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Abstract: Gene set analysis has been widely used to gain insight from high-throughput expression
studies. Although various tools and methods have been developed for gene set analysis, there is no
consensus among researchers regarding best practice(s). Most often, evaluation studies have reported
contradictory recommendations of which methods are superior. Therefore, an unbiased quantitative
framework for evaluations of gene set analysis methods will be valuable. Such a framework requires
gene expression datasets where enrichment status of gene sets is known a priori. In the absence of
such gold standard datasets, artificial datasets are commonly used for evaluations of gene set analysis
methods; however, they often rely on oversimplifying assumptions that make them biased in favor
of or against a given method. In this paper, we propose a quantitative framework for evaluation of
gene set analysis methods by synthesizing expression datasets using real data, without relying on
oversimplifying or unrealistic assumptions, while preserving complex gene–gene correlations and
retaining the distribution of expression values. The utility of the quantitative approach is shown by
evaluating ten widely used gene set analysis methods. An implementation of the proposed method is
publicly available. We suggest using Silver to evaluate existing and new gene set analysis methods.
Evaluation using Silver provides a better understanding of current methods and can aid in the
development of gene set analysis methods to achieve higher specificity without sacrificing sensitivity.

Keywords: gene set analysis; synthetic data; sensitivity; specificity

1. Introduction

High-throughput technologies are widely used to monitor the expression activity
of many genes in a single experiment. Analyzing high dimensional data resulting from
these technologies is challenging. Gene set analysis, also known as enrichment analysis, is
widely used to address this challenge and to gain insight from the resulting data [1].

Gene set analysis employs a priori knowledge of groups of genes that are known to be
associated with biological components, processes, or functions. Such groups of genes, also
referred to as gene sets or pathways, can be extracted from knowledgebases such as GO [2]
and KEGG [3]. Hereafter, we refer to such a collection of gene sets as a gene set database.
Given a gene set database and a case-control gene expression dataset, gene set analysis
aims to find gene sets from the database that are differentially enriched when contrasting
case and control samples—for example, a pathway that is activated (or deactivated) in case
samples when compared to controls.

Many gene set analysis methods have been developed [4–10], and it has been shown
that different gene set analysis methods may lead to significantly different results in terms
of gene sets reported as differentially enriched [11,12]. Considering the large number of
available methods, it is natural to wonder which method should be used. Answering
this question in a quantitative manner requires a gold standard expression dataset where
differentially enriched gene sets are known a priori. Due to the absence of such gold
standard datasets, real datasets with presumed enrichment status of gene sets [13,14] and
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synthesized datasets [15–17] have been used. Unfortunately, these have had shortcomings,
and evaluating gene set analysis methods remains a challenge.

Evaluations using real datasets are often based on questionable assumptions about
the differential enrichment statuses of the gene sets. For example, Tarca et al. [13] used
42 microarray datasets from GEO. For each dataset of a specific disease, they assumed one
KEGG or Metacore pathway/gene set associated with that disease is differentially enriched.
When analyzing these datasets, they used the p-values associated with the 42 corresponding
target gene sets to assess sensitivity. This approach ignores the enrichment status of the rest
of the gene sets in the gene set database. In addition, this approach is reliant on the quality
of the expression datasets used for evaluations and assumes that the pathways/gene sets
associated with the diseases under study have been differentially enriched. Therefore, this
approach cannot be relied on for a fine-grained evaluation of gene set analysis methods.

Evaluations using synthesized datasets have also been conducted relying on oversimplifying
assumptions that may not represent the true nature of real data [15–17]. Such evaluations
have often used normally distributed expression values with no gene–gene correlations [16,17]
or with constant correlations [15], even though more complex gene–gene correlations are
commonplace and profoundly impact the results of gene set analysis [18]. In fact, the
complex correlation pattern of genes is essential for understanding the systems-level
biology of an organism. Consequently, a wide variety of methods are focused on gene
co-expression network analysis [19,20]. Moreover, normally distributed values with a
constant mean and standard deviation ignores the heterogeneity of variance, which is a
common phenomenon in high-throughput data [21,22]. Hence, the resulting datasets may
be biased toward or against a specific method or class of methods. For example, Efron
and Tibshirani [16] generated simulated expression values using independent standard
normal distributions, where differential expression of a gene was simulated by adding a
constant value to the gene expression values in case samples. As another example, Nam
and Kim [17] simulated an expression profile using a standard normal distribution. To
simulate differential expression, they added a random value between 0.5 and 1 to the
expression measures in the case samples. In other research, Ackermann and Strimmer [15]
generated expression datasets using a 600-dimensional multivariate normal distribution
with variances of 1. Each profile contained 520 background (non-informative) genes
with a mean gene expression value of zero and with no correlation between genes. The
remaining 80 genes were assigned to four nonoverlapping gene sets each containing
20 genes. To investigate different hypotheses, they created gene sets with and without
gene–gene correlation. They modeled the correlations between genes within a gene set
using constant correlation values of 0.6 and −0.6. They also modeled the differential
expression of genes by mean expression value differences of 1 and 0.75. Therefore, in the
resulting expression profile, almost 87% of genes, i.e., 530/600, had a standard normal
distribution with zero mean and no correlation. Consequently, even a small deviation
from the background distribution, i.e., standard normal distribution, can be detected by
gene set analysis methods that use gene-sampling or parametric methods for significance
assessment. That is, generated datasets based on this approach are biased in favor of
methods that use the aforementioned approaches for significance assessments of gene set
scores.

Furthermore, previous evaluations have often utilized gene sets of equal size, as
opposed to gene sets of varying sizes (the typical situation), which have been reported
to affect some methods [23]. Another shortcoming of these evaluations is that they only
consider non-overlapping gene sets. Therefore, overlapping of gene sets and its effect on
the specificity of gene set analysis [24] have been overlooked.

Recently, Mathur et al. created artificial gene expression datasets in a more realistic
manner [25]. They conducted a systematic comparison of 4 gene set analysis methods using
real expression datasets by sampling with replacement from control and case samples.
In each experiment, they selected two a priori known gene sets and randomly chose
a proportion of their genes to be differentially expressed. They simulated differential
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expression “by shifting the gene expression in the [simulated] case groups according
to a range of values” [25]. To calculate the power of a gene set analysis method, using
a bootstrapping approach, they simulated 100 datasets by sampling with replacement.
Control samples were selected from the control samples of the original datasets. Case
samples were chosen from the case samples of the dataset containing differentially expressed
genes. A gene set analysis method was run for each of these 100 datasets, and its power
was reported as the proportion of datasets for which the target gene sets were predicted
as significant, i.e., with an adjusted p-value less than 0.05. They also suggested three
different scenarios for estimating the false positive rate for a gene set analysis method
using: (1) a standard normally distributed expression dataset, (2) a dataset resulting from
permuting sample labels of the original dataset, and (3) the normalized and centered
version of the original dataset. The first approach suffers from the same shortcomings as
other synthetic datasets, as explained earlier. The second and third approaches lead to
a discrepancy between the distributions of the simulated and the original datasets. In a
dataset simulated by the second approach, the simulated controls (and also cases) contained
a heterogeneous mixture of both actual control and case samples. The third approach also
leads to datasets with zero average expression values; therefore, the simulated datasets were
not representative of the real data. The approach by Mathur et al. is also computationally
demanding and almost impractical for evaluating computationally expensive methods
such as SetRank [26]. Furthermore, to evaluate false positive rate, the approach by Mathur
et al. only considers a few target gene sets and ignores the enrichment status of the rest
of gene sets. Therefore, it cannot provide a precise evaluation of specificity of gene set
analysis methods, which is known to be one of the main challenges for many gene set
analysis methods [1].

Despite the existence of many studies comparing gene set analysis methods, there
is no consensus regarding the method of choice for a given experiment, and existing
guidelines and suggestions are often contradictory [27]. In this research, we propose Silver,
a framework for evaluating gene set analysis methods. The framework synthesizes gene
expression datasets without relying on oversimplifying assumptions, such as normally
distributed expression values and zero or constant gene–gene correlations. The synthesized
expression datasets preserve the true distribution of gene expression values and retain
complex gene–gene correlation patterns. This approach incorporates gene set overlap, which
has been shown to have a significant impact on the results of gene set analysis methods [24].
Additionally, it is computationally affordable as it does not rely on bootstrapping. After
synthesizing the expression datasets, Silver follows a quantitative approach for comparing
gene set analysis methods. In the following section, we describe the methodology for
synthesizing expression datasets and the quantitative approach used by Silver for comparing
gene set analysis methods.

We showcase the utility of Silver by providing a comprehensive evaluation of ten
commonly used gene set analysis methods, including a recent method aimed at increasing
specificity. We show that the expression datasets generated by Silver are more realistic and
follow the same distribution as real data. Additionally, we demonstrate that the quantitative
approach offered by Silver is capable of identifying the known limitations of current gene
set analysis methods, which cannot be observed when using other methodologies when
evaluating gene set analysis methods.

2. Materials and Methods

Silver, the proposed framework for evaluation of gene set analysis methods, is
presented in this section. The framework consists of a methodology for synthesizing
“almost gold” standard expression datasets and a quantitative approach for comparing
gene set analysis methods. We have made Silver publicly available as a GitHub repository
at https://github.com/FarhadMaleki/silver, accessed on 22 August 2021.

Silver uses actual expression datasets to simulate a case-control dataset where the
expression status of genes within a gene set is known a priori. Silver uses a subset of

https://github.com/FarhadMaleki/silver
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control samples as the simulated control samples. It also utilizes a subset of control
samples from the actual dataset to generate the simulated case samples. It is expected that
these selected samples contain no statistically significant differential expression; therefore,
Silver introduces differential expression for a group of genes. This group of genes could
be from one or several gene sets. The list of genes, and their magnitudes of differential
expression, are considered as input to the algorithm. To avoid oversimplifying assumptions
regarding the distribution of expression values for these genes, Silver utilizes the expression
measures from the actual case samples. Figure 1 illustrates the process used for simulating
a case-control dataset. The remainder of this section explains the methodology used for
synthesizing an expression dataset in detail.

2.1. Synthesizing Expression Datasets

This section provides a mathematical description of the methodology used by Silver
for synthesizing expression datasets (refer to Figure 1 for a visual overview). To synthesize
an expression profile with nC controls and nT cases, first we identify an actual expression
dataset Λ = (ΛC, ΛT) where ΛC = {A(C1), . . . , A(Cn)} are n control samples and
ΛT = {A(T1), . . . , A(Tn′ )} are n′ case samples. Each ACi and ATj is a vector of the expression
levels for m genes. It is required that n ≥ nC + nT and n′ ≥ nT .

Then, ΛC = {A(Ci1
), . . . , A(CinC

)} and ΛT = {A(Cj1
), . . . , A(CjnT

)} are created through
random sampling without replacement so that ΛC and ΛT are disjoint subsets of ΛC. ΛC

and ΛT together form an expression matrix, where each column corresponds to a member
of ΛC or ΛT and each row corresponds to the expression values for a gene gk (1 ≤ k ≤ m)
across samples in ΛC and ΛT . In other words, the generated expression matrix contains
nC + nT columns and m rows, where m is the number of genes in the original dataset.

Given a set L ⊂ {g1, . . . , gm}—where L is a user input representing the set of genes to
be differentially expressed—for each gene gt in L we adjust the expression levels of gt in ΛT .
This is accomplished by simulating differential expression through the following process.
We first create <, which is a table of expression values with m rows and nT columns; each
column is selected from the actual cases ΛT through random sampling without replacement.

The columns of < are A(T`1
), . . . , A(T`nT

), where 1 ≤ `1 < · · · < `nT ≤ n′. Each row of <
represents the expression values for a gene across A(T`1

), . . . , A(T`nT
). This table is used to

simulate differential expression of each gene in L according to some specified criterion.
Among criteria one can use are t-test, Wilcoxon rank-sum test, and median fold change.
To simulate differential expression of a gene gt in L by a given fold change FC(gt), we
randomly choose a row e from rows of < that satisfies the differential expression criterion
considering the simulated control expression values for gt (from ΛC) and FC(gt). The
current expression values for gene gt in ΛT (a vector of size nT) are replaced with the vector
of expression measures from row e of < (row e of < does not necessarily correspond to gene
gt). The choice of genes selected for differential expression (L) depends on the purpose of
simulation and is an input.

Note that given the initial expression level of gt, if the intended fold change value—which
is a user input—is unrealistically high or low considering the distribution of expression
values in the original dataset, a row e that meets the criterion might not exist. In such rare
cases, optionally, expression values for gt can be chosen based on a normal distribution. The
mean of the normal distribution is determined to meet the fold-change value requirement
for differential expression (or another criterion of choice) and the standard deviation is
a user-defined constant. After updating expression values for genes in L, (ΛC, ΛT) is
returned as the synthesized dataset.

As the proposed method inherits the characteristics of an input dataset, care should
be taken when choosing input datasets. Having a MDS (multidimensional scaling) plot
of the input datasets where controls and cases cluster separately might be a good rule of
thumb for choosing a dataset of sufficient quality [11].
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Figure 1. Visualization of the methodology used by Silver to synthesize expression datasets. The
control samples (ΛC), and the case samples (ΛT) of the original dataset are shown in green and
red, respectively. To simulate control samples, Silver uses a subset ΛC = {A(Ci1 ), . . . , A(CinC

)}
of original control samples shown in box 1. To simulate case samples, Silver also uses another
subset ΛT = {A(Cj1 ), . . . , A(CjnT

)} of control samples shown in box 2. Silver creates a repository of
real expression values < by sampling from the original cases from ΛT . The repository < can be
considered as a table of expression measures with nT columns, where nT is the desired number of
cases to be simulated. Each row of < contains nT measures sampled from one row of the actual cases
ΛT . For a given gene, Silver simulates differential expression by finding expression measures that
satisfy a criterion for differential expression of that gene and replaces the expression measures in
the simulated cases (from box 2) for that gene in order to create new case samples shown in box 3.
Criteria implemented for differential expression include t-test, Wilcoxon rank-sum test, and simple
fold-change.

The choice of gene set database has been shown to be another important factor in gene
set analysis [28]. Instead of following the common approach of generating a small number
of non-overlapping artificial gene sets of equal size, because of the way we synthesize the
gene expression datasets, we are able to use real gene set databases to evaluate gene set
analysis methods. This is possible as we synthesize expression profiles using real data and
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therefore retain real gene identifiers along with their gene expression characteristics from
an actual dataset.

Due to the availability of large-scale expression datasets that can be used for evaluation
of gene set analysis methods, by default, Silver uses a sampling without replacement
approach. However, for some applications, this choice might be limiting due to the
requirements regarding sample sizes. Therefore, we also provide the use of sampling with
replacement as an option. This alleviates the need for a large real dataset by relieving the
following conditions (which were introduced earlier in this section): n ≥ nC + nT and
n′ ≥ nT .

2.2. Quantitative Approach

We utilized the aforementioned procedure to synthesize expression datasets where the
enrichment status of given gene sets is known a priori. To achieve this goal, we selected a
group of gene sets G1, . . . , Gq—from a gene set database G—and synthesized an expression
dataset, with genes in these gene sets being differentially expressed. However, not only do
we need to consider G1, . . . , Gq as being differentially enriched, but to reflect actual data
we also need to consider gene sets that “substantially overlap” with G1, . . . , Gq as being
differentially enriched. However, there is no consensus about what should be considered
as a “substantial overlap”. We used a methodology similar to that proposed by Maleki and
Kusalik [24] to address this ambiguity and to determine the enrichment status of gene sets.

Assuming that L is the list of all genes that are differentially expressed in the synthetic
dataset (ΛC, ΛT), we consider a gene set Gi in G as truly differentially enriched if the
following inequality holds:

f (Gi, L) =
‖Gi ∩ L‖
‖Gi‖

> γ (1)

where γ is a value between 0 and 1 and ‖ • ‖ is set cardinality. f (Gi, L) represents the
proportion of genes in Gi that are differentially expressed. Hereafter, we refer to f as the
coverage score of Gi given L or simply as the coverage score of Gi in situations where L can
be inferred from the context. Figure 2 illustrates an example of calculating coverage score.

Since there is no consensus in the research community about an appropriate value of
γ, we used a wide range of values for γ from 0.1 to 0.99 and evaluated a gene set analysis
method for each value. We present results for γ values equal to 0.1, 0.3, 0.5, 0.9, and 0.99;
and the results for other values are available from the authors upon request.

L𝐺𝑖

Figure 2. An example of coverage score. Differentially expressed genes are shown as red circles.
f (Gi, L) = 1

2 ; i.e., 50% of genes in Gi are differentially expressed.

Knowing the truly enriched gene sets in a simulated dataset and results of a gene
set analysis method for that dataset, we can then quantitatively evaluate the result of a
gene set analysis method in terms of sensitivity and specificity. A reliable gene set analysis
method should achieve both high sensitivity and high specificity.
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2.3. Evaluation Using Silver

Using the proposed framework, here we evaluate ten commonly used gene set
analysis methods: PAGE [6], GSEA (both gene permutation and phenotype permutation
versions) [8], PLAGE [9], GAGE [7], ssGSEA [4], ROAST [10], GSVA [5], over-representation
analysis (ORA) [29], and SetRank [26], a more recent method claiming to increase specificity.
We used the following R packages in this study: GSVA package version 1.18.0 for GSVA,
PLAGE, and ssGSEA; the limma package version 3.34.9 for ROAST; the gage package version
2.20.1 for PAGE and GAGE; and SetRank version 1.1.0 for SetRank. ORA was run using
the WebGestalt online service [30]. GSEA was obtained from the Java-based application v3.0
(build 0160) at the Broad Institute software page for GSEA
(http://software.broadinstitute.org/gsea/downloads.jsp, accessed on 22 August 2021).

The gene set analysis methods are evaluated using data simulated from two microarray
datasets and 1 RNA-seq dataset, downloaded from GEO and each used as an original
dataset Λ. The microarray experiments were case-control experiments in humans from the
Affymetrix GeneChip Human Genome U133 Plus 2.0 microarray platform from studies of
renal cell carcinoma tissue (77 controls and 77 cases, GSE53757) and skin tissue in psoriasis
patients (64 controls and 58 cases, GSE13355). These datasets were normalized, as described
in a previous work, and resulted in each microarray dataset containing 20,514 genes [31].

The RNA-seq dataset originated from normal and lesional psoriatic skin (82 controls
and 92 cases, GSE54456). The 80-base single-stranded reads were trimmed with Trimmomatic
0.36 and mapped to the GRCh38 human genome using STAR 2.2.51 to obtain raw counts.
The dataset was normalized using TMM normalization from the edgeR R package. The
Ensembl gene IDs were translated to human Entrez gene IDs using biomaRt. Ensembl IDs
(and also Probe IDs for microarrays) were collapsed to obtain a unique set of Entrez gene
identifiers using methods described in a previous work [31]. This resulted in the RNA-seq
dataset containing 16,826 genes.

GO gene sets (a total of 5917) were extracted from MSigDB version 6.1 and used as
our gene set database G. For each expression dataset, genes not represented in the dataset
were removed from these gene sets.

From each original dataset, we simulated a dataset containing 20 controls and 20 cases.
Ten gene sets—(G1) GO:0003823, (G2) GO:0019724, (G3) GO:0060070, (G4) GO:0005126,
(G5) GO:0008009, (G6) GO:0030851, (G7) GO:0002544, (G8) GO:0045087, (G9) GO:0002253,
and (G10) GO:0006954—of various sizes (see Table 1) associated with immune system
processes were selected for being differentially enriched in each simulated dataset. The
list L contains 1106 unique genes from the ten gene sets. Genes in L are differentially
expressed with mixed proportions of up- and down-regulated genes (see Table 1) and
absolute log2 fold change values between 1 and 3. Hereafter, we refer to these ten gene
sets as the target gene sets. Additionally, independent two-sample t-test is used as the
differential expression criterion.

Table 1. Information about the target gene sets in this study, including the total number of genes in each set and the numbers
of genes up-regulated or down-regulated in each target gene set.

Gene Set ID Description Down-Regulated Up-Regulated Gene Set Size

GO:0003823 Antigen binding 13 24 76
GO:0019724 B cell mediated immunity 21 27 67
GO:0060070 Canonical Wnt signaling pathway 2 65 92
GO:0005126 Cytokine receptor binding 44 206 250
GO:0008009 Chemokine activity 17 24 41
GO:0030851 Granulocyte differentiation 5 3 15
GO:0002544 Chronic inflammatory response 8 7 15
GO:0045087 Innate immune response 229 245 538
GO:0002253 Activation of immune response 142 155 383
GO:0006954 Inflammatory response 210 218 428

http://software.broadinstitute.org/gsea/downloads.jsp
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3. Results

Figure 3 illustrates the volcano plot and also a Q–Q plot of the average expression value
of cases versus controls for the synthesized dataset generated from GSE53757. This volcano
plot, and the volcano plots in Figure S1 in Supplementary Materials: File 1, resembles a
typical volcano plot resulting from differential expression analysis of real data. Further, a
two-sample Kolmogorov–Smirnov test was used to assess if the average expression levels
in a simulated dataset follow the same distribution as the real dataset it was generated
from. As indicated in Table 2, the null hypothesis cannot be rejected for any of the datasets,
suggesting that the distributions are the same.

Table 2. The results of Kolmogorov–Smirnov tests comparing each original gene expression dataset
to its corresponding dataset synthesized using Silver. The test results suggest that the expression
values in each synthesized dataset follow the same distribution as its corresponding real dataset.

Dataset Statistic p-Value

GSE53757 0.009 0.427
GSE13355 0.007 0.674
GSE54456 0.012 0.212
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Figure 3. (A) The volcano plot shows differentially expressed genes resulting from simulated data (20 control and 20 case
samples) using dataset GSE53757. The blue points represent genes that were differentially expressed and the red points
represent non-differentially expressed genes. The vertical dotted lines indicate the log fold change thresholds that were
considered significant. The red horizontal line indicates the p-value cutoff, 0.05. The p-values were obtained by performing
differential expression analysis using the limma R package. (B) A Q–Q plot of the average expression values of cases versus
controls for the synthesized dataset generated from GSE53757.

We also compared several simulated datasets used for the evaluation of gene set
analysis methods [15–17]. Since these synthesized datasets use different inputs and
different synthetic gene set databases, it is not possible to directly compare them. Instead,
we compared several methods for simulating datasets to Silver by their ability to shed light
on the lack of specificity of PAGE, a gene set analysis method from a class of methods that
have been reported in the literature as non-specific when applied to real datasets [7,18,32].
Using several synthesized datasets used for the evaluation of gene set analysis methods,
we observed that these datasets could not reveal the lack of specificity of PAGE. On the
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contrary, they reported PAGE as a reliable procedure (results provided in Supplementary
Materials: File 2). Silver, however, was able to demonstrate the lack of specificity of PAGE.

We also showed that the synthesized data using Silver follow the same distribution as
real expression data (see Figure 3 and Table 2). This was expected, as Silver utilizes real
data for selecting control samples, and almost all expression measures used for differential
expression of genes in Silver come from real expression measures. As illustrated in
Figure 4A, the other simulated datasets, unlike the datasets synthesized by Silver, showed
substantial differences from real datasets. To make sure that these differences are not only
due to a constant difference in expression values, we compared the centered average
expression values for all datasets. As depicted in Figure 4B, there were substantial
differences between the distributions of expression values of other datasets and real data,
even after centering. The same pattern was observed for the other datasets used in this
study (see Figures S6 and S7 in Supplementary Materials: File 1). To statistically verify
these observations, we used two-sample Kolmogorov–Smirnov tests to assess if there is a
statistical difference between the distribution of expression values of a synthesized dataset
(after centering) with that of a real dataset. Table 3 shows the results of these tests. The
results indicated that there is no statistically significant differences between the average
expression values in the dataset simulated by Silver and those of real expression datasets,
whereas the average expression values of the other simulated datasets significantly differ
from those of real datasets. The same pattern was observed for the other datasets used in
this study (see Tables S3 and S4 from Supplementary Materials: File 1).

BA

Figure 4. Distributions of the expression values of different synthesized datasets (A), including a dataset synthesized with
Silver, compared to the distribution of expression values from a real dataset (GSE53757). The datasets labeled “E 1” to “E
5” were introduced by Efron and Tibshirani [16]. The dataset labeled “N” was introduced by Nam and Kim [17], and the
dataset labeled “A” was introduced by Ackermann and Strimmer [15]. While the dataset generated by Silver closely mirrors
the real dataset (GSE53757), the other simulated datasets show substantial differences from the real data. Additionally,
this difference is not due to a constant shift in average expression values, as illustrated by the box plot representing the
distribution of centered average expression values for all datasets (B).

We now demonstrate the utility of Silver as a means to evaluate the ten gene set
analysis methods. For each method, the default parameters—as suggested by its author(s)—
were used. To achieve comparable results, the Benjamini–Hochberg adjustment [33] for
multiple comparison with a false discovery rate of 0.05 was applied to the reported p-values
for each method.
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Table 3. Comparison of the distribution of average expression values of a dataset synthesized by
Silver and that of other simulated datasets used for the evaluation of gene set analysis methods.
Datasets labeled “E 1” to “E 5” have been introduced by Efron and Tibshirani [16], the dataset labeled
“N” has been introduced by Nam and Kim [17], and the dataset labeled “A” has been introduced by
Ackermann and Strimmer [15]. To make sure that the differences between the distributions of average
expression values are not due to a constant shift in expression values, all datasets were centered prior
to conducting two-sample Kolmogorov–Smirnov tests. As the results of Kolmogorov–Smirnov tests
indicate, the distribution of average expression of datasets simulated by Silver shows no statistically
significant difference from that of real data (GSE53757). However, there are significant differences
between the average expression values of the other datasets and those of the real data.

Dataset Statistic p-Value

Silver 0.009 0.427
E 1 0.448 <1.0 × 10−87

E 2 0.448 <1.0 × 10−87

E 3 0.443 <1.0 × 10−87

E 4 0.448 <1.0 × 10−87

E 5 0.449 <1.0 × 10−87

A 0.405 <1.0 × 10−87

N 0.445 <1.0 × 10−87

Each plot in Figure 5 illustrates the reported p-values—resulting from running a
method—for each gene set in the database versus its coverage score given the list of
differentially expressed genes for the dataset synthesized from GSE53757. These plots
show the lack of specificity of the methods under study. Almost all methods reported
a large number of gene sets as being differentially enriched regardless of the coverage
scores. As depicted in Figure 5, ORA, GAGE, PAGE, and PLAGE reported gene sets with
high coverage—i.e., gene sets with a large proportion of their genes being differentially
expressed—as being differentially enriched. Unexpectedly, the other methods reported
some of the gene sets with high coverage as non-enriched.

Figure 6 shows the ranks of the target gene sets based on adjusted p-values reported
by each method. The heat map shows that the rankings of the target gene sets substantially
differ across methods, with some methods not being able to report some of the target gene
sets as differentially enriched. Additionally, GSEA-G and GSVA only ranked gene sets
highly when most of their genes were up-regulated. GSEA-P and ssGSEA reported the
majority of target gene sets near the bottom of their results. GAGE, PAGE, PLAGE, and
ORA ranked the target gene sets higher in comparison to other methods. SetRank, while
ranking six of the ten target gene sets highly, failed to report the other four target gene sets.

Table 4 shows the sensitivity and specificity of the methods under study when analyzing
the dataset synthesized from GSE53757 across γ values. As depicted in Table 4, GSEA-G,
GSVA, and SetRank achieved high specificity with the consequence of having low sensitivity.
GAGE, PAGE, and ssGSEA achieve high sensitivity while sacrificing specificity, with
ssGSEA being the least specific. These results are consistent across all γ values. PLAGE,
while achieving high sensitivity (across γ > 0.1), also achieved 0.7 or higher specificity.
However, due to the sheer size of gene set databases (5000+ for GO gene sets, and 16,000+
for MSigDB), such specificity is not high in absolute terms and leads to hundreds to
thousands of false positives.
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Figure 5. Scatter plots of the relationship between gene set coverage (x-axis) and the statistical significance (adjusted p-value)
of the results of each method (y-axis). Each point in green represents a gene set. The red line shows a p-value cutoff of
α = 0.05. Since SetRank only returned statistically significant results (points under the red line), we assigned a p-value of
1 to visualize the coverage scores for non-significant results. Note that no cut-off value of γ was applied in any of these
scatter plots.
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Figure 6. Heat map of the rank of the 10 target gene sets as reported by each method. The results of
each method were sorted based on the adjusted p-values (smallest to largest); the rank of each target
gene set was determined as its rank in the sorted list. The rank was then recorded in each cell and
encoded by the color of the cell, where a darker green indicates a later position in the sorted list. A
black cell with no number shows that the adjusted p-value was not less than α = 0.05.

Table 4. The sensitivity (TPR) and specificity (TNR) of gene set analysis methods for data simulated from GSE53757.

γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.9 γ = 0.99

Method TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR

GAGE 0.73 0.98 0.40 1.00 0.35 1.00 0.32 1.00 0.32 1.00
GSEA-G 1.00 0.05 0.98 0.07 0.97 0.03 0.97 0.14 0.97 0.16
GSEA-P 0.68 0.39 0.59 0.13 0.61 0.01 0.64 0.00 0.64 0.00
GSVA 1.00 0.07 0.99 0.16 0.98 0.19 0.96 0.42 0.96 0.44
PAGE 0.97 0.90 0.59 1.00 0.52 1.00 0.48 1.00 0.47 1.00

PLAGE 1.00 0.49 0.89 0.99 0.78 1.00 0.72 1.00 0.72 1.00
Roast 0.76 0.67 0.57 0.72 0.53 0.74 0.51 0.92 0.51 0.92

ssGSEA 0.01 0.98 0.01 0.96 0.01 0.94 0.02 0.97 0.02 0.96
SetRank 1.00 0.01 1.00 0.03 1.00 0.05 0.99 0.22 0.99 0.28

ORA 0.99 0.69 0.60 1.00 0.50 1.00 0.44 1.00 0.44 1.00

Figure 7 shows the receiver operator characteristic (ROC) curves for the results of
each method for all three synthetic datasets using two values of γ. The ROC curves, and
Table 4, suggest that GSEA (both gene permutation and phenotype permutation versions)
and ssGSEA performed poorly regardless of the value of γ. Additionally, GSVA performed
moderately better than these methods. ORA, ROAST, PAGE, GAGE, and PLAGE achieved
a relatively higher area under the curve. This supports the reliability of the most statistically
significant results reported by these methods.

Results using the other two simulated datasets were consistent with the observations
reported in Figures 5 and 6 and Table 4 (see Tables S1 and S2 and Figures S2–S5 in
Supplementary Materials: File 1).
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Figure 7. Receiver operator characteristic curves (ROC) for each method using γ = 0.3 (left column) and 0.5 (right column)
for the datasets synthesized based on microarray datasets, GSE53757 and GSE13355; and RNA-Seq dataset GSE54456 (from
top to bottom). The plots show the relationship between the true positive rate (y-axis) and the false positive rate (x-axis). A
method with higher area under the curve (shown for each method) is considered better. The black dotted diagonal line
(y = x) represents a method with random ordering of significance values. Note that SetRank is not included in the ROC
curves as the order of the non-significant differentially enriched gene sets is not reported by this method.

4. Discussion

We proposed Silver, a framework for evaluating gene set analysis methods consisting
of a method for synthesizing expression datasets and a quantitative approach for evaluating
gene set analysis methods. While the proposed methodology does not generate gold
standard datasets, it is capable of generating expression datasets without relying on
common oversimplifying assumptions and preserves the characteristics of real (input)
datasets. The synthesized datasets inherit the distribution of expression values and complex
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gene–gene correlations from real data, preserving technical and biological variability. This was
expected, as the proposed method incorporates real data, and was confirmed by Kolmogorov–
Smirnov tests shown in Tables 2 and 3 and the visualizations in Figures 3 and 4; and
Figures S1, S6, and S7. Our observations were consistent across both RNA-seq and
microarray datasets. This means the methodology is also not limited to a specific gene
expression dataset or platform. Although we used the methodology for simulating
expression datasets as part of an evaluation of gene set analysis methods, its utility is
not limited to this role, and it can be used in any context where one needs expression
datasets with control over differentially expressed genes. Moreover, Silver utilizes real
gene set databases to avoid using artificial databases of non-overlapping gene sets of equal
size that are unrealistic and substantially affect the results of gene set analysis methods [24].

We evaluated a comprehensive list of gene set analysis methods, providing key
insights into weaknesses and strengths of these methods. A compelling observation
revealed by Figures 5 and 6 (and Figures S3–S5 in Supplementary Materials: File 1) is that
some methods—such as ROAST, GSVA, SetRank, GSEA-G, and GSEA-P—did not report
certain gene sets as being differentially enriched even when all the genes in those gene
sets were differentially expressed. For example, gene set GO:0002544—with 15 genes of
which 7 were up-regulated and 8 were down-regulated—was not reported as differentially
enriched by the aforementioned methods. This suggests an inadequacy of these methods
in detecting gene sets with both up- and down-regulated genes, which would lead to
under-reporting of pathways in which, by definition, some genes must be up-regulated
and some down-regulated during a biological process or function.

Using Silver, ORA, GAGE, PAGE, and PLAGE achieved high sensitivity by predicting all
gene sets with high coverage as being differentially enriched, as depicted in Figures 5 and 7;
and Figures S2 and S3 in Supplementary Materials: File 1. However, these methods also
predicted a large number of the gene sets with low coverage as being differentially enriched.
The gene sets with low coverage often are not biologically informative, which increases the
difficulty of interpreting the results of these methods.

Given a gene set Gi and a list of differentially expressed genes L, the significance
assessment for differential enrichment of Gi is a function of the number of differentially
expressed genes that occur in Gi; i.e., ‖L ∩ Gi‖, which is the numerator in Equation (1).
Therefore, as expected, ORA predicted all gene sets with high coverage as differentially enriched.

ORA also predicted some gene sets with low coverage values (for example 0.1) as
differentially enriched. For instance, considering 1106 differentially expressed genes out
of the total of 20,514 genes on the microarrays, a gene set with 200 genes of which only
20 genes were differentially expressed (a coverage score of 0.1) led to a p-value of 0.0058.
Gene sets like this were reported as differentially enriched even after correction for multiple
comparisons. Gene sets with low coverage tend to be large gene sets. For instance, among
the 1060 gene sets with coverage scores less than 0.12, 168 had sizes greater than or equal
to 200, and the remaining 982 gene sets had sizes less than 200. Of these 1060 gene sets,
58 gene sets were predicted by ORA as being differentially enriched, all with sizes greater
than or equal to 200. This shows that for low coverage gene sets, ORA is biased toward
large gene sets, which are often biologically irrelevant or less informative.

PAGE uses a one sample z-test to examine if there is a significant difference between
the average gene expression fold change of genes in Gi compared to that of genes not in Gi.
Therefore, the results of PAGE are also a function of the number of differentially expressed
genes in Gi. In this particular experiment, the results are a function of the number of genes
in Gi with an absolute fold change of two or higher. This explains the comparable results
for PAGE and ORA. From Table 4, PAGE also suffers from a lack of specificity. Lack of
specificity of PAGE can be attributed to the calculation of the z-statistic for each gene set.
The z-statistic is calculated based on the fold change for each gene in a gene set between the
average expression values of case samples and control samples for that gene. The z-statistic
may significantly change even with the differential expression of a small percentage of
genes in Gi.
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GAGE is another parametric method. It uses a two-sample t-test to examine if there
is a significant difference between the average gene expression fold change of genes in
Gi compared to that of genes not in Gi. However, GAGE uses one-on-one comparisons
between control and case samples to calculate the fold change values. Therefore, it is more
sensitive to changes in expression values leading to predictions of gene sets as differentially
enriched with very low coverage values (for example 0.04), which are often biologically
irrelevant.

PLAGE uses singular value decomposition to summarize the activity level of Gi as a
singular vector by capturing variability in expression values of genes in Gi. PLAGE uses
this singular vector, referred to as a meta-gene, to assess if there is a significant difference
between expression levels of genes in Gi in control samples versus case samples. However,
this meta-gene, as a characteristic of singular value decomposition, tends to capture the
maximum variability of expression values. Therefore, the differential expression of a small
percentage of genes in Gi can substantially affect the meta-gene and lead to the prediction
of Gi as being differentially enriched.

The experiments also showed that ssGSEA suffers from a lack of specificity, and
performed more poorly in these scenarios than random guessing. However, it should be
mentioned that the available R package implementing this method [5] was not from the
authors of ssGSEA. We strongly recommend against using the current implementation
with default parameters.

SetRank was designed with the goal of increasing specificity. The available implementation
does not report the non-significant gene sets; as such, a fair comparison of it with other
methods via ROC curves is not possible. However, its scatter plot in Figure 5 and
its sensitivity and specificity in Table 4 reveal a lack of sensitivity. As illustrated by
Figure 6, four out of the ten target gene sets were not detected by SetRank. This might have
been due to SetRank explicitly removing some gene sets based on a level of overlap between
gene sets. However, excluding small gene sets where most or all genes are differentially
expressed suggests that SetRank sacrifices sensitivity in favor of increasing specificity.

The proposed method has been designed to utilize real expression data to synthesize
new expression datasets that inherit the characteristics of real expression data. Therefore,
characteristics such as the quality of the input expression data might affect the synthesized
datasets and potentially introduce bias in the simulation process and any downstream
analysis. Therefore, we recommend avoiding evaluation and making conclusions using
only a single input dataset.

In this study, we showcased the utility of Silver using a scenario of differentially
enriching ten gene sets from processes related to immune system. However, this by
no means is a comprehensive evaluation of these methods. We suggest studying various
scenarios using gene sets from different phenotypes, only up-regulated (or down-regulated)
gene sets of various sizes, and different levels of fold change gene expression values. In
addition, we only used microarray and RNA-seq data in this work. We suggest synthesizing
data from different gene expression modalities, such as single-cell data, for evaluating the
performance of gene set analysis methods.

For all evaluations, we synthesized 20 control and 20 case samples, as it has been
shown that gene set analysis results tend to be reproducible with at least 20 controls and
20 cases [32]. Silver provides a systematic means for the evaluation of gene set analysis
methods and can be used for a comprehensive study of the performance of gene set
analysis methods under different conditions, including various sample sizes. We suggest
evaluating the performances of gene set analysis methods with different sample sizes and
with unequal numbers of cases and controls as future research. Such studies are easily
facilitated by Silver.

5. Conclusions

In this paper, we proposed Silver, a framework for generating synthetic data that
avoids common oversimplifying assumptions. We showed the utility of this framework by
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evaluating a comprehensive list of gene set analysis methods. The evaluation revealed key
insights about these methods. It showed a lack of specificity as the main challenge facing
these gene set analysis methods. Moreover, we found that some methods lack sensitivity
when dealing with gene sets/pathways that are mixtures of up- and down-regulated genes.

Considering the key insights revealed using Silver, we strongly discourage using
artificial datasets that rely on oversimplifying assumptions, such as normally distributed
expression values or non-overlapping gene sets of the same size, as they are not realistic
and do not provide accurate evaluations of gene set analysis methods. We anticipate that
using Silver as a means for evaluation of existing and new gene set analysis methods will
provide a better understanding of these methods and lead to development of gene set
analysis methods that achieve high specificity without sacrificing sensitivity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12101523/s1. Additional File 1: Supplementary Figures and Tables: This file includes
the results of the analysis for the datasets and methods not presented in the main body of the paper.
Additional File 2: Supplementary Excel file: This file includes the results of PAGE when different
simulated datasets have been used for its evaluation.
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