computing platforms can be classified as (i) resource-rich servers deployed at
the edge; (ii) heterogeneous edge nodes and edge-cloud federation; and (iii) based upon their classes
and architectures.

Note that 3D reconstruction through cloud-based images faces challenges, such as large size and
number of photos to upload and delay. A prominent solution is the use of heterogeneous edge nodes
deployed close to end-users to provide cloud-computing capabilities. Heterogeneous edge nodes
are useful architectures to tackle issues where the configuration requires different kinds of devices to
provide successful results. Usually, the sensor’s devices that compose this type of architecture can be
seen as IoT devices, where many different sensors with limited resources are connected to a network.
This is the case where devices, such as robots and cameras, are utilized to gather data to process and
provide accurate information to an application (e.g., 3D reconstruction).

Therefore, this paper presents a research contribution workthat is characterized by heterogeneous
edge nodes, as a computational environment, to provide data to a dense 3D reconstruction application.
3D online reconstructions using two sets of moving cameras are proposed to demonstrate methodology
effectiveness. In this scenario, cameras are positioned at the edge to gather the data and perform the
initial processing steps. Then, the data are forwarded to the fog using Robot Operating System (ROS)
publisher-subscriber structure. More sophisticated data processing is performed in the fog, enabling the
development of complex sensor architectures with limited resources at the edge, overcoming issues
in state-of-the-art. Our experiments indicated an interesting set of aspects and issues considering
this heterogenous edge configuration. This is a particularly relevant contribution, since, for instance,
IoT software application developers are facing more heterogeneous and complex environments.



Sensors 2020, 20, 5296 3 of 20

The rest of this paper is organized as follows. In Section 2, we present concepts and related
work to 3D reconstruction and heterogeneous edge environments. The 3D reconstruction proposed
application is described in Section 3. In Section 4, the experimental scenarios and results are explained.
Finally, the conclusions and future work are presented in Section 5.

2. 3D Reconstruction, Heterogeneous Edge Environments, and Related Work

This section presents concepts related to the 3D reconstruction, in addition to heterogeneous edge
environments. It also presents related works providing a view of other efforts. The goal is to provide in
parallel technical aspects and challenges. This is especially relevant to illustrate other projects related
to reconstruction, and the computational paradigm adopted to support our research proposal.

2.1. 3D Reconstruction

3D reconstruction can be conceived in several directions. One method is based on multiple images
with different points of view to obtain the depth measurements, generate point clouds, and track
camera position and orientation in a scene. This method is coined as Structure from Motion (SfM),
which generally works by generating and tracking sparse feature-based models from different points of
view [12]. Schönberger and Frahm [13] present in their work a review and an algorithm that improves
the incremental SfM for unordered images. The authors claim that this is the most popular method
for the problem. The algorithm, with an open-source version (called Colmap [22]), aims to improve
robustness, accuracy, completeness, and scalability obtained through the application of scale invariante
feature transform (SIFT) descriptors as features to be matched [23]. Their results are interesting when
compared with state-of-the-art methods, achieving detailed reconstructions, suggesting that the usage
of features would help to complete a better reconstruction [13,24,25]. However, the time consumption
is a constraint even using facilities such as GPU and clusters [26]. This can be explained since the
dense reconstruction step is slower than the sparse step and other methods, such as dense SLAM
based reconstruction.

Regarding the monocular Simultaneous Localization and Mapping (SLAM) methods, they were
developed as an alternative with great focus in real-time solutions. In this subgroup, there are
several techniques offering different features. Their approach follows basically the same steps:
acquiring consecutive images; aligning those images; detecting loop closures; and global model
alignment [27]. MonoSLAM [28] was the first to achieve real-time localization and mapping, using just
one camera and obtaining a sparse model as a result. However, the first live dense reconstruction
system, working also with a single camera, was coined as Dense Trancking and Mapping (DTAM),
by Newcombe et al. [14]. These methods adopted the overlapped images to generate and minimize
a cost function based on photometric error. It aligns a dense model from a whole image to a given
dense model of a scene. The goal is to track the camera motion, updating and expanding the global
model densely.

The previous results inspired other works not using the single monocular camera approach
anymore, but RGB-D or stereo cameras. The RGB-D sensor, as the name suggests, is composed by
an RGB camera and a depth sensor, and is based on two types of technology: the Structured Light
Sensor, with its main examples being the Microsoft Kinect, Orbbec Astra, and ASUS Xtion PRO,
and the more modern type, the time-of-flight, such as Microsoft Kinect II [15,29,30]. On the other hand,
stereo cameras are composed of two RGB cameras, using a stereo disparity technique to estimate depth
instead of measuring it [31,32]. Therefore, it is possible to use stereo cameras (or a stereo camera rig)
for 3D reconstruction, as it is reported in [33].

Works in the literature clearly show advancements with RGB-D cameras, as is the Kinect Fusion
reconstruction system of Newcombe et al. [15], which was the first to densely reconstruct in real-time
using a Kinect sensor and a GPU parallel processing algorithm. Its pipeline is divided into a first
step of capturing the sensor measurements, generating a vertex and normal map from the depth map.
Next, the Iterative Closest Point (ICP) algorithm is used to refine the camera pose for the current frame,



Sensors 2020, 20, 5296 4 of 20

being the result integrated into the global model through Truncated Signed Distance Function (TSDF).
Finally, the TSDF is used on the generated surface, producing an estimated frame to be used as a
comparison to the next image acquisition.

In the same direction, there is the Elastic Fusion (EF) algorithm, produced by Whelan et al. as
a more map-centric approach [34]. Similar to the Kinect Fusion, this one utilizes an RGB-D camera
and Compute Unified Device Architecture (CUDA) parallel programming generating a surfel-based
reconstruction in real-time [35,36]. These surfel elements compose the 3D model and carry the
information of pose, normal, RGB colors, weight, element radius, and timestamps for the process
initialization, and the last frame acquired. The pose estimation is done through the minimization of
a cost function. This is composed of an element of photometric error carrying the RGB information,
and another of geometric error, carrying the depth map information—thus obtaining the motion
parameters for the current frame. They also applied an active or inactive strategy to determine whether
the surfel is going to be used for tracking and fusion or not. For the global loop closure, it stores a
randomized fern database for further application in place recognition. If a match is detected, the views
are registered together and, if they are globally and geometrically consistent, the map is deformed
non-rigidly. In [12], it is stated that this method is robust and accurate, in the tracking and mapping
steps when compared with the other state-of-the-art methods.

Similar principles are found in the Bundle Fusion [37], which also uses the cost function of EF,
but with the addition of feature-based parameters obtained from a sparse cloud to obtain the pose
alignment. As it is reported in [12], they tried to improve the localization problems found in the
previous methods. This is achieved by the independence of temporal coherence, making a robust
re-localization system even with sensor occlusion or sudden movements. However, it is also mentioned
that, although it has superior performance, the method still suffers when facing sudden movements or
different paths, which generates misalignments in the registered model. As shown before, there is a
global misalignment problem due to localization estimation errors. As a result, it is also valid to cite
the work from Ibragimov and Afanasyev [38]. The authors claimed that the odometry results obtained
by the stereo camera ZED were reasonable when compared to a LIDAR sensor, and superior when
also compared with another state-of-the-art SLAM technique, ORB-SLAM, which is feature-based, fast,
and accurate [39,40]. This result suggests that the odometry obtained with stereo cameras can be used
as an alternative to mitigate errors in global model alignment.

Desspite superior performance on Visual Odometry (VO), other works present the relevant errors
in many applications when comparing point clouds’ accuracy generated from structured light and
stereo sensors. In [41], several cameras are analyzed and compared in length and area accuracy in
terms of pixel coefficients. Even though the ZED camera presents good and sometimes the best results
in outdoor applications, there are more flaws and inaccuracies in close objects, with depth deviations
that lead to wrong measurements of volume and area. Note that some works use both stereo and
RGB-D cameras to reconstruct the environment to mitigate the issues and use the best of both worlds.

The work of [42] fuses data from RGB-D, thermal, and ZED cameras to obtain reliable point
cloud and odometry using the KinectFusion algorithm and its further ICP method plus the ZED VO,
filtered through an extended Kalman filter. Results discuss better scenarios than only using one of
the methods and more reliable point clouds from the structured light sensor. In [43], the authors used
a pair of Kinect cameras to get stereo capabilities from both RGB cameras and the infrared sensor
measurements as usual. They used Markov probability functions and GPU parallel processes to predict
the best odometry and disparity map from sequential frames. They fused RGB-D and stereo point
clouds to complement each other in the scene reconstruction. While both works provide background
on the use of sensor fusion, they require computer effort and are not meant to be implemented in an
edge-fog environment, but only a local machine, which can distribute the workload and facilitate the
interaction with many sensors and the final user.



Sensors 2020, 20, 5296 5 of 20

In order to test this last hypothesis, this work compares the performance of the hybrid sensors
approach in a heterogeneous edge environment against the EF, a cutting-edge method in the literature
for RGB-D dense SLAM [34].

2.2. Heterogeneous Edge Environment

In the last few years, several studies have proposed different classification architectures applied
for edge computing platforms. This work considered an edge architecture classification found in
the research work presented in [21], where the authors observed that the edge of the network is not
clearly defined, and the nodes expected to participate at the edge may vary, and the terminology to
describe the edge differs greatly, with the same term being used to define different architectures and
functionalities. Therefore, they classified these architectures into three categories based on common
features of deployments , and features from different categories can be combined with others. Finally,
edge architectures were classified as [21]:

• Resource-rich servers deployed close to the end-devices: In this category, the end users connect to
resource-rich servers on the network, thus being an option for running edge computing platform.
For instance, the authors in [21] cite the cloudlets deployed on WIFI access, which are based on
Virtual Machines (VM). They presented an example of the Google Glass, where the data acquired
by the sensors are processed on the cloudlet to provide real-time assistance.

• Heterogeneous nodes at the edge: This category encompasses different types of resources. As an
example, the authors of [21] indicated the use of FOG platforms with heterogeneous nodes
processing data for applications.

• Federation of resources at the edge and centralized data centers: This category employs edge devices
to provide services both locally and in cloud environments. In addition, the services can be
distributed throughout the Internet in a flexible infrastructure.

In the last few years, a few efforts have been performed to assist 3D reconstruction and
computation approaches, such as in [44–46]. In [44], an integrated workflow is proposed where
a collaborative online system is used to both reconstruct and publish a Virtual Reality (VR) scene,
accessible via Web, from a collection of shared photos. On the other hand, an interesting work
presented in [45] states several contributions in the context of robotic map building and dealing with
change. The works presented in [46] introduces a complete workflow that allows the generation of
3D models from point clouds of buildings and extracts fine-grained indoor navigation networks from
those models, to support advanced path planning for disaster management and navigation of different
types of agents.

In this work, we considered a heterogenous edge-fog environment to support a 3D reconstruction
case study because it is an interesting architecture to tackle issues where devices, such as cameras
and a computer node, are utilized to gather data to compute and process in an accurate fashion to a
virtual application.

3. The 3D Reconstruction Proposal

The 3D reconstruction is a problem solved through SLAM, which means that it is necessary to
estimate the sensor motion and register the point cloud in a global model. Every acquired frame
generates a point cloud to be fused to this model based on the camera tracked position. To achieve that,
we have coupled a stereo camera to an RGB-D camera, connecting them to a computer, configuring the
acquisition system. All data acquisition and pre-processing to be delivered to the registration system
occur in this node. All communications between processes and devices are done through the
publisher-subscriber model utilizing the ROS framework. Figure 1 illustrates a general model of
the edge-fog environment. The acquisition system is a worker at the edge, and the accumulation
system is the farmer node, which will process the major amount of data.



Sensors 2020, 20, 5296 6 of 20

Figure 1. General model of the edge-fog environment.

3.1. Acquisition System

The main goal of this edge worker node is to capture images to build the point cloud and estimate
the sensor’s movement. Figure 2 shows how the acquisition system works, composed of both cameras
as its sensors. The stereo is used to estimate the movement of the sensors through VO, nicely explained
in [31], based on the results obtained in [38]. The images are acquired and processed by the ROS
package. This publishes the odometry in quaternion format for the rotation and offsets vector for
translation, all with respect to the initially acquired frame of the left lens, set as the reference. On the
other side, we have another edge device, the RGB-D camera, which is responsible for acquiring and
publishing RGB and Depth images through its own ROS node.

Each camera system, i.e., RGB-D and stereo, has its cloud point generation software. In this sense,
each device driver’s point cloud will be produced with the original factory accuracy, ensuring that
image synchronization is not an issue. This is important to perform because this type of synchronization
in software is not simple, and even the usage of a global shutter would be an issue across multiple
devices in a variable latency environment.

Visual odometer is also obtained from the ZED camera driver, which ensures 0.35% translation
drift and 0.023◦/m without loop closure. The differences in odometry will be compensated by the
ICP method. It is possible to argue that over time these values will increase. However, the ICP
transformation matrices could also be stored in such a case.

The central node, illustrated in Figure 2, is an important element for the project. This is the
place where the point cloud generation and synchronization with its respective odometry take place.
After that, the data are published in separate topics, making it available for subscription for the viewer
and for the accumulation system. Its operation is detailed in Section 3.2.



Sensors 2020, 20, 5296 7 of 20

Figure 2. Acquisition system.

3.2. Accumulation System

First, it is essential to notice that each camera has internal shutter synchronization, meaning that
the point clouds are generated independently by the RGB-D and stereo cameras’ systems. In this
sense, there is no need to perform any external image synchronization. This is important because
performing this type of synchronization without global shutter availability is complex and usually
leads to poor results.

The accumulation system is responsible for processing a large amount of data. Figure 3 provides
an idea behind the process. It first subscribes to the ROS topics to get the synchronized odometry and
point clouds. Next, it must check whether it is the first message or not to start the accumulation. If it is
the first, the received point cloud is accumulated directly and taken as reference. Otherwise, the clouds
are passed to an ICP algorithm.

The ICP process was developed using the Point Cloud Library (PCL). The process uses Random
sample consensus (RANSAC) applied to the incoming point cloud to find the transformation that
produces the proper transformation. The odometry is used as an initial guess to discover the best rigid
transformation that fits the new cloud to the last entry [47]. Since odometry is used as an initial guess,
the distance among the clouds should be minimal, thus increasing the likelihood of success in the
RANSAC method. The fitness score produced by the ICP is outputted for the user. However, there is
no additional guarantee that sensors’ outputs are adequately aligned.

The alignment explained, despite being simple, is quite effective. Once the cloud is aligned,
the last cloud entry is stored and used at this point instead of the whole accumulated one. This is
performed to avoid the increase in processing time when the last one gets larger. Once the rigid
transformation is obtained, it is applied to the points of the new cloud to be added to the global model
(accumulated cloud).



Sensors 2020, 20, 5296 8 of 20

Figure 3. Accumulation approach.

3.3. Heterogeneous Edge-Fog Environment

After establishing the previous components, the edge-fog paradigm is well defined.
The acquisition system is the worker at the edge, with a light amount of data to process,
providing information to be densely processed by the farmer node. Figure 4 shows two scenarios,
called machines I and II. Edge devices, i.e., stereo and RGB-D cameras, process their task, and send the
results to a local central node, compounding the Machine I.

Meanwhile, Machine II is characterized as the fog node, which can receive data from several
different edge nodes. Adopting this edge-fog architecture, the main goal was to divide the workload,
taking the more massive processes to be done far from the acquisition. Therefore, it was possible to
determine whether the task is feasible or not. In addition, it is possible to implement the acquisition as
an embedded system. This is an important element for future applications, such as 3D reconstructions
with a larger amount of data or even inspections with drones.



Sensors 2020, 20, 5296 9 of 20

Figure 4. Components of the heterogeneous edge-fog environment.

4. Experimental Scenarios and Results

In this section, we present experimental scenarios, where the edge devices are characterized by
different types of cameras in terms of hardware, software, and functions. Therefore, fog environments
were formed through different heterogeneous edge devices. It is also important to mention the diverse
software from each device, which reinforces a heterogeneous ecosystem. Since the presented work has
a considerable number of steps, several different tests were required for evaluation. To achieve that,
scenarios were developed, using a robotic arm to generate controlled paths, and having the end-effector
pose used as ground truth. Figure 5 shows the primary environment test scenario. The Kuka YouBot
robot is supporting two different cameras with different software packages.

It is important to report that the environment material used for the development and evaluation
of the scenarios is comprised of:

• StereoLabs ZED stereo camera.
• Orbbec ASTRA RGB-D camera.
• Machine I was a computer Core i7-7700 CPU 3.60 GHz with 16 GB of RAM memory and an

NVIDIA GeForce GTX 1050 Ti.
• Machine II was a computer Core i7-6820 CPU 2.70 GHz with 16 GB of RAM memory and an

NVIDIA GeForce GTX 1070.
• A Kuka YouBot robot, was utilized as a robotic arm to support the two cameras.
• An American football ball used to be reconstructed in a prepared scenario.

In addition to the physical equipment, we utilized the following ROS packages:

• Package ZED_ROS_wrapper [48].
• Package Astra_camera [49].
• Package Openni2_launch [50].



Sensors 2020, 20, 5296 10 of 20

Figure 5. Test scenario.

4.1. First Scenario—Path Format Evaluation

In this scenario, two different trajectories to be performed by the robot and followed by the
odometry system were defined. We are interested in evaluating if the VO is capable of tracking the
sensors in curved paths. In the effort to program paths, it was first necessary to obtain the robot’s
forward kinematics. To achieve this goal, the Denavit-Hartenberg algorithm was applied. Once with
the forward kinematics, it was possible to get the inverse one, used to set a path to be followed,
and receive the joint angles to be applied in the robot. With that done, we set a circular and an
arc-shaped trajectory, being the first to evaluate with a static depth and the other with varying depth.
The odometry measurement was successful in both cases, as shown in Figures 6 and 7. However, it is
noticed that there is an error among the arrows and the circular path performed by the robot. This leads
to the next scenario, an evaluation of this error.

Figure 6. Circular path, in blue, and sensor’s poses in magenta.



Sensors 2020, 20, 5296 11 of 20

Figure 7. Arc-shape path with varying depth measures.

4.2. Odometry Error Evaluation

In this scenario, the main goal is to quantify the error between the odometry and the robot’s
path. To achieve that, we synchronized the VO and the robot’s end-effector readings (considered as
the ground truth in the scenario), taking into consideration the distance between the gripper and the
stereo camera’s left lens. In that way, six measures were taken to be evaluated for the circular trajectory
and seven for the arc-shape one. The errors were calculated by taking the differences between each
coordinate in every position. The results are presented in Tables 1 and 2 ahead, presenting the difference
between the VO and the ground truth, the average µ, and standard deviation σ for each coordinate.

The errors found comparing the VO with the ground truth were in a millimeter order of magnitude,
agreeing with [38], which was considered a good initial guess for the ICP algorithm prior to point
cloud accumulation. However, the error exists, and its effects in the point cloud have to be analyzed.

Table 1. Position error for the circular path (mm).

Points P1 P2 P3 P4 P5 P6 µ σ

X 0.0002 1.3045 −1.4295 −6.0600 −7.7983 −0.4640 −2.4079 3.6527

Y −0.1291 1.3241 1.8884 −2.5900 −5.9095 −5.7577 −1.8623 3.4441

Z 0.1530 0.6897 2.5990 2.3022 4.0891 7.2546 2.8479 2.5784

Table 2. Position error for the arc-shape path (mm).

Points P1 P2 P3 P4 P5 P6 P7 µ σ

X −0.2842 4.8284 5.8949 6.7364 7.5845 7.0788 5.4866 5.3322 2.6531

Y 0.0854 0.8135 1.0923 0.2270 −0.8132 −2.0117 −2.7256 −0.4760 1.4413

Z 0.2930 2.4786 6.2703 10.0553 12.5111 12.6021 13.4857 8.2423 5.2964



Sensors 2020, 20, 5296 12 of 20

4.3. Point Cloud Construction Analysis

By using the proposed edge-fog architecture, it is possible to have several algorithms running
comitantly in different fog nodes focusing on enhancing quality but without losing performance.
This approach’s advantage is demonstrated in a 3D reconstruction problem with a featureless white
background that will be tested and analyzed by using different typologies.

Regarding the comparison, the first configuration is a simple point cloud accumulation using the
Visual Odometry Adjustment. The result is shown in Figure 8 and demonstrates that the white panel
and the ball were distorted during the process. At the second configuration, the EF method was used,
as a fog node, in the same scenario representing a state-of-the-art Dense SLAM solution. The results are
presented in Figure 9 and can be noticed that, although the instantaneous point clouds were smooth,
with high quality in detail due to its loop closures and deformation, it also had tracking problems,
generating a considerable deformation in the registered point cloud, marked in red. The blue circle
shows the problem of misalignment between depth and color frames. These results reinforced the
hybrid sensor application. The model quality is improved thanks to the RGB-D camera. The biggest
problem occurred due to the sensor tracking, which happened although the high processing cost and
could be noticed qualitatively. Finally, a serial composition between the VO and ICP algorithms was
tested, and the result is shown in Figure 10. It is possible to see better registering adjustment and
visual smoothness.

These scenarios have demonstrated that it is possible to use different algorithms, change the
information flow, and impact the final result, but not in the final performance.

Figure 8. Registered point cloud with only VO adjustment.

Figure 9. Registered point cloud with elastic fusion adjustment.



Sensors 2020, 20, 5296 13 of 20

Figure 10. Registered point cloud with ICP adjustment, using VO result as the first guess.

4.4. Edge-Fog Environment Analysis

In this section, we discuss the edge-fog as an infrastructure architecture framework.
Therefore, we show evaluations in two dimensions. The first approach was related to the previous
reconstruction scenarios and their execution times inside the edge-fog environment compared to
an ordinary LAN. The other dimension concerns the challenges with the heterogeneous software
packages. A 3D reconstruction experiment illustrates the first test, considering the previous circular
path, reconstructing a point cloud of a million points with the distributed system with two machines,
and with only one machine system using a local communication. The process was executed ten times
for each system. Table 3 shows the obtained results, where one can see that it is possible to use the
distributed system at the expense of processing time. It occurs due to the message exchanging time
through a LAN network being slower than when locally processed. However, the results have shown
a significant reduction in RAM use by 400 MB, which reinforces that the application in an embedded
system is possible.

Table 3. Processing time for local (L) and edge-fog (E–F) distributed environment.

Time (s) T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Av. σ

Local 30.0 34.0 40.0 33.0 34.0 33.0 34.0 32.0 37.0 38.0 34.5 3.0

Edge 82.7 77.4 86.1 87.9 83.0 82.8 87.9 80.9 84.6 85.3 83.9 3.2

Fog 27.3 32.6 22.9 22.1 28.0 21.2 26.1 21.1 22.4 21.7 24.5 3.8

More details about the experiments can be found in the videos posted on the following links for
the circular [51] and arc-shaped path [52], respectively: The second dimension was a tacit experience
concerning programming the heterogeneous software from the different edge nodes. Challenges were
found in the edge camera nodes, where several required dependencies from each software exist in
the programming development. It is not straightforward to gather pieces from those heterogeneous
edge nodes for them to interoperate. References [48–50] are important pillars to support a software
development for these IoT devices as a unique environment. Therefore, our empirical experiments
indicated, through these heterogeneous edge node environments, issues related to programming IoT
software systems compared to conventional systems architectures.

4.5. Manual Movement Track Experimentation

A second test was carried out to demonstrate the architecture operation in a more realistic
environment. In this test, the camera was manually moved along a path around the object to be
reconstructed. Figure 11 shows the odometry movement.



Sensors 2020, 20, 5296 14 of 20

Figure 11. Manual camera movement.

A complete reconstruction of the inspected object was carried out using the proposed model.
Figure 12 presents some RGB images from various angles. The reconstructed model is shown in
Figure 13. Note that Figure 13a–c are the point clouds of the RGB camera. Figure 13d is the output of
the method, which is the cloud of combined points. As it can be seen, it was effective in combining
clouds using the odometry provided by the stereoscopic camera.

Figure 12. Captured images. (a) initial; (b) middle; (c) middle; (d) end.



Sensors 2020, 20, 5296 15 of 20

Figure 13. Reconstructed model. (a) initial; (b) middle; (c) middle; (d) end.

In each reconstructed point cloud, there are 214,054 points resulting in approximately 10 MB.
As in the previous experiments, two tests were performed: in the first one, the processing was carried
out entirely in Edge and the second one shared between Edge and Fog. These results are shown in
Tables 4 and 5, respectively. In this case, the processing time was evaluated considering the processing
time of each sample received by the camera, and the edge/fog considering the time for processing
each sample in the fog. The CPU usage was sampled on average across all samples. A 100 MB ethernet
network was used so that latency did not significantly interfere with processing times.

Table 4. Fully edge processing.

Local Processing Time %CPU Network Usage

Edge 360 ms 60% 0%

Table 5. Shared edge/Fog processing.

Local Processing Time %CPU Network Usage

Edge 100 ms 10% 88%

FOG 100 ms 10% 88%

Note in the data that the application of shared processing was able to reduce the total processing
time, still improving the computational load at the edge, allowing more activities to be performed,
or even less energy consumption.

4.6. Latency and Throughput Analysis

Considering a point cloud with NP points, where three positions represent each point, one for each
axis, and variable Cc for the number of color channels, (i.e., one channel for luminance, two channels
for luminance and matrix, and three for luminance matrix and saturation), we can estimate the size of
an uncompressed point cloud size by Equation (1), where f represents the frame rate the data type of
the position variable (e.g., float or double), and the number of bits of the color channel is 8:

CloudSize = Np · f (̇3 · PT + Cc · 8) (1)



Sensors 2020, 20, 5296 16 of 20

Using this formula for a fixed frame rate of 1, and varying sizes of the point cloud, from 256 × 256
up to 1280 × 720, we can plot the data usage required from a network, as shown in Figure 14. As can be
noticed, the data usage requirement can grow fast for a fully colored cloud in a reasonable resolution.

Figure 14. Data usage requirements for uncompressed point cloud in accordance with the number of
points and datatype.

It is possible to estimate the impact of latency in the number of sensors being used for a few
specific situations. Using a round trip time in ms (RTT) and a given maximum size segment of data
(MMS) and considering that there are no lost packets, we can estimate the maximum throughput using
Equation (2):

Throughput =
MSS

(RTT/1000)
(2)

Then, combining Equations (1) and (2) for a fixed set of conditions, it is possible to estimate the
number of possible sensors simultaneously. Figure 15 shows this situation for a fixed MSS of 64 kb
and 3 color channel cloud with 256 × 256 points. Figure 16 shows the same situation for a cloud
with 640 × 480 points. Despite the different number of sensors, it is possible to notice that these drop
dramatically if latency increases significantly. This behavior is expected, once latency tends to limit the
amount of data transmission and point clouds are very intense in this regard. This only increases the
requirement for a fog node to optimize data if further transmission is required. It is also possible to
notice that, with a robust router, or network cables, it is possible to use this configuration between fog
and edge with quite a few sensors.

Figure 15. Number of sensors for varying latency and bandwidth for 256 × 256 point clouds.



Sensors 2020, 20, 5296 17 of 20

Figure 16. Number of sensors for varying latency and bandwidth for 640 × 480 point clouds.

5. Conclusions and Future Work

In this paper, we presented a new hybrid approach for 3D reconstruction based on stereo
visual odometry allied with the RGB-D dense point cloud. It is also presented as a solution for
embedded system applications, separating the acquisition from the registration processes in a
heterogeneous edge-fog distributed system. The hybrid sensor approach guaranteed reasonable
odometry information, allowing the ICP algorithm to refine it for the point of cloud fusion.
Results obtained for the tested trajectories have overcome an Elastic Fusion fused point cloud,
which had a duplication due to sensor tracking problems when going through circular paths.

Heterogeneous edge-fog infrastructure results have shown the possibility of applying the
acquisition step at the edge, raising future inspection applications with terrestrial robots, or even
unmanned aerial vehicles. This feature is reinforced due to ROS framework use, which simplifies the
system installation and grants a scalability degree to the system.

As future work, it is in the plans to tackle issues and limitations found during our experiments,
for instance adopting new features available to edge-fog environments such as block chain
methodologies, and demonstrate by using real applications that need these approaches.

Author Contributions: L.A.Z.d.S.—Data curation, Investigation, Software; V.F.V.—Validation, Software,
Investigation; L.M.H.—Funding acquisition, Project administration, Supervision, Writing—review and editing;
M.A.R.D.—Methodology, Writing—original draft, Supervision; M.F.P.—Formal analysis, Validation, Visualization,
Writing—review and editing; M.C.—Supervision, Validation, Visualization and Writing—original draft.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by CAPEs, CNPq, TBE, EDP and ANEEL—The Brazilian Regullaroty Agency
of Electricity by grant number PD-02651-0013/2017.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Duan, P.; Pang, L.; Jin, Y.; Guo, Q.; Jia, Z.X. Equipment maintenance system based on virtual reality
technology. In Proceedings of the 2012 International Conference on Quality, Reliability, Risk, Maintenance,
and Safety Engineering, Chengdu, China, 15–18 June 2012; pp. 1396–1399.

2. Qing, H. Research and application of virtual reality technology in mechanical maintenance. In Proceedings
of the International Conference on Advanced Technology of Design and Manufacture (ATDM 2010), Beijing,
China, 23–25 November 2010; pp. 1396–1399.

3. Harjoko, A.; Hujja, R.M.; Awaludin, L. Low-cost 3D surface reconstruction using Stereo camera for small
object. In Proceedings of the 2017 International Conference on Signals and Systems (ICSigSys), Sanur,
Indonesia, 16–18 May 2017; pp. 285–289.



Sensors 2020, 20, 5296 18 of 20

4. Zhang, M.; Zhang, Z.; Li, W. 3D model reconstruction based on plantar image’s feature segmentation.
In Proceedings of the 2017 International Conference on Progress in Informatics and Computing (PIC),
Nanjing, China, 15–17 December 2017; pp. 164–168.

5. Kontogianni, G.; Koutsaftis, C.; Skamantzari, M.; Georgopoulos, A.; Chrysanthopoulou, C. Developing and
Exploiting 3D Textured Models for a Serious Game Application. In Proceedings of the 2016 8th
International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES), Barcelona,
Spain, 7–9 September 2016; pp. 1–4.

6. Shcherbinin, D. Virtual Reconstruction and 3D Visualization of Vostok Spacecraft Equipment. In Proceedings
of the 2017 International Workshop on Engineering Technologies and Computer Science (EnT), Moscow,
Russia, 28 September 2017; pp. 56–58.

7. von Stumberg, L.; Usenko, V.; Engel, J.; Stückler, J.; Cremers, D. From monocular SLAM to autonomous
drone exploration. In Proceedings of the 2017 European Conference on Mobile Robots (ECMR), Paris, France,
6–8 September 2017; pp. 1–8.

8. Heng, L.; Choi, B.; Cui, Z.; Geppert, M.; Hu, S.; Kuan, B.; Liu, P.; Nguyen, R.; Yeo, Y.C.; Geiger, A.; et al.
Project autovision: Localization and 3D scene perception for an autonomous vehicle with a multi-camera
system. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal,
QC, Canada, 20–24 May 2019; pp. 4695–4702.

9. Häne, C.; Heng, L.; Lee, G.H.; Fraundorfer, F.; Furgale, P.; Sattler, T.; Pollefeys, M. 3D visual perception for
self-driving cars using a multi-camera system: Calibration, mapping, localization, and obstacle detection.
Image Vis. Comput. 2017, 68, 14–27.

10. Cui, Z.; Heng, L.; Yeo, Y.C.; Geiger, A.; Pollefeys, M.; Sattler, T. Real-time dense mapping for self-driving
vehicles using fisheye cameras. In Proceedings of the 2019 International Conference on Robotics and
Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6087–6093.

11. Milella, A.; Reina, G. 3D reconstruction and classification of natural environments by an autonomous vehicle
using multi-baseline stereo. Intell. Serv. Robot. 2014, 7, 79–92.

12. Jamiruddin, R.; Sari, A.O.; Shabbir, J.; Anwer, T. RGB-depth SLAM review. arXiv 2018, arXiv:1805.07696.
13. Schonberger, J.L.; Frahm, J.M. Structure-from-motion revisited. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113.
14. Newcombe, R.A.; Lovegrove, S.J.; Davison, A.J. DTAM: Dense tracking and mapping in real-time.

In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November
2011; pp. 2320–2327.

15. Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.; Hodges, S.;
Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011
10th IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October
2011; pp. 127–136.

16. Whelan, T.; Kaess, M.; Johannsson, H.; Fallon, M.; Leonard, J.J.; McDonald, J. Real-time large-scale dense
RGB-D SLAM with volumetric fusion. Int. J. Robot. Res. 2015, 34, 598–626.

17. Alves, J.M.; Honorio, L.M.; Capretz, M.A. ML4IoT: A Framework to Orchestrate Machine Learning
Workflows on Internet of Things Data. IEEE Access 2019, 7, 152953–152967.

18. Pinto, M.F.; Marcato, A.L.; Melo, A.G.; Honório, L.M.; Urdiales, C. A framework for analyzing fog-cloud
computing cooperation applied to information processing of UAVs. Wirel. Commun. Mob. Comput. 2019,
2019. [CrossRef]

19. Santos, M.F.; Honório, L.M.; Costa, E.B.; Oliveira, E.J.; Visconti, J.P.P.G. Active fault-tolerant control applied
to a hexacopter under propulsion system failures. In Proceedings of the 2015 19th International Conference
on System Theory, Control and Computing (ICSTCC), Cheile Gradistei, Romania, 14–16 October 2015;
pp. 447–453.

20. Silva, M.; Ribeiro, A.; Santos, M.; Carmo, M.; Honório, L.; Oliveira, E.; Vidal, V. Design of angular PID
controllers for quadcopters built with low cost equipment. In Proceedings of the 2016 20th International
Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 13–15 October 2016;
pp. 216–221.

21. Premsankar, G.; Di Francesco, M.; Taleb, T. Edge computing for the Internet of Things: A case study.
IEEE Internet Things J. 2018, 5, 1275–1284.

http://dx.doi.org/10.1155/2019/7497924


Sensors 2020, 20, 5296 19 of 20

22. Schönberger, J. COLMAP–SfM and MVS. Software. 2018. Available online: https://demuc.de/colmap/
(accessed on 16 September 2018).

23. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
24. Snavely, N.; Simon, I.; Goesele, M.; Szeliski, R.; Seitz, S.M. Scene reconstruction and visualization from

community photo collections. Proc. IEEE 2010, 98, 1370–1390.
25. Snavely, N. Scene reconstruction and visualization from internet photo collections: A survey. IPSJ Trans.

Comput. Vis. Appl. 2011, 3, 44–66.
26. Coro, G.; Palma, M.; Ellenbroek, A.; Panichi, G.; Nair, T.; Pagano, P. Reconstructing 3D virtual environments

within a collaborative e-infrastructure. Concurr. Comput. Pract. Exp. 2019, 31, e5028. [CrossRef]
27. Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006,

13, 99–110. [CrossRef]
28. Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-time single camera SLAM. IEEE Trans.

Pattern Anal. Mach. Intell. 2007, 29, 1052–1067. [CrossRef] [PubMed]
29. Gokturk, S.B.; Yalcin, H.; Bamji, C. A time-of-flight depth sensor-system description, issues and solutions.

In Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop, Washington,
DC, USA, 27 June–2 July 2004; p. 35.

30. Product-Astra. Available online: https://orbbec3d.com/product-astra/ (accessed on 11 June 2020).
31. Solem, J.E. Programming Computer Vision with Python: Tools and Algorithms for Analyzing Images; O’Reilly Media,

Inc.: Sebastopol, CA, USA, 2012.
32. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: New York,

NY, USA, 2003.
33. Geiger, A.; Ziegler, J.; Stiller, C. Stereoscan: Dense 3D reconstruction in real-time. In Proceedings of the 2011

IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 963–968.
34. Whelan, T.; Salas-Moreno, R.F.; Glocker, B.; Davison, A.J.; Leutenegger, S. ElasticFusion: Real-time dense

SLAM and light source estimation. Int. J. Robot. Res. 2016, 35, 1697–1716. [CrossRef]
35. Pfister, H.; Zwicker, M.; Van Baar, J.; Gross, M. Surfels: Surface elements as rendering primitives.

In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques,
New Orleans, LA, USA, 23–28 July 2000; pp. 335–342.

36. Keller, M.; Lefloch, D.; Lambers, M.; Izadi, S.; Weyrich, T.; Kolb, A. Real-time 3D reconstruction in dynamic
scenes using point-based fusion. In Proceedings of the 2013 International Conference on 3D Vision-3DV
2013, Seattle, WA, USA, 29 June–1 July 2013; pp. 1–8.

37. Dai, A.; Nießner, M.; Zollhöfer, M.; Izadi, S.; Theobalt, C. Bundlefusion: Real-time globally consistent 3D
reconstruction using on-the-fly surface reintegration. ACM Trans. Graph. (ToG) 2017, 36, 1. [CrossRef]

38. Ibragimov, I.Z.; Afanasyev, I.M. Comparison of ROS-based visual SLAM methods in homogeneous indoor
environment. In Proceedings of the 2017 14th Workshop on Positioning, Navigation and Communications
(WPNC), Bremen, Germany, 25–26 October 2017; pp. 1–6.

39. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system.
IEEE Trans. Robot. 2015, 31, 1147–1163. [CrossRef]

40. Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras.
IEEE Trans. Robot. 2017, 33, 1255–1262. [CrossRef]

41. Condotta, I.C.; Brown-Brandl, T.M.; Pitla, S.K.; Stinn, J.P.; Silva-Miranda, K.O. Evaluation of low-cost depth
cameras for agricultural applications. Comput. Electron. Agric. 2020, 173, 105394. [CrossRef]

42. Schramm, S.; Rangel, J.; Kroll, A. Data fusion for 3D thermal imaging using depth and stereo camera
for robust self-localization. In Proceedings of the 2018 IEEE Sensors Applications Symposium (SAS),
Seoul, Korea, 12–14 March 2018; pp. 1–6.

43. Williem, W.; Tai, Y.W.; Park, I.K. Accurate and real-time depth video acquisition using Kinect—Stereo camera
fusion. Opt. Eng. 2014, 53, 043110. [CrossRef]

44. Honório, L.M.; Leite da Silva, A.M.; Barbosa, D.A.; Delboni, L.F.N. Solving optimal power flow problems
using a probabilistic α-constrained evolutionary approach. IET Gener. Transm. Distrib. 2010, 4, 674–682.
[CrossRef]

45. Palazzolo, E. Active 3D Reconstruction for Mobile Robots. Ph.D. Thesis, University of Bonn, Bonn,
Germany, 2020.

https://demuc. de/colmap/
http://dx.doi.org/10.1002/cpe.5028
http://dx.doi.org/10.1109/MRA.2006.1638022
http://dx.doi.org/10.1109/TPAMI.2007.1049
http://www.ncbi.nlm.nih.gov/pubmed/17431302
https://orbbec3d.com/product-astra/
http://dx.doi.org/10.1177/0278364916669237
http://dx.doi.org/10.1145/3054739
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1016/j.compag.2020.105394
http://dx.doi.org/10.1117/1.OE.53.4.043110
http://dx.doi.org/10.1049/iet-gtd.2009.0208


Sensors 2020, 20, 5296 20 of 20

46. Nikoohemat, S.; Diakité, A.A.; Zlatanova, S.; Vosselman, G. Indoor 3D reconstruction from point clouds for
optimal routing in complex buildings to support disaster management. Autom. Constr. 2020, 113, 103109.
[CrossRef]

47. Segal, A.; Haehnel, D.; Thrun, S. Generalized-icp. In Proceedings of the 5th Robotics: Science and Systems
2009, Seattle, WA, USA, 28 June–1 July 2009; p. 435.

48. ZED-ROS. Available online: http://wiki.ros.org/zed-ros-wrapper (accessed on 22 June 2020).
49. Astra-Camera. Available online: http://wiki.ros.org/astra_camera/ (accessed on 22 June 2020).
50. Openni2. Available online: http://wiki.ros.org/openni2_launch (accessed on 22 June 2020).
51. Laboratory of Autonomous and Intelligent Robotic Systems at UFJF. 3D Reconstruction through Stereo and

RGB-D Sensor for an Arc-Shaped Path. 2020. Available online: https://www.youtube.com/watch?v=ITB38-
T1MGI (accessed on 14 September 2020).

52. Laboratory of Autonomous and Intelligent Robotic Systems at UFJF. 3D Reconstruction through Stereo and
RGB-D Sensor for a Circular Path. 2020. Available online: https://www.youtube.com/watch?v=c1DaKlm_
xBo (accessed on 14 September 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.autcon.2020.103109
http://wiki.ros.org/zed-ros-wrapper
http://wiki.ros.org/astra_camera/
http://wiki.ros.org/openni2_launch
https://www.youtube.com/watch?v=ITB38-T1MGI
https://www.youtube.com/watch?v=ITB38-T1MGI
https://www.youtube.com/watch?v=c1DaKlm_xBo
https://www.youtube.com/watch?v=c1DaKlm_xBo
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	3D Reconstruction, Heterogeneous Edge Environments, and Related Work
	3D Reconstruction
	Heterogeneous Edge Environment

	The 3D Reconstruction Proposal
	Acquisition System
	Accumulation System
	Heterogeneous Edge-Fog Environment

	Experimental Scenarios and Results
	First Scenario—Path Format Evaluation
	Odometry Error Evaluation
	Point Cloud Construction Analysis
	Edge-Fog Environment Analysis
	Manual Movement Track Experimentation
	Latency and Throughput Analysis

	Conclusions and Future Work
	References

