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Abstract

Chemical control strategies are driving the evolution of pesticide resistance in pest popula-

tions. Understanding the genetic mechanisms of these evolutionary processes is of crucial

importance to develop sustainable resistance management strategies. The acaricide pyflu-

bumide is one of the most recently developed mitochondrial complex II inhibitors with a new

mode of action that specifically targets spider mite pests. In this study, we characterize the

molecular basis of pyflubumide resistance in a highly resistant population of the spider mite

Tetranychus urticae. Classical genetic crosses indicated that pyflubumide resistance was

incompletely recessive and controlled by more than one gene. To identify resistance loci,

we crossed the resistant population to a highly susceptible T. urticae inbred strain and prop-

agated resulting populations with and without pyflubumide exposure for multiple generations

in an experimental evolution set-up. High-resolution genetic mapping by a bulked segregant

analysis approach led to the identification of three quantitative trait loci (QTL) linked to pyflu-

bumide resistance. Two QTLs were found on the first chromosome and centered on the

cytochrome P450 CYP392A16 and a cluster of CYP392E6-8 genes. Comparative transcrip-

tomics revealed a consistent overexpression of CYP392A16 and CYP392E8 in the experi-

mental populations that were selected for pyflubumide resistance. We further corroborated

the involvement of CYP392A16 in resistance by in vitro functional expression and metabo-

lism studies. Collectively, these experiments uncovered that CYP392A16 N-demethylates

the toxic carboxamide form of pyflubumide to a non-toxic compound. A third QTL coincided

with cytochrome P450 reductase (CPR), a vital component of cytochrome P450 metabo-

lism. We show here that the resistant population harbors three gene copies of CPR and that

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009422 June 21, 2021 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Fotoukkiaii SM, Wybouw N, Kurlovs AH,

Tsakireli D, Pergantis SA, Clark RM, et al. (2021)

High-resolution genetic mapping reveals cis-

regulatory and copy number variation in loci

associated with cytochrome P450-mediated

detoxification in a generalist arthropod pest. PLoS

Genet 17(6): e1009422. https://doi.org/10.1371/

journal.pgen.1009422

Editor: Nadia D. Singh, University of Oregon,

UNITED STATES

Received: February 14, 2021

Accepted: May 28, 2021

Published: June 21, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pgen.1009422

Copyright: © 2021 Fotoukkiaii et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Sequence data has

been deposited at the Sequence Read Archive

https://orcid.org/0000-0001-7874-9765
https://orcid.org/0000-0002-9077-7870
https://orcid.org/0000-0002-8704-2574
https://orcid.org/0000-0003-4651-830X
https://doi.org/10.1371/journal.pgen.1009422
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009422&domain=pdf&date_stamp=2021-07-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009422&domain=pdf&date_stamp=2021-07-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009422&domain=pdf&date_stamp=2021-07-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009422&domain=pdf&date_stamp=2021-07-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009422&domain=pdf&date_stamp=2021-07-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009422&domain=pdf&date_stamp=2021-07-01
https://doi.org/10.1371/journal.pgen.1009422
https://doi.org/10.1371/journal.pgen.1009422
https://doi.org/10.1371/journal.pgen.1009422
http://creativecommons.org/licenses/by/4.0/


this copy number variation is associated with higher mRNA abundance. Together, we pro-

vide evidence for detoxification of pyflubumide by cytochrome P450s that is likely syner-

gized by gene amplification of CPR.

Author summary

Our understanding of the causal genetic variants that drive the evolution of quantitative

traits, such as polygenic pesticide resistance, remains very limited. Here, we followed a

high-resolution genetic mapping approach to localize the genetic variants that cause

pyflubumide resistance in the two-spotted spider mite Tetranychus urticae. Three well-

supported QTL were uncovered and pointed towards a major role for cytochrome P450-

mediated detoxification. Cis-regulatory variation for cytochrome P450s was observed, and

in vitro cytochrome P450 experiments showed that pyflubumide was metabolized into a

non-toxic derivate. A third QTL centered on cytochrome P450 reductase (CPR), which is

required for cytochrome P450 activity, and is amplified in pyflubumide resistant popula-

tions. Our results indicate that pyflubumide resistance is mediated by cytochrome P450

detoxification that is enhanced by gene amplification at the CPR locus.

Introduction

Arthropod herbivores cause over US$450 billion in crop yield loss worldwide [1], and pesti-

cides of various modes of action have been developed to control populations of these pests.

Unfortunately, our past and continuing dependence on chemical control strategies is driving

the evolution of pesticide resistance in pest populations [2]. Pesticide resistance can be

achieved by genetic changes in the molecular target of pesticides (toxicodynamic resistance).

These genetic changes are most often non-synonymous substitutions in coding sequences, but

(dosage sensitive) gene amplification and differential transcriptional regulation have also been

reported, all of which lead to decreased pesticide sensitivity [2,3]. Alternatively, genetic vari-

ants that alter the penetration, metabolism, sequestration, efflux, and excretion of pesticides

can underlie pesticide resistance (toxicokinetic resistance) [2,4]. Multi-gene families such as

cytochrome P450 monooxygenases (CYP), ABC transporters, glutathione S-transferases, and

carboxyl/cholinesterases are often associated with the metabolic changes that lead to toxicoki-

netic resistance. Transcriptomic studies of major global pests have shown that heritable

changes in the transcriptional regulation of detoxification genes often strongly associate with

pesticide resistance [5–8]. However, our understanding of the causal genetic variation that reg-

ulates these transcriptional changes remains limited, and comes disproportionally from insect

model species such as drosophilid fruit flies. Genetic changes in both cis and trans regulation

can alter the transcription of detoxification genes [2]. For instance, in Drosophila melanogaster,
a transposable element insertion in the 5’-UTR region of Cyp6g1 leads to higher transcript lev-

els that underlie resistance to DDT [9,10]. Cis-regulatory variation underpinning the overex-

pression of cytochrome P450s have been found in a number of insects, including the African

malaria vector Anopheles funestus [11,12]. Only infrequently, changes in detoxification gene

dosage has been associated with resistance, as for resistance to organophosphates by esterase

sequestration in insect pests [3,13]. Alternatively, genetic variation affecting the coding

sequence of a detoxification gene can also underlie toxicokinetic resistance. A single point

mutation in the GSTe2 gene of A. funestus results in pyrethroid and DDT resistance [14]. In

dipterans, mutations in the αE7 esterase gene have been found to contribute to a broad
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resistance to organophosphates [15,16], whereas in the moth Helicoverpa armigera, a gene con-

version event generated CYP337B3 which codes for a novel cytochrome P450 that is able to

metabolize fenvalerate [17,18].

The genetic architecture of pesticide resistance can therefore be variable, and can have inde-

pendent evolutionary origins across different pest populations [19–22]. While monogenic resis-

tance is typically toxicodynamic, and can lead to very high levels of pesticide resistance [22–24],

polygenic resistance is nonetheless very common, and has been more challenging to study. For

this mode of resistance inheritance, neither the molecular mechanisms that are involved, nor

their additive or synergistic effects, are well understood. However, the accelerating development

of genetic and genomic resources in diverse arthropods enables high-resolution genetic map-

ping approaches to characterize complex genetic architectures of pesticide resistance [25,26].

One such approach is bulked segregant analysis (BSA) genetic mapping [25]. A BSA approach

relies on crossing parental strains with contrasting phenotypes, bulking (pooling) the segregat-

ing progeny that display phenotypic extremes, and identifying genomic intervals with divergent

allele frequencies across progeny bulks. BSA genetic mapping has been successfully applied in

arthropods to uncover both monogenic and quantitative traits, including pigmentation and

host plant use [23,27–33]. The haplodiploid spider mite Tetranychus urticae is a major global

agricultural pest which rapidly develops resistance to pesticides of various modes of action [34].

As revealed by recent studies, T. urticae is highly amenable to BSA genetic mapping, with QTL,

including for quantitative pesticide resistance, narrowed to small genomic intervals that have

suggested specific candidate genes and causal alleles [29,33]. In some instances, known causal

variants were recovered [35–38], confirming the validity of the narrow genomic intervals identi-

fied by BSA studies using large, highly replicated T. urticae experimental populations [25].

The development of pesticides with novel modes of action is crucial to maintain control

over pest populations that have developed multi-resistance. Pyflubumide is a carboxanilide

acaricide and inhibits mitochondrial complex II, or succinate dehydrogenase. This recently

developed compound is highly selective to spider mite pest species [39,40] and acts as a pro-

acaricide that requires bioactivation into a toxic derivative. Pyflubumide is converted within

the spider mite body into its active deacylated metabolite (carboxamide form, NNI-0711-NH)

that strongly inhibits the mitochondrial complex II through binding to the quinone-binding

pocket [39,40]. In the current study, we characterize the genetic basis of resistance to this novel

acaricide using two resistant T. urticae strains (JPR-R1 and JPR-R2). Target-site resistance is

not involved in high-level pyflubumide resistance in these strains, and synergism/antagonism

bioassays strongly suggested the involvement of cytochrome P450s [41]. In this study, we

employed high-resolution BSA genetic mapping and uncovered three QTL associated with

pyflubumide resistance. In parallel, transcriptomic analyses were conducted on these experi-

mental populations to further characterize the molecular mechanisms of pyflubumide resis-

tance. In vitro functional characterization of the cytochrome P450 CYP392A16, a QTL

candidate, suggested a role for resistance to pyflubumide and its active (deacylated) carboxa-

mide metabolite. Additionally, another QTL interval was centered on cytochrome P450 reduc-

tase (CPR), which is required for cytochrome P450 activity, and is amplified in the resistant

populations. Together, our results indicate that the mechanism of pyflubumide detoxification

involves cytochrome P450 activity enhanced by gene amplification at the CPR locus.

Results

Mode of inheritance of pyflubumide resistance

Previously, we selected a field-collected strain for higher resistance levels to pyflubumide and

obtained two highly resistant strains, JPR-R1 and JPR-R2 [41]. In this study, we first confirmed
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the high levels of pyflubumide resistance and uncovered LC50 values higher than 1,000 mg/L

of pyflubumide for both strains (S1 Table). Reciprocal crosses between resistant (JPR-R1 and

JPR-R2) and susceptible (JP-S and Wasatch) strains revealed that pyflubumide resistance is

not maternally inherited and has an incomplete recessive mode of inheritance (Fig 1 and S1

Table). The dose-response relationships of the two back-crossed populations were significantly

different from the expected curves for a recessive monogenic mode of inheritance (p< 0.001)

[42]. These results indicate that pyflubumide resistance in both JPR-R1 and JPR-R2 was deter-

mined by multiple loci.

Response to pyflubumide selection pressure in an experimental evolution

set-up

To further characterize the genetic architecture of pyflubumide resistance, we crossed a single

haploid JPR-R1 male to diploid females of the susceptible inbred WasX strain. Mortality at 10,

50, 100, and 500 mg/L of pyflubumide was significantly different between JPR-R1 and WasX

(X2 = 41.631, df = 1, p< 0.0001) (Fig 2). The segregating population resulting from the

WasX × JPR-R1 cross was allowed to expand and develop for two months (approximately

three-four generations), after which 11 pairs (22 populations) were set-up and allowed to prop-

agate for approximately 35 generations. In this pairwise set-up, one sister population was

exposed to pyflubumide on sprayed plants (a selected population), whereas the other was

maintained on unsprayed plants (an unselected, control population). After a prolonged selec-

tion with increasing doses of pyflubumide, all populations were phenotyped, revealing that

mortality at four pyflubumide doses was significantly lower for pyflubumide-selected popula-

tions as compared to the control populations (Fig 2) (X2 = 29.4361, df = 1, p<0.0001). Mortal-

ity was also significantly different across the four pyflubumide doses (each p-value< 0.0001).

We subsequently sequenced DNA and RNA from the 22 experimental populations, and

investigated both genomic and transcriptomic responses to pyflubumide selection by a
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Fig 1. Pyflubumide resistance has a polygenic basis in JPR-R1 and JPR-R2. (A) Dose-response relationships of pyflubumide toxicity on JPR-R1, JP-S (circles),

reciprocal crosses (squares), and back-crosses (triangles). (B) Dose-response relationships of pyflubumide toxicity on JPR-R2, Wasatch (circles), reciprocal crosses

(squares), and back-crosses (triangles). Panels show that pyflubumide resistance has an incomplete recessive mode of inheritance in both resistant strains. After back-

crossing, the observed dose-response relationships significantly differ from those calculated under the hypothesis of a recessive monogenic mode of inheritance (p<

0.001) (black versus white triangles, respectively), indicating that pyflubumide resistance is determined by multiple loci in both JPR-R1 and JPR-R2.

https://doi.org/10.1371/journal.pgen.1009422.g001
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principal component analysis (PCA). Using per sample allele frequencies at 214,502 high-

quality SNP loci that distinguished JPR-R1 and WasX, control populations clustered closely

together and the pyflubumide-selected populations were distinct from these controls along

principal component 1 (PC1). Compared to the control populations, pyflubumide-selected

populations were more dispersed; most notably, for an unknown reason, but that might have

resulted from a population bottleneck that can occur in populations under pesticide selection

pressure, population R6 stood out from the other selected populations along principal compo-

nent 2 (PC2) (Fig 3A). Using our RNAseq data that consisted of a single RNA replicate per

experimental population, the genome-wide transcript levels also clearly separated the control

and pyflubumide-selected populations along PC1 (Fig 3B). Considering each experimental

population as a replicate, a total of 413 genes were identified as differentially expressed

between the pyflubumide-selected and control populations (S2 Data).

Genetic mapping uncovers multiple QTL associated with pyflubumide

selection

To locate the genomic regions that underlie pyflubumide resistance in the pyflubumide-

selected populations, we employed a bulked segregant analysis (BSA) approach using high-

quality SNP loci [25,29]. Genome-wide JPR-R1 allele frequencies between pyflubumide-

selected and susceptible (control) populations (Fig 4A) and the matched pairs of populations

(Fig 4B) revealed large deviations in allele frequencies on chromosomes 1 and 2. Using previ-

ously developed permutation-based methods for QTL detection with replicated paired selected

and control populations [29], and with a false discovery rate (FDR) of 0.05, we identified two

QTL on chromosome 1 (hereafter QTL-1 and QTL-2) and one on chromosome 2 (hereafter
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Fig 2. Selection of segregating populations resulted in high levels of pyflubumide resistance. (A) Mortality after exposure to 10, 50, 100, and 500

mg/L of pyflubumide of WasX (W) and JPR-R1 (J) (depicted in blue and orange, respectively), the two parental strains of the BSA cross. Error bars

represent standard errors. Mortality was significantly different at every pyflubumide dose between JPR-R1 and WasX (p< 0.0001). (B) Mortality

after exposure to 10, 50, 100, and 500 mg/L of pyflubumide of control (S1-S11) and pyflubumide-selected (R1-R11) populations (depicted in blue
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https://doi.org/10.1371/journal.pgen.1009422.g002
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QTL-3) in the pyflubumide-selected populations (Figs 4C and S1). In all cases, alleles from the

resistant JPR-R1 parent were selected, and for all pyflubumide-selected populations, near-fixa-

tion of the JPR-R1 haplotype was observed at the peaks of the three QTL regions (S1 Fig). Pop-

ulation R6 exhibited the lowest JPR-R1 allele frequency near the peaks of QTL-2 and QTL-3

(S1 Fig), a finding that is consistent with its lower resistance levels (Fig 2). We also noted two

additional genomic regions where the allele frequency differences nearly exceeded the signifi-

cance threshold (hereafter referred to as subsidiary peaks 1 and 2) (Fig 4C). Finally, a BSA

mapping approach was also performed using informative SNP loci identified via the RNAseq

data. This analysis further confirmed the three QTL, as well as the two subsidiary peaks (S2

Fig). Of the 413 differentially expressed genes (DEGs) detected between the selected and unse-

lected populations, 123 (30.8%) were within the three top QTL genomic intervals defined as

the regions with allele frequencies similar to those of the peaks (at least one of five consecutive

windows having allele frequency values within 0.005 of the peak values). Specifically, 24 DEGs

were located within the top 180 kb QTL-1 region, whereas 25 and 74 DEGs were within the

130 kb QTL-2 and 110 kb QTL-3 genomic intervals, respectively. The linkage information sug-

gests that cis-regulation could play a dominant role in the different expression levels of these

123 DEGs (note that in the three QTL regions there are large differences in the frequency of

the haplotypes from the two parents between the selected and unselected replicates, so cis-
expression QTLs (eQTLs) are expected to be uncovered compared to distant genomic loca-

tions where haplotype frequencies are not significantly different). The RNA levels of the other

(QTL-interval distant) 290 DEGs are presumably trans-regulated, with the different RNA lev-

els controlled by genetic variants within the three QTL regions that genetically differentiate the

selected and control populations.
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https://doi.org/10.1371/journal.pgen.1009422.g003
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Candidate genes for pyflubumide resistance are linked to cytochrome

P450-mediated detoxification

In Tetranychus spider mites, previous BSA studies of similar experimental design revealed that

the average of peaks from replicated paired populations are often within several tens of kb

from causal genes and variants [25,27,33]. Therefore, we examined ~75 kb genomic intervals

that bracket the average of the BSA peaks to detect potential causal candidate genes (Fig 5 and

S2 Data). For QTL-1, the cytochrome P450 CYP392A16 was the only gene in the interval with

a predicted metabolic function that could be readily linked with xenobiotic metabolism of

Fig 4. BSA genetic mapping reveals three QTL for pyflubumide resistance. (A) Frequency of JPR-R1 alleles in the susceptible control (blue lines)

and pyflubumide-selected populations (orange lines) as assessed in a sliding window analysis. (B) Genome-wide differences in JPR-R1 allele

frequencies between the eleven paired populations (R1-S1 to R11-S11), as assessed in a sliding window analysis. (C) Averaged genome-wide difference

in JPR-R1 allele frequency using the eleven paired populations (R1-S1 to R11-S11). Dashed red lines delineate statistical significance for QTL detection

as assessed by a permutation approach (FDR of 5%). In all panels, chromosomes are ordered by decreasing length and are indicated by alternating

shading. Three QTL (QTL-1, QTL-2, and QTL-3) exceed the 5% FDR threshold; two sub-threshold peaks are also labeled (subsidiary peaks 1 and 2).

https://doi.org/10.1371/journal.pgen.1009422.g004
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Fig 5. Genes at significant BSA peaks suggest a prominent role for cytochrome P450 activity in resistance to

pyflubumide. RNAseq read coverage and gene models in ~75kb genomic windows surrounding QTL-1 (A), QTL-2

(B), and QTL-3 (C). (D) Relative DNA coverage and gene models in a ~75kb genomic window surrounding QTL-3.

For all panels, vertical lines indicate the locations of the averaged BSA peaks on the first (A and B) and second

chromosome (C and D). Candidate genes CYP392A16 (A), CYP392E6-8 (B), and CPR (C and D) are highlighted in

yellow and red (exons and introns, respectively). Otherwise, coding exons and introns are depicted as dark gray and

lighter gray boxes, respectively. Symbols + and–denote forward and reverse gene orientations. Coverage is color-coded

according to treatment and strain (legend, top).

https://doi.org/10.1371/journal.pgen.1009422.g005
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arthropods. CYP392A16 was within 10 kb of the averaged BSA peak (Fig 5A), and was one of

three genes within the ~75 kb genomic interval with significantly higher expression in pyflubu-

mide-selected populations compared to controls (S2 Data), a potential signal of cis-regulatory

variation. Specifically, transcript levels of CYP392A16 were ~five-fold higher in pyflubumide-

selected populations (Fig 5A, S3 Fig and S2 Data). DNA read coverage indicated that the segre-

gating populations and the two parental strains had the same copy number of CYP392A16 (a

single copy), ruling out copy number variation (CNV) as underpinning the higher transcript

levels of CYP392A16 (S4 Fig). The ~75 kb genomic interval of QTL-1 also included

tetur06g04470, a gene that codes for a protein that is classified as a member of the AIP/AIPL1

family (IPR039663), a group of proteins that include aryl hydrocarbon receptor (AhR)-inter-

acting proteins. AhR participates in a signaling pathway that induces the transcription of

detoxification genes in insects and changes in this pathway can promote pesticide resistance

[43,44]. However, no significant differential transcription, nor non-synonymous single-nucle-

otide differences were observed for tetur06g04470, suggesting that tetur06g04470 likely does

not contribute to pyflubumide resistance in our strains.

A cluster of three cytochrome P450s, CYP392E6-8, was located very close to the BSA peak

of QTL-2 (Fig 5B), and no other genes with obvious roles in arthropod detoxification were

located in the interval. CYP392E8, which is located only 2 kb from the QTL-2 peak, was the

only gene in the region that exhibited a significant increase in transcription in pyflubumide-

selected populations (a fold change of ~2) (Fig 5 and S2 Data). Although substantial CNV for

this cytochrome P450 gene cluster has been reported in other T. urticae strains [29], all CYP
genes in the interval were single copy as revealed by genomic read coverage in the parental and

segregating populations (S4 Fig).

No cytochrome P450s or genes encoding other detoxification enzymes were apparent at the

QTL-3 peak region. However, NADPH cytochrome P450 reductase (tetur18g03390, CPR), the

necessary electron donor for cytochrome P450 metabolism, was within 20 kb of the averaged

BSA peak for QTL-3 (Fig 5). Previous work with T. urticae revealed an association between a

CPR coding sequence variant and cytochrome P450-mediated detoxification of pesticides

[29,33]; however, short-read DNA alignments revealed that CPR harbored no coding sequence

differences between JPR-R1 and WasX. However, DNA read coverage revealed an ~14 kb

genomic region that is copy number variable between the parental strains, and that harbors

five genes including CPR (Fig 5D and S2 Data). Upstream of CPR, two genes coding for a

hypothetical protein without clear homology to functionally characterized protein domains

(tetur18g03400) and a protein that harbors a folate-binding domain (tetur18g03410, PF01571

—cl33847) were within the copy number variable region of JPR-R1. Downstream of CPR, two

genes coding for a ribosomal protein (tetur18g03380, PF00238—PTZ00054) and a archease

protein (tetur18g03370, PF01951—MTH1598/TM1083) were also copy number variable. The

short-read alignments revealed no variable sites within the copy number variable genomic

region of JPR-R1, indicating that the different copies of this region are identical. Whereas

WasX and the control populations were predicted to have a single copy of the region harboring

CPR, for JPR-R1 and the resistant populations variable gene copies were predicted, with

JPR-R1 having approximately three copies of CPR. For CPR, an additional copy number assay

using an independent method (quantitative PCR) confirmed that CPR was present in an ~3:1

ratio in the genomes of pyflubumide-selected versus control populations (S3 Fig). This ratio

was mirrored in the RNAseq read data where up-regulation of CPR transcription was ~3.66 in

pyflubumide-selected versus control populations (Figs 5 and S3). Collectively, this indicates

that CNV of CPR resulted in higher mRNA levels in JPR-R1 and pyflubumide-selected popula-

tions. It was also striking that in the control (unselected) populations, the JPR-R1 allele fre-

quencies dipped to near zero coincident with the CPR-associated QTL-3 peak (Figs 4A and
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S1), potentially reflecting a negative pleiotropic effect on fitness that becomes apparent in

absence of pyflubumide selection (see Discussion). This pattern was absent or less apparent for

the other QTL peaks (for instance, a superficially similar pattern for QTL-1 is likely explained

by linkage drag from a proximal locus at ~10 Mb on chromosome 1 that is unrelated to pyflu-

bumide selection).

Consistent with previous work [41], our BSA genetic mapping with JPR-R1 excluded tar-

get-site insensitivity as a contributing mechanism to pyflubumide resistance. Only one of the

genes encoding a mitochondrial complex II subunit, the known molecular target(s) of pyflubu-

mide, was near a QTL peak (tetur08g03210, which is located ~640 kb from the BSA peak for

QTL-2). Although the two subsidiary BSA peaks did not reach the significance threshold for

QTL detection (Fig 4C), we nonetheless analyzed their genic content. For subsidiary peak 1,

no obvious candidate detoxification genes were found within the peak ~75 kb region, nor were

any genes differentially expressed. For subsidiary peak 2, two CYP genes, CYP392B2 and a pre-

dicted CYP pseudogene (tetur02g06640) in the London reference strain, were within the peak

~75 kb region, with the latter exhibiting lower RNA abundance in the pyflubumide-selected

populations (a fold change of -2) (S2 Data). Several non-synonymous single-nucleotide differ-

ences were observed in both CYP genes between JPR-R1 and WasX. Despite the lack of statisti-

cal significance for subsidiary peak 2, CYP392B2 is of interest as it was previously associated

with pyflubumide resistance [45] (and see Discussion).

CYP392A16 demethylates the toxic pyflubumide carboxamide

To test if CYP392A16 contributes to pyflubumide resistance in JPR-R1, we functionally

expressed the gene to determine if the recombinant protein was active against pyflubumide

and/or its toxic carboxamide metabolite (NNI-0711-NH) (Fig 6). The recombinant protein

was well-folded (S5 Fig), exhibited activity towards the model substrate L-ME EGE (4 +/- 0.5

SE pmol D Luciferin/min/pmol P450), and membrane preparations exhibited CPR activity

(2407 +/- 33.8 nmol/min/mg). By HPLC, substrate depletion was not observed when recombi-

nant CYP392A16 was incubated with the proacaricide pyflubumide (Fig 6). In contrast, an

NADPH-dependent depletion of its active, toxic NNI-0711-NH derivative was observed, along

with the parallel formation of an unknown compound (eluting at 8.5 min and 6.7 min, respec-

tively), after incubation with recombinant CYP392A16. Chromatograms showed no change in

the amount of the carboxamide when incubations were performed in the absence of an

NADPH regenerating system, which is necessary for cytochrome P450 activity (Fig 6). The

ability of CYP392A16 to metabolize the pyflubumide carboxamide was further characterized

by measuring substrate-dependent reaction rates. Its depletion rate as a function of substrate

concentration revealed Michaelis-Menten kinetics (R2 of fitted curve = 0.96, Vmax = 17.42 (±
1.07 SE) pmol of depleted deacylated pyflubumide metabolite/min and Km = 17.79 (± 3.29 SE)

μM) (Fig 6).

CYP392A16 metabolized 21% of the pyflubumide carboxamide NNI-0711-NH (with a con-

centration of 25 μM) after a 1-hour incubation. HPLC-MS/MS analysis of the reaction mix-

tures pointed to N-demethylation as the likely mechanism of the CYP392A16 reaction (Fig 7)

[46]. Demethylation is expected to result in a mass difference of -14 Da between the NNI-

0711-NH and reaction metabolite product ions. This was reflected in almost all substrate and

reaction product ions formed by collision-induced dissociation (Fig 7). More specifically, the

product ion MS data indicated that demethylation involves a pyrazole methyl group. We

arrived at this conclusion because pyrazole-containing product ions originating from the reac-

tion product are 14 Da lower than their corresponding substrate product ions of NNI-

0711-NH (Fig 7).
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Discussion

Pesticide resistance is a rapidly evolving trait within the arthropod phylum [19,47]. Despite its

economic importance and its potential to contribute to our understanding of general evolu-

tionary processes, several questions about the genetic architectures underlying pesticide resis-

tance are still outstanding, especially in the case of polygenic resistance. Pyflubumide is a
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recently developed carboxanilide acaricide that is highly effective against plant-feeding spider

mites [39–41,48]. Based on synergism/antagonism assays of previous work [41], the resistant

T. urticae JPR-R1 and JPR-R2 strains most likely rely on cytochrome P450-mediated detoxifi-

cation to overcome pyflubumide toxicity. The two strains also exhibit highly similar constitu-

tive and plastic transcriptional patterns on a genome-wide level [41]. Here, we uncovered that

pyflubumide resistance of both JPR-R1 and JPR-R2 is determined by multiple loci. Consider-

ing the two strains share a common ancestral genetic background with already moderate levels

of pyflubumide resistance [41], these findings further suggest that JPR-R1 and JPR-R2 likely

share (some) factors underlying pyflubumide resistance. Using JPR-R1 and susceptible WasX

as parents, BSA genetic mapping revealed three major QTL that are associated with pyflubu-

mide resistance based on the segregating genomes of 11 pyflubumide-selected and control

population pairs. Interestingly, a BSA genetic mapping approach based on RNAseq data

(instead of genomic DNA) uncovered highly similar allele frequency differences, mirroring

the QTL pattern obtained with DNA. Less biological tissue is needed to obtain sufficient RNA,

as compared to DNA, for high-quality sequencing, and our findings highlight the feasibility of

using RNAseq data for BSA genetic mapping, a consideration that is relevant for microarthro-

pods for which biological material is often limiting.

CYP392A16 was located at the center of QTL-1, was over-expressed in pyflubumide-

selected populations and the JPR-R1 parent, and metabolized the toxic pyflubumide carboxa-

mide in vitro. Incubation assays with membrane fractions of recombinant protein further

uncovered that CYP392A16 demethylates the active carboxamide into a derivative that is not

toxic to spider mites [48], confirming that CYP392A16 catalyzes a detoxification reaction. The

CYP gene cluster of CYP392E6-8 was close to the peak of QTL-2 and CYP392E8 exhibited

higher transcription in pyflubumide-selected populations and JPR-R1. In an earlier study, BSA

genetic mapping uncovered a broad QTL (referred to as spiro-QTL 2) that included the

CYP392E6-8 gene cluster when replicated populations were selected for resistance to spirodi-

clofen, a pesticide that targets lipid synthesis [29]. This raises the question of whether the same

or a different CYP gene within this cluster was the target of selection and whether other CYP
genes outside this cluster (partially) underpin pyflubumide and spirodiclofen resistance. The

high susceptibility of the T. urticae SR-VP strain to pyflubumide, the spirodiclofen-resistant

parental strain of the earlier BSA study, suggest that different CYP genes (or alleles) determine

spirodiclofen and pyflubumide resistance [29,41]. CYP392E9-10 lie ~312 kb away from the

CYP392E6-8 gene cluster but are still within the wider QTL-2 interval. CYP392E7 and

CYP392E10 are overexpressed in spirodiclofen resistant strains, and previous work was able to

show that CYP392E10 metabolizes spirodiclofen by hydroxylation [37,49]. Using the anno-

tated genome of the London reference strain, QTL-2 is predicted to additionally hold several

CYP gene fragments and pseudogenes [29,50]. As the CYP multi-gene family is characterized

by highly dynamic birth and death rates [51,52], it is possible that these genes could be func-

tional in JPR-R1. Further work is needed to fully characterize the functionality and enzymatic

abilities of the multiple cytochrome P450s within QTL-2 and to understand why this genomic

region has been a locus of selection for both spirodiclofen and pyflubumide resistance.

The causal genetic variants underpinning the over-expression of detoxification genes in

resistant populations of agricultural pests has only been characterized in a limited number of

cases [2,53–59]. We ruled out CNV of the coding sequences as causal for the over-expression

of CYP392A16 and CYP392E8 in the pyflubumide resistant populations. Given the QTL peak

locations, cis-regulatory variation appears to be at least partially responsible for the higher

transcript levels. In insects, transcription of detoxification genes is controlled by a number of

regulatory pathways, including the AhR/ARNT and CncC/Keap1 cascades, in which cis-acting

transcription factor binding sites have been identified [2,43]. In contrast, transcriptional
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regulation remains poorly understood in mites, and promotor/enhancer analyses are currently

not trivial to conduct or interpret. Future studies are therefore needed to test our hypothesis of

cis-regulation, and to identify the potential cis-acting elements and their transcription factor

binding partners, using suitable experimental set-ups [60,61].

QTL-3 centered on CPR, a necessary redox partner of cytochrome P450-mediated detoxifi-

cation. Our analyses provide strong evidence for CNV at the CPR locus. Pyflubumide resistant

populations were estimated to harbor three CPR copies by two methods, whereas susceptible

populations have a single CPR copy. Neighboring genes on both sides of CPR also exhibit clear

signs of CNV in JPR-R1, but with different copy numbers. The absence of CNV at this locus in

other previously characterized T. urticae strains and the absence of genetic variation between

the different genomic copies of JPR-R1 suggest a recent origin of CNV at the CPR locus. The

JPR-R1 allele frequencies in the experimental control populations indicate that this copy num-

ber variable region could induce pleiotropic fitness penalties that lead to purging in the

absence of strong selection pressure (i.e., continuous pyflubumide exposure). Potential fitness

penalties may explain why CNV at the CPR locus has not yet been associated with other T. urti-
cae resistance phenotypes that rely on cytochrome P450-mediated detoxification. The tran-

scriptomic comparisons revealed that relative transcript levels were ~three-fold higher for CPR
in the pyflubumide-selected populations compared to the controls. The nearly identical DNA

and RNA coverage ratios strongly suggest that CNV determines the RNA levels of CPR in

JPR-R1 by positive dosage effects. Previous studies have linked dosage-sensitive amplification

of CYP genes to increased detoxification, and in turn, pesticide resistance [56–59]. We hypoth-

esize that dosage-sensitive gene amplification of CPR in JPR-R1 strengthens cytochrome

P450-mediated detoxification because P450 activity is dependent on the concentration of the

CPR-P450 complex [62]. Indeed, reducing CPR transcription in T. urticae and other arthropod

pests by RNA interference is known to increase susceptibility to pesticides [63,64]. Moreover,

the combined up-regulation of CYP392A16, CYP392E8 and CPR could have additive or syner-

gistic effects, resulting in higher levels of pyflubumide resistance. However, as the relationship

between CNV, RNA levels, translation, and phenotypic traits can be complex [65], further

work is needed to precisely quantify the impact of the dosage-sensitive CNV at the CPR locus

on pyflubumide resistance. Using a BSA genetic mapping approach, CPR was also found at the

center of a QTL associated with both spirodiclofen and Mitochondrial Electron Transport

Inhibitors complex I (METI-I) resistance in T. urticae [29,33]. In both studies, the non-synon-

ymous substitution D384Y was only observed in the pesticide-selected populations and the

resistant parental strains SR-VP and MR-VP. Because METI-I and spirodiclofen resistance is

mostly mediated by cytochrome P450s [36,37,66], it was hypothesized that D384Y might

strengthen cytochrome P450 detoxification. Here, the coding sequences of the different CPR
copies were identical and did not display D384Y or any other non-synonymous substitutions,

compared to the genome of the reference London strain [29,50].

Previous BSA studies in T. urticae uncovered a genetic architecture that involves both toxi-

codynamic and toxicokinetic resistance to spirodiclofen and METI-Is [29,33]. QTL underlying

spirodiclofen and METI-I resistance correspond with the molecular targets acetyl-CoA car-

boxylase and NADH:ubiquinone oxidoreductase, respectively [29,33,38]. None of the three

QTLs of pyflubumide resistance were centered on the target of pyflubumide, strongly indicat-

ing that only toxicokinetic mechanisms were involved. Previously, Sugimoto et al. identified

two QTLs that are associated with pyflubumide resistance in T. urticae using a microsatellite

linkage map [45]. One QTL is located on the first T. urticae chromosome and centers on

tetur01g15710, the gene that codes for succinate dehydrogenase subunit b (SdhB), the molecu-

lar target of pyflubumide [39,40]. Genotyping a panel of T. urticae strains revealed a strict asso-

ciation between the non-synonymous substitution I260V of SdhB and pyflubumide resistance.
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The I260V substitution is located at the I269 position of the fungus Zymoseptoria tritici (syno-

nym Mycosphaerella graminicola) protein which impacts fungicide binding to succinate dehy-

drogenase and results in resistance in Z. tritici [67]. Our read data of the segregating

populations did not reveal the I260V variant or other candidate target-site resistance muta-

tions in SdhB. Additionally, Sugimoto et al. observed that their second broad QTL of ~4.1 Mb

on the third T. urticae chromosome included three cytochrome P450 genes (CYP392A8,

CYP392B1, and CYP392B2) [45]. These CYP genes were not differentially expressed between

the pyflubumide-selected and control populations and were not included in any of the three

well-supported QTL of this study. However, subsidiary peak 2 of the current study largely

coincided with this QTL (its peak region also included CYP392B2). This could indicate that

genetic variation within this genomic interval could have a minor effect on pyflubumide resis-

tance in the segregating populations used in our study. Collectively, however, the two comple-

mentary genetic mapping approaches strongly suggest that pyflubumide resistance has been

obtained by largely different molecular mechanisms between the strains of the current study

and Sugimoto et al. Our work therefore adds to a growing body of evidence that populations

of pest species can evolve different resistance mechanisms despite the highly specific selective

pressures imposed by pesticides [19].

In summary, our work uncovered a complex genetic basis for pyflubumide resistance in the

arthropod pest T. urticae that likely involves multiple genes with roles in cytochrome

P450-mediated metabolism. Our in vitro findings suggest that CYP392A16 detoxifies the active

form of the proacaricide pyflubumide, and that cis-regulatory variation at this gene contributes

prominently to pyflubumide resistance. We also uncovered a potential novel molecular mech-

anism of toxicokinetic resistance–gene amplification of CPR–that may act in a synergistic

manner.

Materials and methods

Mite strains and rearing

Five T. urticae strains were used for the genetic crosses: JP-S [68,69], Wasatch [28], WasX,

JPR-R1, and JPR-R2. The JPR-R1 and JPR-R2 strains were selected for high levels of pyflubu-

mide resistance from the JP-R strain with two different laboratory selection regimes. JPR-R1

was first selected by spraying pyflubumide on detached mite-infested bean leaves for two gen-

erations. Subsequently, both JPR-R1 and JPR-R2 were selected by feeding on pyflubumide

sprayed potted bean plants (100 mg/L of pyflubumide) [41]. WasX was derived from the highly

inbred Wasatch strain by two sequential rounds of mother-son mating. Unless otherwise

stated, all T. urticae populations were kept under laboratory conditions (25˚C, 65% relative

humidity, and 16:8 hr light:dark photoperiod) and maintained on Phaseolus vulgaris cv.

‘Speedy’. JPR-R1 and JPR-R2 were kept on plants sprayed with 100 mg/L pyflubumide (com-

mercial formulation, 20% SC (Danikong, Japan), kindly provided by Ralf Nauen).

Mode of inheritance of pyflubumide resistance

The mode of inheritance of pyflubumide resistance was determined by performing reciprocal

crosses between JPR-R1 and JP-S, and JPR-R2 and Wasatch. For each cross, 80 teliochrysalid

(virgin) females and 100 adult males were placed on leaf discs and allowed to mate. Females

were transferred to new leaf discs every 2 days throughout their oviposition period. During

development, 80 F1 teliochrysalid females were isolated for backcrosses to obtain F2 females.

Dose-response bioassays were conducted for the parents and F1 and F2 females as previously

described [41]. Briefly, 9 cm2 bean leaf discs were sprayed with 1 ml of acaricide solution at 1

bar pressure in a Potter spray tower (deionized water was used as the control). Depending on
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the population, 5–13 pyflubumide concentrations were tested using four replicates (20–35

females per replicate). Lethal concentrations and 95% confidence limits were determined

using Probit analysis (POLO; LeORa Software). The degree of dominance (D) was calculated

using Stone’s formula [70]. The expected dose-response relationships for F2 females for mono-

genic recessive resistance was calculated using c = 0.5 W (F1) + 0.5 W (JPR-R strain), where c

is the expected response (mortality) at a given concentration and W is the observed response

(mortality) of the parents at the respective concentration [42]. The hypothesis of a monogenic

mode of inheritance was tested with χ2 goodness-of-fit tests.

Experimental evolution of pyflubumide resistance

A total of 26 teliochrysalid females of JPR-R1 were placed on individual leaf discs. Upon eclo-

sion, unfertilized females were allowed to lay eggs for 2 days and were transferred to a 9 cm2

bean leaf disc. Resistance to pyflubumide was assessed by spraying 4,000 mg/L pyflubumide (1

bar pressure in a Potter spray tower with 2 mg aqueous deposit per cm2) and scoring mortality

after 24 hr. Eggs of one of the resistant JPR-R1 females were allowed to hatch and develop into

adult males. A single adult male (an isogenic genome, as males are haploid) was selected from

this brood and was offered four female teliochrysalids of WasX on a daily basis. In total, 24

resulting females were allowed to produce an F1 generation of more than 500 female mites.

The segregating population was expanded and allowed to propagate at a high population size

(several hundreds of mites) for approximately two months. From this large population, we

established 11 control populations on unsprayed potted bean plants using 650 founding

females per control population. After approximately one month, sister populations were gen-

erated from these 11 control populations by transferring approximately 650 females to potted

bean plants sprayed with 50 mg/L pyflubumide. Sprayed and unsprayed potted bean plants

were offered to the 22 experimental populations every other week. During the experiment,

selection pressure of pyflubumide was gradually increased until mites no longer exhibited

acaricide-related mortality on beans sprayed until run-off with 100 mg/L of pyflubumide

(selection was maintained for approximately a year). Dose-response bioassays were subse-

quently performed on the two parents and the 22 segregating populations as described above

using four concentrations (10, 50, 100, and 500 mg/L pyflubumide). Differences in mortality

percentages of the two parents were assessed using a generalized linear model with a binomial

distribution. A generalized linear mixed model with a binomial distribution was used to ana-

lyze the mortality percentages of the pyflubumide-selected and control populations, with selec-

tion regime and pyflubumide dosage as fixed effects, and sister pair as a random effect.

Percentage of mortality was the dependent variable in both models. Statistical analyses were

performed in R using lme4 [71].

DNA sequencing and variant detection

Immediately after the dose-response bioassays were finalized, DNA was extracted from 1,000

adult females of the 22 segregating populations using a phenol-chloroform method as previ-

ously described [27,33]. Six months after the BSA cross, DNA was collected from the geneti-

cally diverse JPR-R1 strain and the inbred WasX strain. DNA samples were sequenced at the

Huntsman Cancer Institute at the University of Utah to produce Illumina paired-end reads

with lengths of 151 bp with mean insert sizes of 450 bp. DNA reads were aligned to the T. urti-
cae three-chromosome assembly [29] using the default options of mem in the Burrows-

Wheeler Aligner (BWA) version 0.7.17-r1188 [72]. Duplicate reads were marked using the

MarkedDuplicates function of Picard version 2.18.11-SNAPSHOT (http://broadinstitute.

github.io/picard/). Left-justified indel realignment was performed using the GATK version
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4.0.7.0 [73]. Throughout these steps, SAMtools version 1.9 [74] was used to sort and index the

reads in each BAM output. Two joint variant calls were performed using GATK version

4.0.7.0; one that included the two parents and the segregating populations, and one without

the parents (the latter joint variant call was only used for the PCA). Each variant call was per-

formed with HaplotypeCaller and then merged into a single gVCF file using the GVCFs func-

tion, after which the GenotypeGVCFs function was used to jointly predict SNPs and small

indels.

RNA sequencing and differential expression analysis

Thirty-seven days after DNA was extracted from the segregating populations, the pyflubumide

selection treatment was terminated by transferring mites from all experimental populations to

new unsprayed bean plants where they were allowed to develop for one generation (eleven

days). RNA was extracted from 110 adult females using the RNeasy minikit (Qiagen) for every

segregating experimental population. Total RNA was sequenced with the Illumina method at

NXTGNT (Ghent, Belgium) to give read lengths of 100 bp. The paired-end RNA reads were

aligned to the T. urticae three-chromosome assembly [29,50] using STAR version 2.5.3a [75]

with the 2-pass mode, the maximum intron size set to 20 kb, and without the use of the GFF

annotation. SAMtools version 1.9 [74] was used for sorting and indexing the BAM files. Read

counts were obtained with HTSeq version 0.11.2 [76] using the T. urticae annotation of

Wybouw et al. [29]. Analysis of gene expression was performed using DESeq2 version 1.24.0

[77]. Differential expression was identified by applying a 2 and 0.05 cut-off for FC and adjusted

p-value, respectively. Coverage from the BAM files for downstream analyses was obtained

using the defaults of the pileup function within pysam version 0.15.1 (https://github.com/

pysam-developers/pysam), and normalized using the estimated size factors generated by

DESeq2 with “normalized = T”.

PCA of genomic and transcriptomic responses

PCA using variants (SNPs) ascertained from the DNA read data was performed with all the

pyflubumide-selected and paired control populations using SNPRelate version 1.18.0 [78]. The

VCF file was filtered as described in [33] and transformed to the gds [78,79] format using the

snpgdsVCF2GDS function with the option "method = copy.num.of.ref", at which point the

snpgdsPCA function was used to construct the PCA with the “autosome.only = FALSE”

option. A PCA based on the RNAseq read data was performed using the regularized log trans-

formed counts.

BSA genetic mapping

BSA genetic mapping was performed using methods adapted from previous studies [28,29,33],

and specifically, using the defaults of the haplodiploid option of Kurlovs et al. [25]. Briefly,

after quality control, JPR-R1 was specified as the haplodiploid male parent, and which alleles

got passed on from its heterozygous sites (via the single haploid JPR-R1 male used in the BSA

cross) was inferred using allele frequency information from the offspring; if the paired pyflu-

bumide-selected and control populations had a frequency of 0.95 or higher, the site was con-

sidered non-segregating and not included in the final analysis. Sliding window analyses were

performed using 75 kb windows with 5 kb offsets; at least 38 sites had to be present in a win-

dow for it to be included in the analysis. Significant responses to pyflubumide selection were

detected using a permutation-based approach as described in Wybouw et al. [29]. The

genome-wide allele frequency differences were permuted for the 11 pairs of selected/control

populations 104 times and were averaged across all pairs per permutation. For these analyses,
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the three chromosomes were concatenated and made circular to maintain linkage information

(the end of the third chromosome was connected with the beginning of the first chromosome).

Using the 104 permutations, the distribution of the absolute values of the maximal deviations

in the averaged allele frequency differences was calculated and QTLs were assigned using an

FDR of 0.05. BSA genetic mapping was also performed on the RNA read data using each set of

paired BAM files. For each biallelic position in a coding exon where RNA read coverage was at

least 20 and the major allele frequencies were less than 0.95 in the control populations, we cal-

culated the allele frequencies for the two bases. The absolute allele frequency differences were

calculated per paired set of pyflubumide-selected and susceptible populations and were plotted

in averages of 500 kb non-overlapping sliding windows across the T. urticae genome [29].

Finally, the allele frequency differences were averaged across the replicated pairs. Protein

domains were identified using Pfam- and CDD-searches [80,81].

DNA quantitative PCR assay

RNA was reverse transcribed to cDNA using a RevertAid RT Reverse Transcription Kit

(ThermoFisher Scientific). Primers 5’-CAAGGTGATCTCCAGCTTCA-3’ and 5’-ACCGTTC

GTGTATGCATGTT-3’ were used to amplify CPR, yielding a 150 bp product. As a reference

single-copy gene, we used the voltage-gated sodium channel (VGSC; tetur34g00970). Primers

5’-ATGATGCTTGGCAGTGAAAG-3’ and 5’-ATAAGCAGCAGCAGCAAGAA-3’ produced

a 111 bp fragment of VGSC. PCR reactions were performed using Maxima SYBR Green/Rox

qPCR Master Mix (Fermentas Life Sciences). All reactions were run in duplicate on an Agilent

Technologies Stratagene Mx3005P thermocycler with the following conditions: an initial 10

min plateau at 95˚C, followed by 40 cycles that included denaturation at 95˚C for 15 sec,

annealing at 55˚C for 30 sec, and extension for 30 sec at 72˚C. Melting curves were determined

by an additional cycle of 95˚C for 1 min, 65˚C for 30 sec and 95˚C for 30 sec. One duplicate

was excluded from the VGSC and CPR standard curves due to pipetting errors. Efficiencies

were calculated from these standard curves and were incorporated in further calculations.

First, the number of VGSC copies was determined by 2�(efficiency(Ct-1)). Second, the Ct-values

of CPR were corrected by log(efficiency)(VGSC copies/2)+1. The final estimate of CPR copy

number was obtained with efficiency(corrected Ct–Ct).

Cytochrome P450 functional expression

We adopted a previously successful functional expression strategy for CYP392A16 [82].

Briefly, competent E. coli BL21STAR cells were co-transformed with the pCW_ompA--

CYP392A16 and pACYQ_TuCPR plasmids [82]. Transformed cells were grown at 37˚C in

Terrific Broth under ampicillin and chloramphenicol selection until the optical density at 595

nm was higher than 0.95 cm-1. The heme precursor δ-aminolevulinic acid was added to a final

concentration of 1 mM. Induction was initiated by adding 1 mM of isopropyl-1-thio-β-D-

galactopyranoside. After growing at 25˚C for 24 hours, cells were harvested and the sphero-

plasts were prepared. Membrane fractions were obtained from spheroplast solutions by ultra-

centrifugation at 180,000 g for 30 min at 4˚C. CYP392A16 membranes were diluted in TSE

buffer (0.1 M Tris-acetate, pH 7.6, 0.5 M sucrose, 0.5 mM EDTA) and stored in aliquots at

-80˚C. P450 content was measured by CO-difference spectra in reduced CYP392A16 mem-

brane samples [83]. CPR activity was estimated by measurements of NADPH-dependent

reduction of cytochrome c at 550 nm [84]. CYP activity was tested using the chemi-lumines-

cent substrate Luciferin-ME EGE [82]. Total protein concentrations of CYP392A16 mem-

branes were determined using the Bradford assay [85].
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Cytochrome P450 HPLC-UV activity assay

Pyflubumide and its carboxamide metabolite (NNI-0711-NH) (both 99.6% purity) were pro-

vided by Nihon Nohyaku (Japan). Pyflubumide and the toxic carboxamide were incubated at a

concentration of 25 μM with 25 pmol of recombinant CYP392A16 in 100 μl Tris-HCl buffer

(0.2 M, pH 7.4), containing 0.25 mM MgCl2 and 2.5% acetonitrile (30˚C and 1250 rpm shak-

ing). The reaction was performed in the presence and absence of an NADPH generating sys-

tem: 1 mM glucose-6-phosphate (Sigma Aldrich), 0.1 mM NADP+ (Sigma Aldrich), and 1

unit/ml glucose-6-phosphate dehydrogenase (G6PDH; Sigma Aldrich). Reactions were

stopped after 0 and 1 hr using 100 μl acetonitrile and further stirred for an additional 30 min.

Finally, the quenched reactions were centrifuged at 10,000 rpm for 10 min and 100 μl of the

supernatant was transferred to glass vials for HPLC analysis. Acaricides were separated on a

UniverSil HS C18 (250mm 5um) reverse phase analytical column (Fortis). Reactions with

pyflubumide and its NNI-0711-NH metabolite were separated using an isocratic mobile phase

of 20% H20 and 80% acetonitrile with a flow rate of 1 ml/min for 20 min. Reactions were mon-

itored by changes in absorbance at 260 nm and quantified by peak integration (Chromeleon,

Dionex). For enzyme reaction kinetics, different concentrations of the NNI-0711-NH pyflubu-

mide metabolite were used. Rates of substrate turnover from two independent reactions were

plotted versus substrate concentration. Km and Vmax were determined using SigmaPlot 12.0

(Systat Sofware, London, UK).

Identification of reaction products by HPLC-MS

Prior to HPLC-MS analysis, reaction mixtures were desalted by solid phase extraction (Bond

Elute LRC-C18, 200 mg cartridges; Agilent, USA). Briefly, reaction mixtures were loaded to

cartridges that were pre-conditioned with 3 mL 100% acetonitrile, followed by 3 mL 2.5% ace-

tonitrile in water. Cartridges were subsequently washed with 1 mL water and samples were

eluted with 1.5 mL acetonitrile. Eluents were transferred to HPLC autosampler vials and

500 μL of water was added to enhance chromatographic separation. Eluents were analyzed

using an HPLC-MS/MS system. Sample injections (20 μl loop) were performed via a Surveyor

Autosampler (Thermo Scientific, USA). Chromatographic separation was achieved using a

Surveyor LCsystem (Thermo Scientific, USA), equipped with a Gemini C18 (3 mm, 100 mm x

2 mm) analytical column (Phenomenex, USA). An isocratic elution was applied with 80% ace-

tonitrile-20% water and flow rate was set at 200 μL/min. Analyte detection was achieved using

an electrospray ionization (ESI) triple quadrupole mass spectrometer (TSQ Quantum; Thermo

Scientific, USA) operated in the positive ion mode. Mass spectrometry was operated both in

full scan and product ion scan modes. The system was controlled by the Xcalibur software,

which was also used for data acquisition and analysis. The optimum mass spectrometer param-

eters were set as follows: spray voltage at +4500 V, sheath gas pressure at 20 arbitrary units,

auxiliary gas pressure at 10 arbitrary units, ion transfer capillary temperature at 300˚C and

source collision induced dissociation at 26 eV. In the product ion mode the collision cell con-

tained Argon at 1.5 mTorr. Sheath/auxiliary gas was high purity nitrogen and collision gas was

high purity argon. For MS/MS analysis, collision energy was set at 25 eV.

Supporting information

S1 Fig. JPR-R1 allele frequencies in the segregating populations. (A) Frequencies of JPR-R1

alleles in the susceptible (control) and pyflubumide-selected populations across the three QTL,

as assessed in a sliding window analysis (see also Fig 4A). Chromosomes are ordered by

decreasing length and are indicated by alternating shading. (B-D) Frequencies of JPR-R1

alleles in the susceptible (control) and pyflubumide-selected populations at QTL-1, QTL-2,
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and QTL-3, respectively. Pyflubumide-selected populations that do not show near-fixation lev-

els of JPR-R1 allele frequencies at the averaged BSA peaks are indicated by their identifier. For

all panels, coverage is color-coded according to treatment (legend, top). Vertical lines indicate

the locations of the averaged BSA peaks.

(PDF)

S2 Fig. Average difference in JPR-R1 allele frequency in the susceptible (control) and

pyflubumide-selected populations using RNA short-read data in a sliding window analysis.

Chromosomes are ordered by decreasing length and are indicated by alternating shading. Ver-

tical lines indicate the locations of the three QTL, whereas vertical dashed lines indicate the

two subsidiary peaks (Fig 4).

(PDF)

S3 Fig. Transcript levels and genomic coverage of candidate genes. CYP392A16 (A) and

CPR (B) expression in pyflubumide-selected populations relative to the mean RNA abundance

in the susceptible control populations. (C) DNA coverage of CPR in pyflubumide-selected and

control populations, relative to single-copy VGSC. DNA coverage was estimated by quantita-

tive PCR analysis of the segregating populations, confirming estimates using short-read cover-

age (Fig 5). Panels are color-coded according to treatment.

(PDF)

S4 Fig. Relative DNA coverage and gene models in ~75 kb genomic windows surrounding

QTL-1 and QTL-2. Vertical lines indicate the locations of averaged BSA peaks. Candidate

genes CYP392A16 (A) and CYP392E6-8 (B) are highlighted in yellow. Otherwise, coding exons

and introns are depicted as dark gray and lighter gray boxes, respectively. Symbols + and–

denote forward and reverse gene orientations. Coverage is color-coded according to treatment

and strain (legend, top).

(PDF)

S5 Fig. Carbon monoxide difference spectra of membranes expressing CYP392A16.

(PDF)

S1 Table. The toxicity of pyflubumide in different susceptible and resistant strains and

their crosses.

(DOCX)

S1 Data. Raw count data of the dose-response bioassays.

(XLSX)

S2 Data. Transcriptomic responses to pyflubumide selection.

(XLSX)
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