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EDITORIAL

Predictions With a Purpose: Elevating 
Standards for Clinical Modeling Research
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Artificial intelligence (AI) predictive models have been proposed—and 
in many cases are already being adopted—as potential solutions to nu-
merous challenges in the ICU (1). Sepsis care and high-risk medica-

tion management, for example, have benefited from thoughtfully implemented 
AI-based clinical decision support systems (2, 3). For every successful imple-
mentation, however, scores of predictive tools never advance beyond retro-
spective validation (4). This leaky pipeline often results from poorly defined 
use cases (e.g., predictions that do not inform clinical action), inadequate re-
porting, and methodological shortcomings (5).

It is essential, therefore, to reconcile the promise of AI predictive mod-
eling with an ongoing commitment to rigor, reproducibility, and novelty in re-
search. This imperative is particularly relevant for the Society of Critical Care 
Medicine’s family of journals (6). Indeed, Critical Care Explorations has de-
voted an entire category of articles specifically to predictive modeling research, 
including AI approaches.

A notable contribution to this category of research appears in this compen-
dium of Critical Care Explorations. In a large multicenter cohort, Chen et al (7) 
demonstrate that AI models can accurately predict specific critical care inter-
ventions in hospitalized patients with community-acquired pneumonia (CAP). 
The authors used clinical data from CAPTIVATE—a 5-year cohort of almost 
4500 hospitalized patients with pneumonia from 16 Canadian hospitals (8)—to 
train and evaluate classifier models for invasive mechanical ventilation (IMV), 
vasopressor use, and renal replacement therapy (RRT) on hospital day 1 among 
patients not receiving these interventions on day 0. Consistent with findings 
from other critical illness scenarios (9), tree-based models showed particularly 
strong discrimination when predicting receipt of these specific interventions.

Several aspects of the study by Chen et al (7) are worth highlighting. First, 
most prediction models in critical care have been broadly aimed, either at 
all comers or at patient cohorts defined by heterogeneous syndromes (e.g., 
sepsis, acute respiratory distress syndrome) rather than specific diagnoses. 
Here, the authors adopt a more targeted approach, evaluating whether mod-
els tailored to a single clinical diagnosis (albeit one with substantial inherent 
host- and pathogen-level heterogeneity) could add value. Pneumonia is a 
leading cause of hospitalization and poor health outcomes, some of which 
may be modifiable through early interventions (10). Recognizing that appro-
priate triage might optimize early pneumonia care, Chen et al (7) hypothe-
size that targeted predictions of subsequent-day organ support could benefit 
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CAP patients not requiring these therapies on the 
day of hospitalization. If this strategy ultimately lives 
up to its promise, it could enable personalized care 
pathways, avert failure-to-rescue events, and promote 
more efficient resource use.

A second strength lies in the study’s thoughtful 
cohort curation. The authors evaluated model per-
formance across several well-defined groups: two tem-
porally distinct cohorts of patients with severe acute 
respiratory syndrome coronavirus 2 pneumonia and 
a separate cohort with pneumonia from other patho-
gens. High discrimination across these prospectively 
collected cohorts—which differ by both time period 
and pneumonia etiology—strengthens the case for 
their models’ temporal robustness and generalizability 
beyond a single pathogen or case mix. The use of mul-
tiple validation cohorts increases confidence that the 
models are capturing true clinical signal rather than 
reflecting idiosyncrasies of a particular dataset.

Third, the authors strengthen the rigor and repro-
ducibility of their work through several commend-
able practices, laying groundwork for more advanced 
applications. They share code to support transparency 
and enable external validation—key steps for building 
trust. Methodologically, they treat in-hospital death as 
a competing risk, conservatively assuming that patients 
who died before receiving IMV, vasopressors, or RRT 
would have gone on to receive these interventions; this 
sound choice reduces survivorship bias. The authors 
also report misclassification-associated model confi-
dence in the supplemental materials. Disaggregating 
false positives and false negatives is important because 
the clinical consequences of these errors are rarely 
symmetric; depending on the implementation context, 
clinicians might prioritize sensitivity over specificity 
(or vice versa). Quantifying uncertainty in this way 
mirrors real-world decision-making and might be an 
effective way to decrease false-positive alerts (11).

The authors’ approach generates interesting hypoth-
eses but also faces several challenges. First, predict-
ing discretionary interventions like intubation is 
inherently more complex than predicting unambig-
uous events like mortality. Clinicians differ in their 
thresholds for many interventions, making it difficult 
to know whether outcome labels reflect appropriate 
patient management or subjective decisions. Models 
adept at anticipating clinician actions may thus risk 
encoding bias or erroneous clinical decisions. Closely 

related is the broader question of whether we should 
predict interventions at all; ideally, predictive models 
would identify which patients will benefit from inter-
vention, rather than those who will receive it. Reliance 
on discretionary clinical decisions as model outcomes 
also threatens generalizability; heterogeneous practice 
patterns may contribute to model performance deg-
radation in new settings (12). As our methodological 
toolkit evolves, new approaches can help address these 
challenges. For instance, anchoring outcome labels on 
objective endpoints (or composites thereof) can in-
crease consistency (13), while using causal inference 
techniques appropriately can separate idiosyncratic 
clinical decisions from underlying patient risk (14).

Second, modeling IMV, vasopressor initiation, and 
RRT as independent outcomes overlooks their in-
herent interconnectedness. These interventions often 
arise from a shared trajectory of physiologic dete-
rioration, making it unsurprising that, for example, 
respiratory features were among the strongest predic-
tors of vasopressor use in the study by Chen et al (7). 
Modeling these kinds of outcomes separately can lead 
to inefficiencies, miscalibration, and even contradic-
tory predictions (15). Advances in AI now support 
multitask models that learn shared representations to 
predict several related outcomes simultaneously. By 
capturing overlapping physiologic signals and clinical 
decision pathways, multitask models might improve 
accuracy, calibration, and prediction coherence across 
interventions.

Chen et al (7) strike several right chords for an ex-
ploratory journal, advancing thoughtful hypotheses 
and engaging with many principles that characterize 
current best practices in predictive modeling. These 
core priorities—clarity of the use case, appropriate 
data selection, and methodologically sound model de-
velopment—remain central to producing rigorous and 
clinically meaningful predictive modeling research.

First and foremost, a predictive tool must address 
a well-articulated clinical use case (how the model’s 
output could meaningfully inform care). Strong use 
cases share three features: 1) the model would predict 
outcomes that matter to patients and clinicians; 2) the 
outcomes are plausibly modifiable through available 
interventions; and 3) there is a mechanism by which 
accurate predictions could influence decision-making 
or behavior. Most modeling efforts fall into one of two 
categories—prognostic models, which estimate the 
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likelihood of an outcome within a given timeframe, or 
predictive models, which estimate the probability of 
response to an intervention. Another useful distinc-
tion is whether the model is intended to guide deci-
sions for individual patients or to characterize patterns 
at the population level. Regardless of category, a clear 
rationale for modeling is foundational.

Second, the data underlying the model must meet 
several fundamental requirements. Outcome labels 
should be accurate, consistent, and have face validity 
for representing the clinical concept being predicted. 
Predictors should be available within the right pre-
diction horizon: before observing the outcome and 
within a clinically sensible time frame (e.g., sev-
eral hours before deterioration is evident). Finally, 
the data must be sufficient for demonstrating some 
basic level of validity (16). At minimum, this require-
ment indicates the need for a separate validation co-
hort. Even stronger are strategies that align dataset 
selection explicitly with the objectives of the anal-
ysis. As demonstrated by Chen et al (7), purposeful 
dataset selection can strengthen inferences regarding 
temporal model stability, geographic generaliza-
bility, and applicability to related clinical contexts. 
Although data sharing challenges can hinder acqui-
sition of validation data, federated learning and other  
privacy-preserving methods may help overcome 
these barriers (17).

Finally, the scientific approach should adhere to 
modern standards for methodological rigor and trans-
parency (6). Key best practices include establishing an 
empirical rationale for the number of candidate pre-
dictor variables (18), choosing performance measures 
appropriate for the clinical use case (19), and consist-
ently following established reporting guidelines such 
as Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis (20).

As Critical Care Explorations continues to provide 
a platform for early-stage and hypothesis-generating 
work, future contributors should do the same: ar-
ticulate a compelling clinical use case, choose data 
that support both validity and generalizability, and 
align modeling methods with established best prac-
tices. While implementation studies remain the gold 
standard, articles that thoughtfully bridge innovation 
and discipline—as this one does—play a critical role 
in advancing the science of predictive modeling in  
critical care.
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