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Simple Summary: Bovine fatty liver syndrome is a metabolic disorder in transition dairy cows that
has been associated with adverse consequences such as lower milk production and fertility. Fatty
liver syndrome is difficult to monitor and diagnose in applied practice and research settings because
it requires a liver tissue biopsy to determine liver triglyceride content. This study aimed to develop
and validate a panel of blood metabolite, protein, and mineral biomarkers as a less invasive and more
accessible tool to assess liver triglyceride content. We investigated a variety of panels using blood
measurements from a single timepoint or multiple timepoints, as well as different combinations of
biomarkers based on their perceived accessibility. Both the single and multiple timepoint biomarker
panels accurately classified cows with high liver triglyceride content (top 33.3% vs. lower 66.7%), but
accuracy was lower for classifying cows with or without maximum liver triglyceride in the top 50%
or top 66.7% of liver triglyceride content. We suggest that the blood biomarker models predicting
high triglyceride content may be useful for monitoring fatty liver in research and applied practice, as
well as enable larger scale research studies investigating fatty liver in dairy cows.

Abstract: Bovine fatty liver syndrome (bFLS) is difficult to diagnose because a liver tissue biopsy is
required to assess liver triglyceride (TG) content. We hypothesized that a blood biomarker panel could
be a convenient alternative method of liver TG content assessment and bFLS diagnosis. Our objectives
were to predict liver TG using blood biomarker concentrations across days in milk (DIM; longitudinal,
LT) or at a single timepoint (ST; 3, 7, or 14 DIM), as well as different biomarker combination based
on their perceived accessibility. Data from two separate experiments (n = 65 cows) was used for
model training and validation. Response variables were based on the maximum liver TG observed in
1 and 14 DIM liver biopsies: Max TG (continuous), Low TG (TG > 13.3% dry matter; DM), Median
TG (TG > 17.1% DM), and High TG (TG > 22.0% DM). Model performance varied but High TG
was well predicted by sparse partial least squares—discriminate analysis models using LT and ST
data, achieving balanced error rates ≤ 15.4% for several model variations during cross-validation. In
conclusion, blood biomarker panels using 7 DIM, 14 DIM, or LT data may be a useful diagnostic tool
for bFLS in research and field settings.

Keywords: fatty liver; transition cow; partial least squares; blood biomarkers

1. Introduction

Bovine fatty liver syndrome (bFLS) is a metabolic disorder in early lactation dairy cows
that develops in part due to negative energy and nutrient balance, obesity, and inflamma-
tory signals [1–4]. Subclinical and clinical cases of bFLS are characterized by an abnormally
high concentration of liver triglyceride (TG) in early postpartum cows, even though a
diagnostic threshold has not been formalized [2]. A cross-sectional epidemiology study of
218 Dutch cows found 54% of the cows experienced a moderate to severe accumulation
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of liver TG between 6 and 17 days in milk (DIM) [5]. Several unfavorable performance
outcomes have been associated with increased liver TG content in early postpartum cows,
including lower feed intake, lower fertility, greater weight loss, and greater incidence of
disease comorbidities [6–8]. The absence of pathognomonic clinical signs of bFLS has made
TG quantification from liver tissue biopsy samples the standard for bFLS diagnosis. Liver
biopsies are an invasive surgical procedure, which has likely limited their use in research
and field settings. Limited implementation of biopsy-based liver TG quantification has
in turn limited evidence for diagnostic thresholds, case prevalence, and consequences
for bFLS. In contrast, much more is known about prevalence, outcomes, and diagnostic
thresholds for other early lactation metabolic disorders such as hyperketonemia, which
has multiple convenient, less-invasive tools for cowside diagnosis [2,8,9]. This dichotomy
underscores the importance of developing a less invasive bFLS diagnostic approach.

Blood collection for assessment of early lactation dairy cows is not uncommon for
other metabolic disorders like hyperketonemia and hypocalcemia [9–11] and may repre-
sent an opportunity to assess liver TG content or functionality. However, the previously
mentioned -emia disorders are defined by quantification of a blood biomarker, whereas
bFLS is defined by a liver tissue measurement. Thus, a diagnostic approach exploring the
use of multiple blood biomarkers related to liver metabolism and functionality is likely
prudent. Maladaptation to negative energy and nutrient balance is part of the gross pathol-
ogy of bFLS; biomarkers of energy and nutrient status like non-esterified fatty acids (FA),
β-hydroxybutyrate (BHB), and glucose are of particular interest and were previously associ-
ated with liver TG content [8,12–14]. Other indicators of liver protein and lipid metabolism
associated with bFLS are blood urea nitrogen (BUN) and cholesterol, respectively [2,5,13].
Additionally, biomarkers of liver damage and the acute phase response, such as alanine
transaminase (ALT) and aspartate transaminase (AST), albumin, and haptoglobin (Hp) are
associated with liver TG in dairy cows [2,15,16]. While less explored in dairy cattle, blood
mineral concentrations are associated with steatosis in humans and rodents, including
calcium (Ca), phosphorous (Phos), and magnesium (Mg) [17–19]. Total blood calcium was
previously associated with liver TG content in dairy cows [8]. An index of various blood
biomarker concentrations has been proposed to indirectly assess cow liver activity and
health [20,21] but prior attempts were validated based on cow milk production, reproduc-
tion metrics, and morbidity [20,21] rather than directly based on liver TG content or other
relevant metrics.

We hypothesized that liver TG content can be directly predicted by a blood panel
of metabolite, mineral, and protein biomarkers, providing a more convenient tool to
diagnose and monitor bFLS and cow metabolic health. Leveraging blood energy metabolite,
protein, and mineral concentrations analyzed on published data sets [22,23], the objectives
of this research were to predict liver TG content in multiparous Holstein dairy cows
using longitudinal (LT) or single timepoint (ST) blood sampling, and to improve the
accessibility of these liver TG prediction panels by exploring combinations of explanatory
variables based on the anticipated availability of samples or lab chemistry to most research
and diagnostic labs. The selection of blood biomarkers was based on a combination of
biological justification and practicality and resulted in measurement of albumin, ALT, AST,
BHB, BUN, Ca, cholesterol, FA, glucose, Hp, Mg, and Phos. It is important to note that
although other potential markers could be justified biologically, we refrained from using
biomarkers that would not be practical for the final application of applied prediction models;
therefore, we did not include biomarkers that can only be quantified by an enzyme-linked
immunosorbent assay or radioimmunoassay.

2. Materials and Methods

Experiments conducted on the cows in this research followed animal use and handling
protocols approved by the University of Wisconsin–Madison College of Agriculture and
Life Sciences Animal Care and Use Committee (protocol A005467). All cows were housed
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in a tie-stall facility, at the Dairy Cattle Instruction and Research Center (University of
Wisconsin–Madison, Madison, WI, USA).

2.1. Experimental Design, Sampling, and Analysis

Samples and data from multiparous Holstein cows (n = 65) used in this research
are sourced from two published experiments [22,23]. A brief description of experimental
treatments and pertinent sampling are provided below. Descriptive statistics of cow
production and performance data are reported in Supplementary Table S1. The exclusive
use of multiparous cows for this research was intentional due to their greater risk for
metabolic disorders [24,25].

Experiment 1 enrolled multiparous Holstein cows (n = 40) and randomly assigned
cows to treatment within block (expected parturition date). The treatments included a
control diet (n = 20 cows) and a treatment diet supplemented with fermented ammoniated
condensed whey (n = 20 cows, 2.9% diet dry matter (DM), replacing soybean meal). To
increase risk of hyperketonemia cases, cows within both treatments were dietarily chal-
lenged by a daily top-dress of 6 kg of dry, cracked corn, in addition to ad libitum access
to their total mixed ration (1.69 Mcal NEL per kg DM), from -28 expected days relative to
calving until parturition [22].

Like experiment 1, experiment 2 enrolled multiparous Holstein cows (n = 25) by ran-
dom assignment of cows to treatment within block (expected parturition date). Treatments
included a control diet (n = 13 cows) and a ketosis induction protocol (n = 12 cows). Prepar-
tum, both treatments were allowed ad libitum access to a total mixed ration (1.42 Mcal
NEL per kg DM) and both treatments had the same postpartum diet. Cows within the
ketosis induction protocol treatment were dietarily challenged by a daily top-dress of 6 kg
of dry, cracked corn, in addition to the total mixed ration, from -28 expected days relative
to calving until parturition. Additionally, the ketosis induction cows were feed restricted to
80% of voluntary intake beginning at 14 DIM [23]. All samples and data used in the present
research were collected prior to the feed restriction period.

In both experiments, blood samples were collected by venipuncture of the coccygeal
vessels into evacuated tubes with or without additive at 1, 3, 5, 7, and 14 DIM before the
daily feeding. Serum was separated from blood collected in tubes without additive (BD
Vacutainer, Franklin Lakes, NJ, USA) after centrifugation at 2500× g for 15 min at room
temperature. Plasma was separated from blood collected in an evacuated tube containing
potassium oxalate and 4% sodium fluoride (BD Vacutainer, Franklin Lakes, NJ, USA) that
was kept on ice until centrifugation at 2000× g for 15 min at 4 ◦C. Serum and plasma
aliquots were stored at − 20 ◦C until metabolite, protein, and mineral biomarker analysis.

Details on some of the metabolite and protein biomarkers quantified have been de-
tailed previously [22,23,26]. Blood fraction (serum or plasma) concentration of FA, glucose,
and BHB were determined on samples collected on 1, 3, 5, 7, and 14 DIM. In experiment 1,
plasma FA (Wako NEFA-HR(2) Microtiter Procedure kit; Wako Diagnostics, Richmond, VA,
USA), BHB (Stanbio BHB LiquiColor kit; Stanbio Laboratory, Boerne, TX, USA), and glucose
(Autokit Glucose; Wako Diagnostics) were quantified by plate assay [22]. In experiment 2,
plasma FA was quantified by plate assay [23], while plasma glucose and serum BHB were
quantified using the previously validated methods on a Catachem Well-T AutoAnalyzer
(Catachem, Awareness Technologies, Oxford, CT, USA) [23]. Blood fraction (serum or
plasma) concentration of BUN, albumin, ALT, AST, and Hp was quantified for samples
collected on 1, 3, and 14 DIM. Across both experiments, BUN, albumin, ALT, and AST were
quantified in plasma using the Catachem Well-T AutoAnalyzer (Catachem, Awareness
Technologies) [26].

The following biomarkers were not previously reported. Serum Hp was quantified
in triplicate based on a published assay [27]. Briefly, the difference in the peroxidase
activity of the haptoglobin-hemoglobin binding complex was measured colorimetrically
at 450 nm using a Synergy H1 Hybrid Spectrophotometer (BioTek, Winooski, VT, USA)
using a 5-point serial diluted (1:2) standard of a known Hp concentration. Any sample
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that did not fall within the standard curve was diluted and reanalyzed. A serum pool of
known Hp concentration was analyzed with each assay. Calcium (C294-06, Catachem) [28],
cholesterol (C104-02, Catachem) [29,30], Mg (C355-01, Catachem) [31], and Phos (V274-12,
Catachem) [32] were also analyzed in serum on the Catachem Well-T AutoAnalyzer (Cat-
achem) in duplicate. A weekly three-point standard curve was generated using the Catacal,
Catarol I, and Catatrol II standards (Catachem) for these biomarkers. Inter-assay coef-
ficient of variation was 4.23% 5.52%, 9.51%, 9.23%, and 1.70% for calcium, cholesterol,
Hp, magnesium, and phosphorous, respectively; no intra-assay coefficient of variation
exceeded 10%.

In both experiments, liver samples (~750 mg) were obtained by blind percutaneous
biopsy utilizing a custom-built trocar at 1 and 14 DIM [33,34]. Biopsy samples were
immediately rinsed with saline, aliquoted into tubes, frozen in liquid nitrogen, and stored
at −80 ◦C until analysis of liver TG content. Liver TG content was quantified by colorimetric
assay as described previously by Folch-extracted product and expressed as a % of DM in
the original publications [26,35,36].

2.2. Preparation of Data Sets

Liver TG, blood energy metabolite, mineral, and protein biomarker data from the
previous experiments were aligned into two data set categories: longitudinal (LT) and
single timepoint (ST). For all data sets, each cow was represented as a single observation.
The LT data set observations (n = 65 cows) had biomarker concentrations from multiple
timepoints (1, 3, 5, 7, and 14 DIM) included as explanatory variables for each individual
cow. Meanwhile, the ST category data sets had biomarker concentrations from a single
DIM as the explanatory variables for each observation. Three ST data sets were created:
3 DIM (ST3, n = 65 cows), 7 DIM (ST7, n = 65 cows), and 14 DIM (ST14, n = 65 cows). The
prediction model response variables were consistent across the LT and ST data sets and
defined based on a cow’s maximum observed liver TG content (n = 11 cows on 1 DIM,
n = 52 cows on 14 DIM, n = 2 cows not assigned due to a missing liver tissue biopsy sample).
The only continuous response was maximum liver TG content, natural log transformed
(Max TG); the natural log transformation was used due to a modest improvement in model
performance (data not presented). In the absence of a well-defined liver TG threshold,
three binary responses were explored using percentile thresholds: Low TG (maximum liver
TG > 13.3% DM, 33rd percentile), Median TG (maximum liver TG > 17.1% DM, median),
and High TG (maximum liver TG > 22.0% DM, 66th percentile). A cow with a maximum
liver TG above the respective threshold was coded as the event for that response variable.

The eligible explanatory variables varied across data sets due to differences in the
blood biomarkers analyzed within a particular DIM. Parity number, BHB, Ca, cholesterol,
FA, glucose, Mg, and Phos were available for all ST data sets. Albumin, ALT, AST, AST:ALT,
BUN, and Hp concentrations were available for the ST3 and ST14 data sets. The LT data
set included all the previous measurements on their respective DIM (3, 7, and 14 DIM) as
separate explanatory variables. In addition, measurements of BHB, Ca, cholesterol, FA,
glucose, Mg, and Phos were available on 1 and 5 DIM for the LT data sets; albumin, ALT,
AST, AST:ALT, BUN, and Hp were available on 1 DIM for the LT data set. Trapezoidal
area under the curve (tAUC) was determined from 3 to 7 DIM for glucose, FA, and BHB
concentrations and included as explanatory variables for LT models. Descriptive statistics
of the explanatory variables are provided in Table 1. In all data sets, explanatory variables
were centered and scaled within DIM by their arithmetic mean and standard deviation,
respectively, as derived from the composite data from across the 2 original experiments.
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Table 1. Descriptive statistics of liver triglyceride (TG) and potential explanatory variables in the
composite data set 1 before filtering procedures 2.

Variable 3 DIM 4 n Mean SD Min Q1 Median Q3 Max

Parity 64 3.08 1.25 2.00 2.00 3.00 4.00 7.00

Liver TG, % DM
1 63 9.15 5.74 2.64 5.36 7.97 10.75 37.95
14 62 17.78 10.61 2.21 9.39 15.34 24.40 45.85

Max 62 18.95 10.32 5.28 10.97 17.10 25.83 45.85
ln(Liver TG, % DM) Max 62 2.79 0.57 1.66 2.40 2.80 3.25 3.83
Blood Biomarkers

Glucose, mg/dL

1 64 67.19 18.78 43.36 57.77 61.27 70.02 143.54
3 64 55.86 7.05 40.85 51.18 55.65 60.02 81.06
4 62 54.23 7.40 33.06 50.12 54.90 59.25 70.12
5 63 53.53 7.17 29.43 49.41 53.87 59.04 66.26
14 64 53.64 6.17 38.93 49.62 54.32 58.62 64.79

tAUC 62 341.67 38.18 252.96 311.38 346.08 368.43 430.08

Fatty acids, mEq/L

1 38 0.49 0.24 0.20 0.34 0.43 0.58 1.32
3 63 0.50 0.23 0.09 0.36 0.45 0.65 1.05
5 63 0.47 0.24 0.12 0.30 0.45 0.57 1.40
7 60 0.42 0.22 0.09 0.28 0.35 0.54 1.14
14 62 0.40 0.21 0.13 0.24 0.37 0.52 1.24

tAUC 33 2.97 1.13 1.51 2.11 2.62 3.70 6.19

BHB, mM

1 63 0.60 0.18 0.30 0.49 0.58 0.68 1.16
3 64 0.83 0.37 0.35 0.60 0.76 0.91 2.17
5 63 0.91 0.66 0.41 0.62 0.76 0.94 4.03
7 64 0.95 0.71 0.36 0.63 0.74 0.97 5.42
14 64 0.90 0.44 0.37 0.66 0.78 0.94 2.47

tAUC 63 5.03 2.53 2.57 3.73 4.34 5.45 17.54

Albumin, g/dL
1 36 3.85 0.23 3.44 3.71 3.81 3.99 4.48
3 64 3.74 0.23 3.08 3.61 3.76 3.88 4.24
14 57 3.89 0.31 3.27 3.61 3.95 4.14 4.48

ALT, U/L
1 37 18.92 6.46 6.87 14.50 18.62 22.35 37.82
3 64 14.29 4.56 5.70 10.51 14.16 18.02 25.26
14 62 15.98 5.48 7.51 11.70 15.41 19.88 34.11

AST, U/L
1 40 73.74 22.09 40.28 52.76 74.29 89.73 119.04
3 64 82.97 29.77 38.31 62.49 78.77 93.94 209.51
14 63 93.73 39.46 44.08 73.05 83.93 103.67 308.58

AST:ALT
1 37 4.12 1.20 2.39 3.16 4.12 4.96 7.08
3 64 6.36 3.01 3.50 4.15 5.21 7.73 17.42
14 62 6.47 3.19 2.52 3.98 5.67 8.09 15.83

BUN, mg/dL
1 39 11.38 2.90 5.98 8.88 11.67 13.35 18.61
3 64 11.22 2.93 6.50 8.96 10.86 12.98 20.50
14 63 13.33 2.87 7.19 11.12 13.36 15.00 20.33

Hp, mg/dL
1 38 0.76 0.51 0.11 0.36 0.65 0.96 2.69
3 63 2.04 1.39 0.22 0.87 1.74 2.85 6.22
14 62 0.51 0.49 0.06 0.23 0.32 0.56 2.83

Ca, mg/dL

1 50 6.76 1.00 4.50 6.31 6.78 7.38 9.20
3 52 7.99 1.02 4.35 7.56 8.15 8.70 9.70
5 52 8.41 1.07 5.15 7.61 8.35 9.35 10.85
7 53 8.21 1.16 4.85 7.45 8.45 8.88 11.20
14 52 8.65 0.82 6.45 8.28 8.73 9.25 10.05

Mg, mg/dL

1 51 2.15 0.38 1.39 1.83 2.15 2.37 3.22
3 53 2.18 0.30 1.10 2.04 2.19 2.35 2.94
5 53 1.89 0.33 1.01 1.67 1.88 2.12 2.52
7 53 1.89 0.30 1.17 1.69 1.88 2.09 2.50
14 52 2.20 0.38 1.26 2.02 2.24 2.53 2.87

Phos, mg/dL

1 51 3.79 1.05 1.63 3.11 3.59 4.46 6.06
3 53 4.48 1.07 1.95 3.85 4.40 4.97 8.15
5 53 4.49 0.88 2.16 3.93 4.46 5.16 6.01
7 53 4.07 0.65 2.76 3.55 4.04 4.60 5.46
14 52 4.28 0.80 2.66 3.70 4.18 4.80 5.89
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Table 1. Cont.

Variable 3 DIM 4 n Mean SD Min Q1 Median Q3 Max

Cholesterol, mg/dL

1 51 59.30 11.87 38.46 49.75 58.92 65.27 92.08
3 53 63.81 12.28 34.68 54.55 64.30 71.71 96.81
5 53 68.86 12.81 41.28 59.79 69.00 74.79 97.54
7 53 77.05 13.51 45.88 67.37 75.86 85.80 105.48
14 52 112.89 20.72 79.47 97.90 108.92 128.87 169.06

1 The composite data set included multiparous Holstein dairy cows (n = 65) from two separate experiments
with two experimental treatments per experiment, 2 Table heading definitions: DIM = day in milk timepoint,
n = sample size, SD = standard deviation, Q1 = quartile 1 threshold, Q3 = quartile 3 threshold, 3 Abbreviations
used in rows to describe variables: DM = dry matter, BHB = β-hydroxybutyrate, ALT = alanine transanimase,
AST = aspartate transanimase, BUN = blood urea nitrogen, Hp = haptoglobin, Ca = calcium, Mg = magne-
sium, Phos = phosphorous, 4 Abbreviations used DIM column: Max = max observed value from 1 to 14 DIM,
tAUC = trapezoidal area under the curve from 3 to 7 DIM.

The prediction modeling procedures used in this research are not tolerant of missing
data; therefore, a three-step filtering procedure was used to exclude variables and observa-
tions (cows) in a manner that maximized the number of useable observations for model
training and fitting. Data handling from this point was done in R (version 4.1.0) [37], and
filtering was performed on each data set (LT, ST3, ST7, and ST14) independently. First,
the potential explanatory variables with >20% missing values within experiment 1 or
experiment 2 were excluded from the data sets. Excluded variables included albumin, ALT,
AST, AST:ALT, BUN, FA, and Hp, quantified on 1 DIM, as well as the tAUC for FA.

Second, the variables remaining after step 1 were filtered based on variable importance
projection (VIP) scores within a data set (LT, ST3, ST7, or ST14). To get the VIP scores,
observations with missing data for the remaining explanatory variables were temporarily
omitted to create a complete data set with no missing values (n = 44 cows). Then, partial
least squares (PLS) modeling methods (mixOmics, version 6.16.0) [38,39] were used to fit
an initial prediction model for each response variable (n = 4 models per data set). Max
TG was predicted by PLS regression; PLS-discriminate analysis (PLSDA) was used for
Low TG, Median TG, and High TG models. These initial models were fitted to 3 principal
components and VIP scores were extracted for all 3 principal components. Based on the
VIP scores generated in the initial modeling, explanatory variables were assigned their
maximum observed VIP score across all models and model principal components within
a respective data set (LT, ST3, ST7, or ST14). Then, potential explanatory variables with a
maximum observed VIP < 1.0 were excluded from the respective data set.

In the final filtering step, observations that were temporarily omitted in step 2 were
added back into the data set as long as they had complete data for the explanatory
variables remaining after VIP filtering in step 2. After filtering explanatory variables
(step 1, missingness; step 2, VIP scores) and observations with incomplete data (step 3), the
LT and ST data sets had n = 52 and n = 47 observations, respectively, for the subsequent
model training.

2.3. Model Training, Evaluation, and Validation

Prediction of Max TG, Low TG, Median TG, and High TG was performed by sparse
PLS methods (mixOmics). This method of prediction was chosen because it is more robust
to multicollinearity than multiple regression methods and allows for the maximization
of model performance while using the least number of explanatory variables within a
principal component. The latter reason minimizes the number of biomarkers an end user
would need to assay for a selected model. Max TG was predicted by sparse PLS regression,
while the binary responses were predicted by sparse PLSDA. Models are presented as
response variable-data set combinations. For example, a PLS model predicting Max TG
using LT data would be designated Max TG-LT and a PLSDA model predicting High TG
with ST14 data would be designated High TG-ST14.
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The tune.spls() and tune.splsda functions of the mixOmics package were used to
exhaustively train models for Max TG and the binary responses, respectively, on all filtered
data sets. To exhaustively search different model fittings across varying data, random
split cross-validation (RCV) was performed. The RCV used 4 folds and 1000 iterations
to explore models fitting 1 to the maximum allowed principal component (explanatory
variable count—1) and using 1 to all available loadings within a principal component. The
optimum sparse model fitting within a data set was selected based on minimization of
mean squared error (MSE) and balanced error rate (BER) for sparse PLS and sparse PLSDA
models, respectively. Additional model evaluation statistics were extracted for the optimal
models, including area under the receiver operating characteristic curve (rAUC, sparse
PLSDA), mean absolute error (MAE, sparse PLS), and coefficient of determination (R2,
sparse PLS). Then, block cross-validation (BCV) of the optimal models was performed to
suggest whether optimal model prediction was dependent on the underlying data structure
and resulted in overoptimistic model evaluation [40,41]. Each experiment-treatment combi-
nation was considered as a block (n = 4 blocks). Briefly, the optimal model was iteratively
fit to 3 blocks and used to predict responses of the fourth block, such that all blocks were
predicted by the other 3 blocks once. Model evaluation statistics for BCV of sparse PLS
models were computed for the aggregate predictions using the Model Evaluation System
(version 3.2.4) [42], including root MSE (RMSE), MAE, R2, concordance correlation coeffi-
cient (CCC) [43], and mean bias. For the BCV sparse PLSDA models, the BER, accuracy,
sensitivity, specificity, positive predictive value (PPV), and negative predictive values were
calculated [44] using custom R scripts. Within each binary, the classification with greater
maximum liver TG was considered the event/case for calculating these statistics. Finally,
the final optimal models were fitted to the entire filtered data set so that variable loadings
could be extracted and reported (Supplementary Tables S2 and S3).

To increase accessibility of the High TG models, we further explored models post
hoc based on what information we conceived to be readily available in existing research
data sets or diagnostic laboratories. Two potential barriers to application of the proposed
models are the collection of 1 DIM samples and uncommonly analyzed analytes. In our
data set, blood fraction analytes we perceived as uncommonly analyzed in the transition
cow literature are Ca, cholesterol, Hp, Mg, and Phos. For example, Hp is not common to
diagnostic laboratories or diagnostic equipment common to clinicians (examples: i-STAT
series, Abbott, Lake Forest, IL, USA; Carysta HVC, Diasys Diagnostic Systems, Wixom, MI,
USA; cobas analyzer series, Roche Diagnostics, Indianapolis, IN, USA) and minerals are
not always analyzed pre- and postpartum. Thus, we explored four levels of explanatory
variable restriction: no 1 DIM data (subscript no1DIM), no Hp measurements (subscript
noHp), no Hp or cholesterol measurements (subscript limit1), and no Hp, cholesterol, or
minerals (subscript limit2). If the initial sparse PLSDA model for High TG did not include
an uncommon analyte (Supplementary Tables S2 and S3), the variable restriction was not
explored (i.e., High TG-LTnoHp, Supplementary Table S2).

3. Results and Discussion

Together with improvements in nutrition and management, the increased availability
of diagnostic tools and proactive health monitoring have allowed for improvements in
postpartum cow health [9]. Hyperketonemia is a hallmark example with several cowside
diagnostic tools, including blood BHB quantification with a handheld meter [10,45,46],
as well as the development of predictive analytic tools to screen or diagnose cows with
hyperketonemia using routinely collected data [47–50]. Monitoring liver TG content and
bFLS has remained elusive to dairy farmers, dairy consultants, and clinicians because
doing so requires an invasive liver tissue biopsy, as well as laboratory analysis for TG
content to definitively diagnose cases [2]. These challenges have prevented in-depth
investigation into the incidence, risk factors, consequences, and financial impact of bFLS.
Our novel investigation explored utilizing postpartum concentrations of a variety of blood
energy metabolite, protein, and mineral biomarkers in a multivariate prediction of liver
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TG concentration and binary classifications of TG content in multiparous Holstein dairy
cows. We attempted to improve the practicality of these liver TG prediction models by
developing several variations based on LT or ST blood sampling, so that these models can
be implemented in a broad range of applications. Defining an appropriate bFLS threshold
is challenging because there is a lack of data interrogating liver TG content with cow
performance or health outcomes. This is further complicated by the variation in the DIM of
tissue sample collection and how steatosis is assessed (i.e., histology, lipid vs. TG content,
wet vs. DM vs. DNA basis) [5,8,51,52]. With greater liver TG content generally associated
with negative consequences, we chose to use the maximum observed liver TG content
between the 1 and 14 DIM liver tissue biopsy samples as the basis of our response variables.
Most cows in our data set (83%) had the greatest liver TG content at 14 DIM. This is in
agreement with previous literature that indicated liver TG content typically peaks between
1 and 3 weeks postpartum [1,53].

Prediction of maximum liver TG as a continuous response is theoretically the most
flexible for long term application of a bFLS diagnosis and screening model, and could be
of value if a subclinical threshold is established. Across the ST and LT data sets, Max TG
prediction models’ mean MSE ranged from 0.66 to 0.89 ln(liver TG, % DM)2, mean MAE
ranged from 1.12 to 1.4 ln(liver TG, % DM), and R2 ranged from 0.11 to 0.33 during RCV
(Table 2). Generally, the RMSE, MAE, and R2 performance was marginally better for Max
TG models during BCV (Table 2), suggesting the model performance was not dependent
on the treatment structure [40,41]. Model CCC ranged from 0.17 to 0.43 and mean bias
ranged from -0.05 to approximately 0 during BCV across the ST and LT models for Max
TG. The models herein are unique in the biomarkers used and the multivariate approach
employed to predict liver TG content in dairy cows, so there is no direct comparison of
model performance available to benchmark the efficacy of these PLS models.

Table 2. Model evaluation statistics from the cross-validation (CV) of sparse partial least squares
models that predict max liver triglyceride (TG) content 1.

Variables 3

Random Split CV 4

Block CV 8
MSE 5 MAE 6 R2

Mean SE 7 Mean SE Mean SE RMSE MAE R2 CCC 9 Mean
Bias

ST3 0.81 0.07 1.40 0.06 0.20 0.05 0.47 0.39 0.25 0.28 −0.01
ST7 0.70 0.05 1.20 0.04 0.29 0.04 0.45 0.35 0.34 0.36 <0.01

ST14 0.89 0.04 1.40 0.04 0.11 0.03 0.52 0.43 0.12 0.17 −0.05
LT 0.66 0.05 1.20 0.05 0.33 0.05 0.44 0.35 0.38 0.43 −0.01

1 Liver TG (% liver tissue dry matter) was assessed at 1 and 14 days in milk (DIM) for every cow. The natural log
transformation of the maximum liver TG observed across DIM was used as the response variable for all models.
2 Coefficient of determination, 3 Explanatory variables included blood concentrations of energy metabolite,
protein, and mineral biomarkers. Models varied in biomarker availability based on single timepoint (ST) or
longitudinal (LT; multiple timepoint) blood sampling. Day in milk of ST models (n = 52 cows) were 3, 7, and
14 DIM for ST3, ST7, and ST14, respectively. The LT models (n = 47 cows) could include data from 1, 3, 5, 7, and
14 DIM. 4 Random split CV of data using 4 folds and 1000 replications, 5 Mean squared error, 6 Mean absolute
error, 7 Standard error, 8 Original dietary treatments (n = 4, 2 experiments) alternated as folds during CV,
9 Concordance correlation coefficient.

Binary classifications can be useful to assess herd metabolic health by suggesting the
proportion of sampled cows with relatively low or high liver TG. Indeed, the proportion of
early lactation cows with a particular disease, such as hyperketonemia or hypocalcemia, has
been used to monitor herd performance and responses to changes in management [9,47]. In
the absence of a bFLS diagnostic threshold, the bottom tercile, median, and top tercile of the
observed maximum TG were used as thresholds to classify cows as having a greater liver
TG than a normal or relatively healthy early lactation cow. A recent investigation associated
liver TG content at 8 DIM to cow performance, suggesting that cows with liver TG > 7.0%
on a wet weight basis had a detrimental impact on productivity, fertility, and morbidity [8].
That work reported median liver TG content for the data set on a wet and DM basis; the ratio
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of these medians was 0.348, wet basis:DM basis [8]. Assuming the wet basis:DM basis ratio
is constant across samples of varying TG content and DIM, the Low, Median, and High TG
thresholds used to classify cows in the current study would approximate 4.6, 6.0, and 7.7%
TG on a wet weight basis, respectively. Based on the above noted performance outcomes
negatively associated with liver TG > 7.0% wet weight basis [8], the High TG response
might best represent a meaningful subclinical bFLS threshold associated with negative
consequences. Further epidemiological research is needed to validate these classifications
and the impact of bFLS on dairy cow performance [54,55].

There was substantial variation in the performance of sparse PLSDA models that
predicted the different binary responses. During RCV, Low TG models had BER ranging
from 32.2% to 42.3% and rAUC ranging from 62.9 to 69.5% (Table 3). Classification statistics
were also relatively low during BCV of ST models for Low TG [44]; however, Low TG-LT
performed better during BCV: 15.7% BER, 80.9% accuracy, 92.4% sensitivity, and 76.5%
specificity (Table 3).

Table 3. Model evaluation statistics from the cross-validation (CV) of sparse partial least squares—
discriminate analysis models that predict binary classification of liver triglyceride (TG) content.

Model
Random Split CV 3 Block CV 7

BER 4 rAUC 5

Response 1 Explanatory 2 Mean SE 6 Mean SE BER Accuracy Sensitivity Specificity PPV 8 NPV 9

Low TG

ST3 35.7 5.2 69.5 5.1 43.1 53.9 45.5 68.5 28.6 74.2
ST7 32.2 2.1 75.7 1.2 28.5 68.0 58.9 84.3 87.0 53.4

ST14 42.3 3.7 63.0 4.1 40.8 59.7 60.7 57.9 71.5 45.9
LT 33.9 6.4 69.2 6.0 15.7 80.9 92.4 76.5 60.0 96.3

Median TG

ST3 33.8 4.3 69.9 3.9 33.0 67.4 65.3 69.0 37.5 82.2
ST7 19.6 2.4 80.9 1.2 18.4 83.1 66.7 96.6 94.2 77.8

ST14 37.9 5.0 61.8 4.8 48.9 52.0 41.7 60.8 47.7 54.9
LT 24.0 4.4 80.2 4.5 25.3 76.6 57.2 92.4 85.8 72.8

High TG

ST3 35.4 3.5 68.2 3.8 46.7 61.6 35.8 71.1 31.3 75.0
ST7 13.9 2.5 95.0 0.8 17.3 86.8 73.4 92.2 78.6 89.8

ST14 15.3 3.0 90.5 1.9 15.5 86.6 80.0 89.2 75.0 91.7
LT 15.4 3.9 90.8 3.7 11.6 93.7 77.0 100.0 100.0 91.9

1 Binary classifications are assessed based on the maximum observed liver TG at 1 or 14 days in milk (DIM),
with events (or cases) defined as being above a liver TG threshold (% liver tissue dry matter; DM). Response
variable thresholds were: Low TG > 13.3% DM, Median TG > 17.1% DM, and High TG > 22.0% DM. 2 Explanatory
variables included blood concentrations of energy metabolite, protein, and mineral biomarkers. Models varied in
biomarker availability based on single timepoint (ST) or longitudinal (LT; multiple timepoint) blood sampling.
Day in milk of ST models (n = 52 cows) were 3, 7, and 14 DIM for ST3, ST7, and ST14, respectively. The LT
models (n = 47 cows) could include data from 1, 3, 5, 7, and 14 DIM. 3 Random split CV of data using 4 folds and
1000 replications, 4 Balanced error rate, 5 Area under the receiver operating characteristic curve, 6 Standard error,
7 Original dietary treatments (n = 4, 2 experiments) alternated as folds during CV, 8 Positive predictive value,
9 Negative predictive value.

The Median TG-ST3 and Median TG-ST13 models had BERRCV > 33.0% and
rAUCRCV < 70.0% for median TG (Table 3). Meanwhile, Median TG-ST7 and Median
TG-LT models had rAUCRCV of 80.9 ± 1.2% and 80.2 ± 4.5%, respectively; BERRCV was
19.6 ± 2.4% and 24.0 ± 4.4% for Median TG-ST7 and Median TG-LT, respectively (Table 3).
The Median TG-ST7 model performed similarly during BCV with 18.4% BER, 66.7% sensi-
tivity, and 94.2% PPV; Median TG-LT had reduced performance during BCV with 25.3%
BER, 57.2% sensitivity, and 85.8% PPV (Table 3).

High TG prediction models generally had better performance than the other binary
responses, except for the High TG-ST3, High TG-ST14limit1, and High TG-ST14limit2 models.
These lower performing High TG models had BER from 26.6% to 33.8% during RCV
(Tables 3 and 4). Ranges of BER and rAUC during RCV were from 13.3% to 15.4% and from
90.2% to 95.0%, respectively, for High TG prediction models using ST7, ST14, ST14noHp, LT,
and LTno1DIM data sets. During BCV, High TG-LTno1DIM generally performed better during
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RCV than other models with 7.2% BERBCV, 96.0% accuracy, 85.7% sensitivity, 100.0% PPV,
and 100.00% specificity. The High TG models using ST7, ST14, and ST14noHp data had
relatively similar performance; while High TG-ST7 performed slightly better during RCV
and High TG-ST14noHp had marginally better performance during BCV (Tables 3 and 4).
Performance of the High TG prediction models across the original dietary treatments
during BCV can be visualized in Figure 1.

Table 4. Model evaluation statistics from the cross-validation (CV) of sparse partial least squares—
discriminate analysis models that predict high liver triglyceride (TG) content using explanatory
variables based on perceived accessibility 1.

Model
Random Split CV 3 Block CV 7

BER 4 ROC AUC 5

Sampling Explanatory 2 Mean SE 6 Mean SE BER Accuracy Sensitivity Specificity PPV 8 NPV 9

ST14
noHp 15.3 3.1 90.2 1.8 13.4 86.5 86.7 86.5 72.2 94.1
limit1 26.6 4.5 80.5 3.5 27.1 76.9 73.3 78.4 57.9 87.9
limit2 24.3 2.8 84.6 2.1 20.7 86.2 61.1 97.5 91.7 84.8

LT
no1DIM 13.3 3.2 94.3 2.7 7.2 96.0 85.7 100.0 100.0 94.7

limit1 15.3 5.0 91.5 4.1 15.4 91.5 69.2 100.0 100.0 89.5
limit2 17.6 3.6 86.5 2.7 18.3 86.8 68.8 94.6 84.6 87.5

1 High TG classification was assessed based on the maximum observed liver TG at 1 or 14 days in milk (DIM),
with events (or cases) defined as maximum liver TG > 22.0% liver tissue dry matter. 2 Explanatory variables
included blood concentrations of energy metabolite, protein, and mineral biomarkers. Models varied in biomarker
availability based on single timepoint (ST) or longitudinal (LT; multiple timepoint) blood sampling. Day in
milk of ST models (n = 52 cows) were 3, 7, and 14 DIM for ST3, ST7, and ST14, respectively. The LT models
(n = 47 cows) could include data from (except no1DIM) 1, 3, 5, 7, and 14 DIM. The noHp was not allowed to include
haptoglobin (Hp) measurements, limit1 models were not allowed to include Hp or cholesterol measurements, and
the limit2 models were not allowed to include Hp, cholesterol, or mineral measurements. 3 Random split CV of
data using 4 folds and 1000 replications, 4 Balanced error rate, 5 Area under the receiver operating characteristic
curve, 6 Standard error, 7 Original dietary treatments (n = 4, 2 experiments) alternated as folds during CV,
8 Positive predictive value, 9 Negative predictive value.

Overall, High TG models generally performed better than Low TG and Median
TG models, with Low TG having the lowest performance. When compared to recom-
mendations in the literature, several High TG models achieved a very desirable level
of performance during cross-validation with balanced accuracy (100—BER) and rAUC
values > 85% [44]. Therefore, the High TG models are most likely to be useful for herd-level
surveillance of liver TG content and possibly individual cow decision making [44,48,49].
As with all novel prediction tools, the liver TG prediction models developed as part of
this research would benefit from further validation on novel data sets. Future research
implementing these models on a larger number of cows from varying environmental con-
ditions may provide indirect evidence of their generalizability through epidemiological
assessment of cow productivity and health outcomes [47,50].

Maximizing convenience is a major consideration when developing a tool for imple-
mentation in agricultural practices [56,57]. The labor and time required to collect blood
samples is a major barrier to monitoring metabolic health in dairy cows that researchers
and clinicians have attempted to minimize [9,25,47,56,58]. To that end, an objective of
this research was to explore ST for predicting liver TG content, which would be more
convenient than LT models on-farm. Caution must be exercised when comparing ST and
LT models in this work, especially when comparing BCV statistics that had a lower level
of replication, because their cross-validation occurred on different subsets of the data. For
prediction of Max TG, Low TG, and Median TG, ST3 and ST14 models appeared to lower
performance compared to the ST7 and LT models. The respective ST7 and LT models per-
formed similarly within the Low TG and Median TG response. When interrogating sparse
PLS and PLSDA model loadings, the ST7 variables tend to be the only or largest magnitude
loadings retained in the respective LT model for those responses and appeared to be driven
by blood FA concentration (Supplementary Tables S2 and S3). Comparison of High TG
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prediction models showed similar results, except that the ST14 models (other than ST14limit1
and ST14limit2) also performed similar to the LT based models. These comparisons suggest
that assessment of maximum liver TG content during early lactation is possible by analysis
of a single blood sample at a key DIM timepoint. The 7 and 14 DIM timepoints appeared to
perform similar to multiple timepoint models, which corresponds to the approximate DIM
window that maximum liver TG accumulation typically occurs [1,53].
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Figure 1. Maximum observed liver tissue triglyceride (TG) content versus High TG status prediction
during block cross-validation of sparse partial least squares—discriminate analysis models using
blood energy metabolite, protein, and mineral biomarkers. Models used single timepoint (ST,
n = 52 cows) or longitudinal blood sampling (LT, n = 47 cows): (a) ST 3 days in milk (DIM), (b) ST
7 DIM, (c) ST 14 DIM, (d) ST 14 DIM without haptoglobin data, (e) LT, and (f) LT without 1 DIM
data. Symbols refer to a cow’s original dietary treatment blocks for experiment 1 (control, E1-CTL;
fermented ammoniated condensed whey supplementation, E1-FACW) and experiment 2 (control,
E2-CTL; ketosis induction protocol, E2-KIP). The orange line represents the observed liver TG % dry
matter (DM) threshold for high TG classification (liver TG > 22.0% DM).
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To further increase the accessibility of the High TG models, we explored alternative
variations with a restricted subset of potential explanatory variables on the high TG models.
Two potential barriers to application of the proposed models are the collection of 1 DIM
samples and uncommonly analyzed analytes. When comparing High TG-LT to the variable-
restricted High TG-LTno1DIM, High TG-LTlimit1, and High TG-LTlimit2 models, they all
performed similarly during cross-validation (Tables 3 and 4). However, they varied widely
in the number of analytes incorporated in their sparse PLSDA models, with 5, 23, 4, and
1 analyte included in the High TG-LT, High TG-LTno1DIM, High TG-LTlimit1, and High
TG-LTlimit2 models, respectively (Supplementary Table S2). The High TG-ST14 and High
TG-ST14noHp models had similar performance during RCV and performed better than
the High TG-ST14limit1 and High TG-ST14limit2 models (Tables 3 and 4). These variations
of the High TG-ST14 models had 6 to 8 analytes retained in the sparse PLSDA models
(Supplementary Table S3). Based on these observations, data from 1 DIM and Hp data
are not essential to maintain High TG-LT model performance; however, removing 1 DIM
data resulted in many more biomarkers retained in the PLSDA model. This trade-off
between sampling at 1 DIM and LT panel financial cost may result in the High TG-LTno1DIM
model being less viable in most scenarios. Meanwhile, the High TG-ST14 and High TG-
ST14noHp models performed similarly during cross-validation with great performance
and maintained similar numbers of unique biomarkers, suggesting Hp is not an essential
component to the ST models predicting High TG.

Biomarkers used within the present study were primarily selected based on biological
or epidemiological connections with bFLS; however, candidate biomarkers were censored
when they required enzyme-linked immunosorbent assay, radioimmunoassay, or other
assays with relatively limited accessibility to ensure that the final models could be imple-
mented by end-users. Although the current study was not designed to make inferences on
the relationship of the biomarkers analyzed and bFLS, the biomarkers most often retained
in final models were not surprising given what is known about bFLS onset in dairy cattle.
For example, blood concentrations of FA, BHB, and glucose were often retained in 19, 11,
and 12 of the 22 final prediction models, respectively (Supplementary Tables S2 and S3).
Given the interrelationships between the TCA cycle, ketogenesis, gluconeogenesis, and
liver TG accumulation in dairy cows, it is logical these biomarkers would be frequently
retained predictors of liver TG and bFLS [1,4,23,59]. Either independently or in ratio, AST
and ALT were included in all ST3 and ST14 models (Supplementary Table S3). In hu-
mans, ALT, AST, and other blood proteins have been used for diagnosis of human steatosis
and potential liver injury [60]. Of the minerals quantified, Mg was the most frequently
included in the final models (7 of 22 models, Supplementary Tables S2 and S3). Recent
research has suggested that Mg has a role in lipogenesis and esterification in cultured
bovine adipocytes [61]. With the inclusion of Mg in our prediction models, the potential
mechanistic role of Mg in bFLS onset may justify further examination.

Overall, our findings suggest that blood-based panels of postpartum biomarkers can
identify early lactation liver TG content, at least in multiparous Holstein cows. This finding
generates an exciting opportunity for researchers and industry professionals (i.e., farmers,
consultants, and clinicians) to monitor and troubleshoot bFLS in research and field settings
where liver tissue biopsy is impractical. The postpartum nature of the blood biomarker
analysis in this research implies that these panels would serve as a diagnostic tool and
thus act as a retrospective assessment of cow management. In contrast, a panel based
on prepartum indicators would allow for proactive intervention and prevention of bFLS.
Previous research interrogating prepartum biomarkers to predict liver TG content and
illness have suggested the potential for development of such a tool but unfortunately, the
data was not available in the present study to interrogate that potential. Furthermore, the
opportunity to use one or more ST models on farm presents the potential to evaluate liver
TG content as a part of troubleshooting or health management. The potential impact of
High TG status on production and the role of nutritional or therapeutic interventions still
needs to be explored in larger, epidemiological studies [54,56,62,63]; however, presence
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of tools such as the blood biomarker panels presented herein will make these studies
more practical.

4. Conclusions

This research represented a novel investigation into a multivariate approach to predict
liver TG content in early lactation dairy cows. Prediction of maximum liver TG content as a
continuous variable did not perform as well as prediction models that have been validated
for other metabolic health prediction. Models predicting Low TG (TG > 13.3% liver DM)
and Median TG (TG > 17.1% liver DM) thresholds had relatively low performance. In
contrast, prediction of High TG (TG > 22.0% liver DM) had desirable accuracy when
using biomarker data at 7 DIM, 14 DIM, and LT sampling. Based on model performance
and preliminary comparison of our models to association of liver TG content to adverse
consequences, the High TG threshold models may be a useful diagnostic or monitoring
tool for bFLS in research and field settings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12192556/s1, Table S1: Descriptive statistics of cow pro-
duction and biometric data by original experimental treatment and liver triglyceride category;
Table S2: Explanatory variable principal component (PC) loading values for sparse partial least
squares (-discriminate analysis) models using longitudinal (LT) data to predict liver triglyceride (TG)
accumulation; Table S3: Explanatory variable principal component (PC) loading values for sparse
partial least squares (-discriminate analysis) models using single timepoint (ST) data to predict liver
triglyceride (TG) accumulation.
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