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Background: Head and neck squamous cell carcinomas (HNSCCs) are derived

from the mucosal linings of the upper aerodigestive tract, salivary glands,

thyroid, oropharynx, larynx, and hypopharynx. The present study aimed to

identify the novel genes and pathways underlying HNSCC. Despite the

advances in HNSCC research, diagnosis, and treatment, its incidence

continues to rise, and the mortality of advanced HNSCC is expected to

increase by 50%. Therefore, there is an urgent need for effective biomarkers

to predict HNSCC patients’ prognosis and provide guidance to the personalized

treatment.

Methods: Both HNSCC clinical and gene expression data were abstracted from

The Cancer Genome Atlas (TCGA) database. Intersecting analysis was adopted

between the gene expressionmatrix of HNSCC patients from TCGA database to

extract TME-related genes. Differential gene expression analysis between

HNSCC tissue samples and normal tissue samples was performed by R

software. Then, HNSCC patients were categorized into clusters 1 and 2 via

NMF. Next, TME-related prognosis genes (p < 0.05) were analyzed by univariate

Cox regression analysis, LASSO Cox regression analysis, and multivariate Cox

regression analysis. Finally, nine genes were selected to construct a prognostic

risk model and a prognostic gene signature. We also established a nomogram

using relevant clinical parameters and a risk score. The Kaplan–Meier curve,

survival analysis, time-dependent receiver operating characteristic (ROC)

analysis, decision curve analysis (DCA), and the concordance index (C-index)

were carried out to assess the accuracy of the prognostic risk model and

nomogram. Potential molecular mechanisms were revealed by gene set

enrichment analysis (GSEA). Additionally, gene correlation analysis and

immune cell correlation analysis were conducted for further enriching our

results.

Results: A novel HNSCC prognostic model was established based on the nine

genes (GTSE1, LRRN4CL, CRYAB, SHOX2, ASNS, KRT23, ANGPT2, HOXA9, and

CARD11). The value of area under the ROC curves (AUCs) (0.769, 0.841, and

0.816) in TCGAwhole set showed that themodel effectively predicted the 1-, 3-

, and 5-year overall survival (OS). Results of the Cox regression assessment

confirmed the nine-gene signature as a reliable independent prognostic factor

in HNSCC patients. The prognostic nomogram developed using multivariate
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Cox regression analysis showed a superior C-index over other clinical

signatures. Also, the calibration curve had a high level of concordance

between estimated OS and the observed OS. This showed that its clinical

net can precisely estimate the one-, three-, and five-year OS in HNSCC

patients. The gene set enrichment analysis (GSEA) to some extent revealed

the immune- and tumor-linked cascades.

Conclusion: In conclusion, the TME-related nine-gene signature and

nomogram can effectively improve the estimation of prognosis in patients

with HNSCC.

KEYWORDS

head and neck squamous cell carcinoma, TCGA, GEO, prognosis, gene signature,
bioinformatics analysis

Background

Globally, head and neck squamous cell carcinoma (HNSCC) is

the sixth commonest cancer (Yang et al., 2017). HNSCC is the most

common pathological type of head and neck tumors, accounting for

over 90% of the cases (Shield et al., 2017). Despite advances in early

diagnosis and multi-disciplinary management of cancer, the 5-year

overall survival (OS) of HNSCC remains at 50% (González-

Arriagada et al., 2018). Results of various studies have shown

that gene signatures can predict the prognosis of patients with

HNSCC. Multiview data, generated through data integration, are

receiving more attention from scholars (Ge et al., 2017). However,

gene expression datasets are characterized by high dimensionality,

small sample sizes, and sample imbalance. Non-negative matrix

factorization (NMF) is frequently used in data analysis to reduce

dimension. Its applications in the analysis of gene expression data

include sample clustering and feature selection (Liu et al., 2018). The

tumormicroenvironment (TME) is mainly composed of tumor cells

and tumor-invading immune cells admixed with the stromal

component. The TME of HNSCC harbors transformed cells,

immune cells, and stromal cellular elements (Puram et al., 2017).

The TME can have adverse or beneficial consequences. The TME

can promote tumor growth and progression through the immune

cells which are affected easily (Kim and Bae, 2016). The immune

invasive landscape of HNSCC has been elucidated in a previous

study (Zhang et al., 2020). A separate study has also performed a

systematic analysis of cellular interactions in TME of HNSCC (Huo

et al., 2020). In the present study, gene expression profiles ofHNSCC

TME-related genes were obtained and utilized to create a robust

prognostic model and establish a prognostic nomogram.

Materials and methods

Sample datasets

We used The Cancer Genome Atlas (TCGA) database

(https://cancergenome.nih.gov/) to retrieve HNSCC gene

expression data and clinical data. Finally, we downloaded

213 samples (199 HNSCC tissue samples and 14 normal

tissue samples) of HNSCC gene expression data. TCGA

HNSCC clinical data of 511 patients were also downloaded.

The clinical characteristics, including survival status, survival

outcomes, age, gender, grade, TNM classification, and stage, were

all collected. The GSE16076 dataset with 270 samples (including

gene expression data and clinical data) from the Gene Expression

Omnibus (GEO) database was downloaded to externally validate

the reliability of the nine-gene signature.

Identification of TME-related genes

First, intersecting analysis was adopted between the gene

expression matrix of HNSCC patients from TCGA database to

extract TME-related genes. Then, differential expression analysis

was performed to filter differentially expressed TME-related

genes between HNSCC tissue samples and normal tissue

samples by using the “limma” R package. The volcano plot

and heatmap were generated to visualize the distribution of

the identified TME-related genes by “ggplot2” and

“pheatmap” R packages, respectively.

Identification and evaluation of subgroups

After differential expression analysis, NMF clustering

algorithm was applied to the TME-related genes to classify

HNSCC patients using the “NMF” R package. An elementary

classification of HNSCC patient subgroups was set from 2 to 10.

The optimal value for consensus clustering was identified as 2 by

the NMF rank survey. Then, the consensus heatmap was

generated to view the distribution characteristics among

C1 and C2 groups. The Kaplan–Meier curves were applied to

explore the discrimination between C1 and C2 groups in HNSCC

patients’ OS using “survival” and “survminer” R packages. The

statistical difference was evaluated by the log-rank test. In
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addition, we also adopted the MCP-counter algorithm to assess

the difference of tumor-infiltrating immune cells between

different clusters (Becht et al., 2016).

Construction and validation of the
prognostic risk model

Differentially expressed TME-related genes between the HNSCC

tissue samples and normal tissue samples were abstracted from the

previously downloaded TCGA HNSCC gene expression data. From

this process, we removed sixHNSCC tumor tissue samples. Then, we

combined TCGA-HNSCC gene expression data along with clinical

data using the “limma” R package. Patients with incomplete clinical

data were excluded. Based on previous efforts, a list of 193 TME-

related tumor samples with essential clinical information and an OS

of >1month was extracted. Next, total samples fromTCGAdatabase

were split randomly into the training set (n = 137) and the testing set

(n = 56). The training set was applied to determine the TME-related

genes as prognostic biomarkers along with the signature. Univariate

COX regression analysis, LASSO Cox regression analysis, and

multivariate Cox regression analysis were conducted in this

process using the “survival” and “glmnet” R packages. Ultimately,

nine genes were recognized as prognostic biomarkers to construct the

prognostic risk model. The risk score for each HNSCC patient was

determined using the same predictive gene signature-based

approach. TCGA testing set was used for internal validation for

the nine-gene signature. The time-dependent receiver operating

characteristic (ROC) analysis and Kaplan–Meier assessments were

then used to test the prognostic gene signature using “timeROC” and

“survival” R packages. Furthermore, the Wilcoxon signed-rank test

was adopted to compare HNSCC tissue samples with normal tissue

samples. Statistical significance was set at p < 0.05.

Construction and verification of a
predictive nomogram

Nomograms are visual statistical tools that combine multiple

clinical and pathological factors to estimate the survival

outcomes of patients with cancer (Iasonos et al., 2008). The

independent clinical parameters were merged into a nomogram

to estimate 1-, 3-, and 5-year survival of patients with HNSCC.

Cox regression analysis was conducted to analyze the retrieved

clinical parameters from TCGA-HNSCC clinical data using the

“survival” R package. Clinical parameters (p < 0.05) significantly

related to OS were used to establish the predictive nomogram

using “regplot” and “rms” R packages. The nomogram was then

verified based on the discrimination along with calibration

curves. The concordance index (C-index) of the nomogram

was determined for each independent clinical parameter and

risk score to evaluate the nomogram preceding others through a

bootstrap approach with 1,000 resamples. Decision curve

analysis (DCA) was applied to determine the clinical net

benefit of each clinical parameter and showed that the

nomogram harbored the highest net benefit, followed by the

risk model. Generally, the nomogram was significantly superior

at predicting clinical outcomes (Vickers and Elkin, 2006).

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed using

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway

enrichment analysis. Furthermore, Gene Ontology (GO)

functional annotation was used to identify the active genes in

various groups of the predictive gene signature in the present

study (Subramanian et al., 2005). The differentially expressed

TME-related genes were stratified into the high- and low-risk

groups based on the median risk score using the “clusterProfiler”

R package. The low- and high-risk groups were then subjected to

GSEA using the “enrichplot” R package. The statistical

significance function was indicated by p < 0.05.

Differentiating performance of the
prognostic risk model

The present study used survival analysis to assess the

differential diagnostic potential of the risk score. Patients were

stratified by stage, grade, age, and gender. Then, we conducted

subgroup analysis to confirm the prognostic significance of the

risk model in different subgroups.

External validation of the nine-gene
signature

We carefully retrieved and selected three previously

established prognostic risk models from PubMed and

obtained the relevant genes contained in each model (Wang

et al., 2020; Yao et al., 2020; Xiong et al., 2021). The included gene

signatures were all validated as reliable prognostic models for

forecasting the HNSCC patients’ OS. Then, the Kaplan–Meier

curve, time-independent ROC analysis, and the C-index analysis

were used to confirm the advantages of the prognostic model

established by us. In addition, we downloaded an independent

dataset, GSM16076, to further validate the nine-gene signature.

The obtained results showed that the prognostic model of the

current study is significantly reliable.

Correlation analysis

Using the “corrplot” R package, immune cell correlation

analysis was conducted for further enriching our results.
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FIGURE 1
Flow chart of the present study.

FIGURE 2
(A) Heatmap to show TME-related differentially expressed genes between HNSCC and normal tissue samples. (B) Volcano plot displays
1,335 TME-related differentially expressed genes in TCGA HNSCC cohort. (C) Non-negative matrix factorization (NMF) clustering was conducted to
classify HNSCC patients into 2 to 10 different subtypes, and relevant heatmaps were generated. (D) NMF rank survey with multiple parameters
(including dispersion, cophenetic, residuals, evar, rss, and silhouette coefficients) to determine the optimal value for consensus clustering.
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Furthermore, we also conducted Spearman correlation analysis

using “corrplot” R package to demonstrate the relationship

between risk score and genes.

Results

Identification of TME-related genes

The flow chart in Figure 1 presents the analytical process of

this study. Analysis of the data of 213 samples (199 HNSCC

tumor tissue samples and 14 normal tissue samples) obtained

from TCGA database was performed. Based on the gene

expression levels in TME of the 213 TCGA HNSCC samples,

the TME-related genes were selected (p < 0.05). After differential

expression analysis, a total of 1,335 genes were identified as

differentially expressed TME-related genes (Figure 2A). The

volcano plot was applied to visualize the upregulated and

downregulated genes (Figure 2B).

Identification and evaluation of subgroups

Then, we applied the NMF clustering algorithmmethod based

on the 1,335 identified TME-related genes. Patients were first

classified into 2 to 10 different subtypes, and relevant heatmaps

were generated (Figure 2C). According to the parameters such as

cophenetic, dispersion, silhouette, and sparseness in the NMF rank

survey, the optimal number of the cluster was identified as 2

(Figure 2D). HNSCC patients were divided into two subgroups

(cluster 1 and cluster 2) (Figure 3A). OS was compared between

clusters 1 and 1 to further understand the clustering finding and its

links with survival outcomes. According to this assessment,

patients in cluster 2 had a superior OS to those in cluster 1

(p < 0.001, Figure 3B). The Sankey plot could also be applied

to reveal the association between different immune subtypes and

clusters (Figure 3C). In addition, the MCP-counter algorithm was

used to evaluate the infiltration of the immune cells in cluster 1 and

cluster 2. The results revealed that cluster 2 had a higher infiltration

level of cytotoxic lymphocytes, T cells, B lineage, CD8+ T cells, NK

FIGURE 3
(A) Consensus map of the NMF clustering data of TCGA HNSCC cohort. Rank = 2means that HNSCC patients were separated into two groups.
(B) Survival curve of OS (P=<0.001) in cluster 1 and 2. (C) Sankey plot to show the association between different subtypes and immune subtypes. (D)
Differential analysis of tumor-infiltrating immune cells was conducted using MCP-counter.
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cells, myeloid dendritic cells, andmonocytic lineages than cluster 1

(Figure 3D).

Construction and internal validation of the
nine-gene signature

A total of 193 patients (including 1,335 TME-related genes)

included in the survival analysis underwent a follow-up

exceeding one month and were randomly assigned into the

training set (n = 137) and testing set (n = 56). Data from the

training set were retrieved using the “survival” R package and

subjected to univariate Cox regression analysis. Subsequently,

121 TME-related genes were selected based on a p < 0.05 cut-off

value for LASSO Cox regression analysis (Figure 4A). Results of

the LASSO Cox regression analysis detected 18 TME-related

genes. Then, using multivariate Cox regression analysis, nine

genes (GTSE1, LRRN4CL, CRYAB, SHOX2, ASNS, KRT23,

ANGPT2, HOXA9, and CARD11) were determined to

establish the prognostic risk model. The nine-gene signature

as a prognostic marker was an independent prognostic factor

tested by the multivariate Cox regression analysis. Significance

was defined as p < 0.05. Next, nine genes and their corresponding

regression coefficients were used to calculate risk scores for each

sample using the following formula: risk score = sum of each

gene’s (regression coefficient × gene expression value). The

optimal risk score cutoff was calculated from the median risk

score using the “survminer” R package in the training set.

Patients with risk scores above the median scores were

assigned to the high-risk group, whereas those with scores

below the median risk score were assigned to the low-risk group.

We utilized the time-dependent ROC analysis and

Kaplan–Meier analysis to verify the prognostic value of the risk

model. In the training set, the AUC (area under the ROC curve)

values for predicting the 1-, 3-, and 5-year OS were 0.741, 0.832, and

0.767, respectively (Figure 5A). In the testing set, the AUC values for

predicting the 1-, 3-, and 5-year OS were 0.637, 0.789, and 0.684,

respectively (Figure 5B). In the whole set, the AUC values were

0.769, 0.841, and 0.816, respectively (Figure 5C). Moreover, HNSCC

patients in the high-risk group showed significantly poorer OS than

those in the low-risk group (training test: p < 0.001; testing set: p =

0.003; and whole set: p < 0.001).

Development and validation of a
predictive nomogram

Seven independent prognostic factors (gender, N, age, T, stage,

risk score, and grade) were used to construct a nomogram for

predicting the 1-, 3-, and 5-year OS for patients with HNSCC

(Figure 6A). TheX-axis indicates the nomogram’s estimated survival

probability, while the Y-axis denotes the actual survival probability.

The dotted line (45° diagonal line) between the calibration curves

indicates full agreement between the actual probability and the

observed probability. The calibration curves showed that the

nomogram accurately predicted the 1-, 3-, and 5-year OS

(Figure 6B). The estimated probability ROC curves were utilized

to evaluate the sensitivity and specificity of the nine-gene signature

and in predicting the survival. Among other prognostic factors (risk

score, age, grade, gender, and stage), the constructed nomogram had

the highest AUC value (0.981). The AUC values of the risk score,

age, gender, grade, and stage were 0.728, 0.617, 0.425, 0.710, and

FIGURE 4
(A) Deviance plot of partial likelihood by LASSO Cox
regression analysis. Red dots: the partial likelihood of deviance
values; gray lines: the standard error (SE); vertical dotted line on the
left: the optimal values by minimum criteria; vertical dotted
line on the right: 1−SE criteria. (B) LASSO coefficient profiles of the
121 TME-related genes in HNSCC.
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0.609, respectively (Figure 6C). Analysis of the nomogram’s clinical

net benefit using the DCA test revealed that the model combining

other independent prognostic factors had the best clinical net benefit

when compared with any individual feature (Figure 6D).

Gene set enrichment analysis

The results of the GSEA of the nine-gene signature (Figure 7)

revealed that oncological signatures (cornification, epiderma cell

differentiation, epidermis development, and keratinization) were

enriched in the high-risk group, whereas immune-related

cascades, consisting of immune response activation, B cell

activation, adaptive immune response, adaptive immune

response based on somatic recombination of immune

receptors built, and antigen receptor-mediated signaling

cascade, were enriched in the low-risk group.

Differentiation of the prognostic
performance of the signature

Stratification survival analysis was performed to assess the

predictive performance of the nine-gene signature in multiple

HNSCC subtypes. Subgroup analysis, including stage (Figures

8A,B), grade (Figures 8C,D), age (Figures 8E,F), and gender

(Figures 8G,H), was conducted to evaluate the different

performances of the nine-gene signature. The results revealed

that the high-risk group was associated with poorer OS and

significantly differentiated the low-risk group into different

subgroups (all p < 0.05).

External validation of the nine-gene
signature

The results of time-independent ROC analysis and

survival analysis indicated that the nine-gene signature had

a robust and reliable performance in predicting OS. The AUC

values of the nine-gene signature (TME signature) for

predicting 1-, 3-, and 5-year OS were 0.741, 0.832, and

0.767, respectively (Figure 9A). Each previous gene

signature was validated as a reliable prognostic model

(Figures 9B–D). The results of the C-index analysis and

RMS values demonstrated that the nine-gene signature was

superior to other signatures in predicting the OS of HNSCC

patients (Figures 10A,B). External validation of the nine-gene

signature was performed using the GSE16076 dataset from the

FIGURE 5
(A) Time-dependent ROC analysis and survival analysis of the nine-gene signature in the training set. (B) Time-dependent ROC analysis and
survival analysis of the nine-gene signature in the testing set. (C) Time-dependent ROC analysis and survival analysis of the nine-gene signature in the
whole set.
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GEO database. The AUC values for predicting 1-, 3-, and 5-

year OS were unknown, 0.558, and 0.623, respectively

(Figure 10C). The validation of the GSE16076 dataset

revealed that patients in the high-HNSCC risk group had a

lower 5-year OS than those in the low-HNSCC risk group (p =

0.046), which was consistent with the findings from TCGA

cohort (Figure 10D). Altogether, these results demonstrated

that the nine-gene signature effectively predicted the survival

of HNSCC patients.

Correlation analysis

The risk model was negatively correlated with CD8+ T cells, B

lineage, monocytic lineage, myeloid dendritic cells, and

fibroblasts (Figure 11A). In addition, the relationship between

the risk model and these genes, such as PDCD1, CTLA4, POLE2,

FEN1, MCM6, POLD3, MSH6, and MSH2, were negatively

correlated (Figure 11B).

Discussion

HNSCC is the sixth most common cancer globally, with

890,000 new cases and 450,000 deaths recorded in 2018 (Bray

et al., 2018; Ferlay et al., 2019). HNSCC is characterized by early

metastasis, especially lymphatic metastasis, which results in poor

prognosis (Evans et al., 2019). Several studies have investigated the

ability of various factors, such as TNM staging, age, gender, grade,

P53 mutations, and HPV negativity, to predict HNSCC prognosis.

Clinically, HNSCC is difficult to treat because of its high

heterogeneity. Thus, reliable prognostic tools are urgently needed

to promote accurate prediction of HNSCC outcomes. Recent studies

have indicated that signatures based on aberrantly expressed genes

can predict cancer prognosis (Cohen et al., 2019).

In the present study, we developed a nine-gene signature

consisting of GTSE1, LRRN4CL, CRYAB, SHOX2, ASNS,

KRT23, ANGPT2, HOXA9, and CARD11 for predicting

HNSCC prognosis. Internal validation based on TCGA

database and external validation based on the GEO database

FIGURE 6
(A) Nomogram for predicting the OS of HNSCC patients. For each patient, lines are drawn downward to assess the points received from the
seven prognostic factors in the nomogram. The sumof these points is shown on the “Total points” axis. A line is drawn downward to determine the 1-,
3-, and 5-year OS of HNSCC patients. (B) Calibration plot for the internal validation of the nomogram. The Y-axis exhibits actual survival. The X-axis
exhibits nomogram-estimated survival. The dotted line (45° diagonal line) signifies full agreement between actual and observed probabilities. (C)
Comparison of the AUC values of the nomogram and risk score, age, gender, grade, and stage. (D) Clinical net benefit of the nomogram, risk score,
and other clinical features (including age, gender, grade, and stage).
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FIGURE 7
(A) Enrichment plots showing epidermis development (blue), epidermal cell differentiation (green), cornification (red), and keratinization
(purple) gene enrichment in the high-risk group. (B) Enrichment plots showing the activation of immune response (red), adaptive immune response
(orange), adaptive immune response based on somatic recombination of immune receptors built (green), B-cell activation (purple), and antigen
receptor-mediated signaling pathway (blue) enrichment in the low-risk group.
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were conducted and showed that the prognostic model is robust

and reliable.

Through the tumor-suppressive protein p53, GTSE1 has been

implicated in the pathogenesis of severalmalignant tumors. Previous

research has proved its negative regulation in malignant tumors (Lai

et al., 2021). Moreover, GTSE1 has been linked to the development

of chemoresistance in osteosarcoma (Xie et al., 2021) and

hepatocellular carcinoma (Li et al., 2021). To date, the role of

GTSE1 in HNSCC has not been fully clarified. LRRN4CL is a

cytotoxicity-associated gene associated with CD8+ T-cell infiltration.

FIGURE 8
(A,B) Subgroup analysis stratified by different tumor stages (stages I–II and stages III–IV). (C,D) Subgroup analysis stratified by different tumor
grades (grades 1–2 and grades 3–4). (E,F) Subgroup analysis stratified by different age (over 65 and under 65 years). (G,H) Subgroup analysis stratified
by different genders (male and female).

FIGURE 9
(A) Time-dependent ROC analysis and survival analysis of the nine-gene signature (TME signature). (B–D) Time-dependent ROC analysis and
survival analysis of three-gene signatures established by other researchers.
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Upregulation of LRRN4CL expression on cell surfaces correlates

with increased pulmonary metastases in mice (van der Weyden

et al., 2021). However, the mechanism of LRRN4CL upregulation in

HNSCC was not clear. CRYAB, a member of the small heat shock

protein family, can regulate several cellular processes, including

apoptosis, inflammation, and oxidative stress (Zhang et al., 2019).

Under hypoxic conditions, CRYAB upregulation was shown to

improve the survival of HNSCC cells (van de Schootbrugge

et al., 2014). The relationship between CRYAB expression and

HNSCC survival outcome is indistinct (Boslooper et al., 2008).

Methylated SHOX2 in circulating cell-free DNA correlates with

the tumor stage and prognosis (Franzen et al., 2020). There is

evidence that SHOX2 can predict the occurrence and prognosis of

HNSCC (Bergheim et al., 2018). It has been reported that ASNS

transforms aspartate and glutamine to asparagine and glutamate in

an ATP-dependent manner, respectively. The activity of human

ASNS is influenced by cellular stress (Lomelino et al., 2017). The

high expression of ASNS promotes growth, metastasis, and

chemoresistance in neoplastic cells. In contrast, the low

expression of ASNS impaired metabolic function in specified

cancer models (Chiu et al., 2019). ASNS is also an important

predictor of HNSCC prognosis (Mai et al., 2021). Loss of

KRT23 affects the cell cycle, DNA replication, recombination,

and repair (Birkenkamp-Demtröder et al., 2013). Evidence from

previous studies has indicated that KRT23 influences the

proliferation, migration, and prognosis of cancer (Odena et al.,

2016; Zhang et al., 2017; Chen et al., 2021). ANGPT2 is a ligand for

TIE1–TIE2 signaling involved in the development andmaintenance

of blood and lymphatic vessels (Smeland et al., 2021). In this study,

we found that ANGPT2 regulates physiological and pathological

angiogenesis in HNSCC by modulating vasodilation, microvascular

permeability, and vasoconstriction (Xu et al., 2019). ANGPT2-

deficient mice show abnormalities in blood and lymphatic

vasculature and deficits leukocyte mobilization to inflammation

sites (Fiedler et al., 2006). ANGPT2 is associated with shorter OS

in HNSCC (Arends et al., 2021). HOXA9, a homeotic transcription

factor (Lambert et al., 2019), is upregulated in HNSCC tissues and

cells. HOXA9 knockdown inhibits cell proliferation, migration,

FIGURE 10
(A–B)C-index results and percentile of scores of the four different signatures. (C) AUC values for predicting 1-, 3-, and 5-year OS for patients in
the GSE16076 dataset. (D) Survival analysis for patients in the GSE16076 dataset.
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FIGURE 11
(A)Heatmap showing the correlation between risk score and immune cells. (B) Spearman correlation analysis of TME-related genes in PTC. The
number on the right vertical axis represents the Spearman correlation coefficient between two genes. The black asterisk (*) inside the circle indicates
p < 0.05. Red indicates positive correlation. Blue indicates negative correlation. The stronger the correlation, the larger the circle and the deeper the
color.
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invasion, and chemoresistance (Zhou et al., 2019; Sun et al., 2020).

CARD11, a key member of the protein arginine methyltransferase

(PRMT) family, encodes an adaptor protein that expresses

dominant-negative (Guo et al., 2020). CARD11 gain-of-function

variants may cause various immunodeficiencies (Meitlis et al., 2020).

Mounting evidence indicates that CARM1 is associated with

carcinoma metastasis (Sharma et al., 2017; Cai et al., 2019; Hu

et al., 2020). CARM1-silencing in oral squamous cell carcinoma cells

effectively suppresses tumor invasion (Lyu et al., 2022).

To our knowledge, the use of nine-gene signature for predicting

the prognosis of HNSCC has not been reported before. The risk

score for each of the nine prognostic genes was based on the gene

expression profile but not somatic mutations or methylation status.

This signature can be applied in many clinical centers because it is

affordable and eliminates the requirement for whole-genome

sequencing. Although our results relied on an open-access online

TCGA database, without further validation of conventional

prediction methods, we chose the GSM16076 dataset to validate

our results. The results of the time-independent ROC analysis and

survival analysis indicated that the nine-gene signature is reliable

and stable. Moreover, the nomogram showed better performance

than conventional clinical parameters, especially in predicting short-

term (1-year or 3-year) survival. Thus, our signature can be used to

guide clinical decisions regarding HNSCC treatment.

Conclusion

In conclusion, we established and verified a TME-related

nine-gene signature and nomogram, which might have the

potential to act as new therapeutic targets for HNSCC patients.
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