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KRAS is one of the most widely prevalent proto-oncogenes in human cancers. The constitutively active KRAS oncoprotein
contributes to both tumor onset and cancer development by promoting cell proliferation and anchorage-independent growth in a
MAPK pathway-dependent manner. The expression of microRNAs (miRNAs) and the KRAS oncogene are known to be dysregulated
in various cancers, while long noncoding RNAs (lncRNAs) can act as regulators of the miRNAs targeting KRAS oncogene in different
cancers and have gradually become a focus of research in recent years. In this review article, we summarize recent advances in the
research on lncRNAs that have sponging effects on KRAS-targeting miRNAs as crucial mediators of KRAS expression in different cell
types and organs. A deeper understanding of lncRNA function in KRAS-driven cancers is of major fundamental importance and will
provide a valuable clinical tool for the diagnosis, prognosis, and eventual treatment of cancers.
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INTRODUCTION
KRAS is a small GDP/GTP-binding protein that transduces
extracellular signals and induces intracellular responses. KRAS
cycles between an inactive, GDP-bound (“off”) state, and an active,
GTP-bound (“on”) state. This off/on cycle is based on GDP/GTP
exchange and GTP hydrolysis reactions stimulated by RAS-specific
guanine nucleotide exchange factors (GEFs) and GTPase-
activating proteins (GAPs), respectively [1]. GTP-bound KRAS
transduces signals to its downstream effectors and thus activates
multiple signaling pathways [2, 3]. Therefore, activated KRAS
controls various cellular processes, including survival, growth,
proliferation, differentiation, and apoptosis, all of which are known
as hallmarks of cancer [4]. Somatic mutations in KRAS trigger the
robust gain-of-function effects of oncogenic KRAS and neoplastic
signal transduction owing to the reduction in GTP hydrolysis and
resistance to GAP function [5, 6].
The KRAS oncogene has been extensively studied in human

tumor malignancies [7, 8]. Intensive efforts to understand the
mechanisms underlying the intracellular trafficking, regulation,
and signaling pathways of KRAS have suggested several
therapeutic strategies [9]. Despite its well-recognized importance
in cancer promotion, only a few efforts in the past four decades
have resulted in approved clinical therapeutic strategies for
KRAS-mutant cancers [9–11]. Additionally, KRAS mutation is an
important predictive marker in determining resistance to EGFR-
targeted therapies [12]. Thus, further studies are needed to
elucidate the mechanisms responsible for the modulation of KRAS
to evaluate other potential therapeutic approaches.
Long noncoding RNAs (lncRNAs) are a class of noncoding RNAs

(ncRNAs) with a minimum length of 200 nucleotides, which have
been well studied in the context of RNA-based therapeutics
[13, 14]. Although only a small fraction of known lncRNAs have

been functionally characterized, there is growing evidence of their
involvement in a variety of biological processes, human diseases,
and malignancies [15]. These molecules, as the key regulators of
gene expression, play essential roles in a wide variety of biological
processes and signaling pathways involved in the progression of
many human cancers [16–19]. Emerging evidence has suggested
that various lncRNAs are likely to function as competing
endogenous RNAs (ceRNAs). These lncRNAs act as oncogenes by
sponging tumor suppressor microRNAs (miRNAs) [20, 21], thereby
indirectly regulating the expression of the genes targeted by these
miRNAs [22] (Fig. 1). Considering the wide diversity of miRNAs and
their high capacity for regulating hundreds of genes, many driver
oncogenes, such as ERBB2, BRAF, EGFR, MYC, SRC, and BCL2, are
targeted by miRNAs [23–25]. In this regard, many tumor
suppressor miRNAs have inhibitory effects on KRAS-associated
tumrigenesis by downregulating KRAS expression [26, 27]. There-
fore, oncogenic lncRNAs, as sponges of tumor suppressor miRNAs
that target KRAS, promote cancer development via the upregula-
tion of the KRAS oncogene [28–30].
It is evident that ceRNAs and miRNA response elements (MREs)

are two essential components of the ‘sponge effect´ [31]. MREs
are seed regions of 2-8 nucleotides in the 5’ region of miRNA [32].
The ability of a miRNA to bind to its mRNA target and lncRNA via
its MRE provides competition between mRNA and lncRNA for
interaction with their target miRNA. The binding of lncRNA to
miRNA as a ceRNA prevents the latter from recognizing mRNA
and consequently results in its silencing. This interaction leads to
the regulation of MREs on the targets, which plays an important
role in posttranscriptional regulation and is known as the
sponging effect [31] (Fig. 1).
Identification of mechanisms involved in KRAS regulation by

lncRNAs is expected to greatly enhance our understanding of the
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mechanisms of tumorigenesis associated with KRAS regulation.
While the sponging effect of lncRNAs on miRNAs that target KRAS
seems to be one of the key mechanisms by which KRAS is
regulated, details of other regulatory mechanisms remain to be
elucidated. The association of lncRNAs with various regulatory
apparatuses, such as chromatin remodeling factors, transcription
factors, splicing machinery, nuclear trafficking modulators, and
miRNAs, shows the complexity of their regulatory approaches
[33, 34]. Therefore, to understand other regulatory effects of
lncRNAs on KRAS expression, the role of all interactions between
lncRNAs and other macromolecules, such as DNA, RNA, and
proteins, in the regulation of gene expression should be
considered. Based on the different methods of gene regulation
by lncRNAs, lncRNAs are divided into guides, scaffolds, signaling
molecules, decoys, and miRNA sponges, which affect the
pretranscription, transcription, and posttranscriptional levels of
gene expression [34, 35]. It is now evident that silencing G4
elements in the core promoter region of oncogenes such as KRAS
is a highly valuable and new molecular target in the treatment of
cancer [36]. Some innovative approaches have suggested that
lncRNAs containing G4 structures as molecular decoys for G4-
binding proteins prevent G4 formation in the promotor region of
oncogenes, which leads to gene transcription [37]. Therefore, the
determination of whether lncRNAs inhibit G4 element formation
in the promotor region of KRAS reveals other mechanisms by
which lncRNAs regulate KRAS expression at the pretranscription
level. The results of another study demonstrated that KRASIM, a
highly conserved microprotein encoded by the putative lncRNA
NCBP2-AS2, plays a tumor-suppressive role by interacting with
KRAS in HCC cells. KRASIM, as the first KRAS-binding protein
encoded by a lncRNA, suppresses the protein level of KRAS and
inhibits the ERK signaling pathway. Therefore, sequestration of the
KRAS protein with peptides encoded by lncRNAs can be
considered as an alternative lncRNA-associated posttranscriptional
regulatory mechanism [38].
While lncRNAs have the capacity to regulate KRAS expression,

abnormal levels of KRAS, one of the mediators of many cellular
signaling pathways, reciprocally cause diverse molecular

alterations, such as dysregulation of lncRNA expression. KRAS
amplification has been shown to be a secondary means of KRAS
activation, leading to its overexpression and neoplastic transfor-
mation. It was found that the levels of a KRAS-responsive lncRNA
called KIMAT1 correlate with the KRAS levels and play a positive
role in maintaining tumorigenesis [39]. Another study revealed
that oncogenic RAS-induced lncRNA 1 (Orilnc1) can be regulated
by the RAS-RAF-MEK-ERK pathway and is required for cell
proliferation in RAS/BRAF-dependent human cancers [40].
The diversity of miRNAs with their various MREs provides a

greater possibility for communication between different miRNAs
and ceRNAs, two irreplaceable contributors to the sponging effect.
This hypothesis suggests that the sponging effect is a key
molecular mechanism underlying the networks corresponding to
miRNAs, oncogenic lncRNAs, and many related oncogenic drivers
that control various cancer-related biochemical processes. While
KRAS-associated miRNAs have been widely studied in cancer, the
role of KRAS-related lncRNAs in promoting cancer progression
needs to be carefully examined. The ever-increasing number of
KRAS-specific lncRNAs strongly indicates their potential contribu-
tion to and critical roles in the entire process of KRAS-driven
carcinogenesis. This review compiles the current knowledge of
KRAS-related oncogenic lncRNAs by considering their aberrant
expression and their mechanism of action through sponging
effects on KRAS-targeting miRNAs.

NONCODING RNAS IN KRAS-DRIVEN CANCERS
The noncoding transcriptome consists of a variety of different
RNA types, such as transfer RNA (tRNAs), ribosomal RNAs (rRNAs),
small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs),
circular RNAs (circRNAs), miRNAs, and lncRNAs. Other than
miRNAs and lncRNAs, as noncoding RNAs that play roles in
tumorigenesis, accumulating evidence indicates that altered
processing or activity of other RNA species can similarly
contribute to cancer [13]. Intact tRNAs and tRNA fragments
(tRFs) are correlated with tumorigenesis [41]. Upregulation of
specific tRNA expression in breast cancers by the enhancement

Fig. 1 Mechanism of KRAS gene regulation by oncogenic lncRNAs through sponging effects. As key gene regulators, tumor suppressor
miRNAs bind to their targets and interfere with translation. The RNA‐induced silencing complex (RISK) guides the antisense strand of the
miRNA to bind to its target KRAS mRNA sequence in a complementary manner, forming a double‐stranded helix. Perfect complementarity
results in endonucleolytic cleavage, while partial complementarity subjects mRNA to translational repression. Oncogenic lncRNAs act as
ceRNA decoys by presenting complementary sequences with MREs to sponge miRNAs from their target KRAS mRNAs. lncRNAs consequently
promote KRAS mRNA stabilization and thus its upregulation.
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of the translation of specific transcripts has been demonstrated
in the progression of metastasis [42]. In particular, a proportion
of tRFs that are of the same size as miRNAs and associated with
Argonaute are able to function as miRNAs. To confirm the
oncogenic activity of tRFs, altered levels have been indicated in
leukemia and solid cancers [42–44]. It has been reported that
some tRNA fragments, such as ts-47s and ts-46s, are upregulated
by KRAS and PIK3CA mutations, respectively, leading to breast
cancer chemoresistance [45, 46]. The results indicated that the
expression of tRFs can be influenced by oncogenic mutations
with a possible role in the promotion of carcinogenic processes.
Other findings have demonstrated that the expression of
different tRNAs corresponds to differences in KRAS protein
levels. This proved that some translational programs, such as
overexpression of proliferative tRNAs, have the ability to enhance
the protein synthesis of oncogenes, including KRAS [47].
A wide range of data has indicated the fundamental importance

of ribosomal biogenesis and its relationship with cell proliferation
in many aspects of malignant transformations [48]. A series of rare
inherited disorders leading to the production of altered ribosomes
(so-called ribosomopathies) have even been characterized by a
strong risk of cancer onset [49]. An imbalance in the ribosome
biogenesis rate via an increase in ribosomal DNA transcription or
an alteration in mature rRNA or ribosomal protein production may
ultimately lead to the inactivation of p53 through different
mechanisms [50]. As a consequence of p53 repression, acquisition
of cellular phenotypic changes characteristic of epithelial-
mesenchymal transition (EMT) results in increased cell invasive-
ness. In addition, it has been reported that nuclear epithelial cell
transforming sequence 2 (ECT2) with GEF activity is required for
KRAS-p53 lung tumorigenesis in vivo. ECT2-dependent ribosomal
DNA transcription and activation of rRNA synthesis ultimately lead
to neoplastic transformation [51]. In addition, nuclear and
nucleolar superoxide dismutase are essential for lung cancer cell
proliferation through interaction with the PeBoW complex and
regulation of pre-rRNA maturation [52].
The RNA components of the spliceosome, uridine-rich (U)

snRNAs, can regulate tissue-specific and cancer-specific alternative
splicing [53]. Notably, recurrent mutations in U1 snRNA, as one of
the most abundant noncoding RNAs, have been recently identified
in multiple cancer types and play an important role in the splicing
of pre-mRNAs [54]. Collectively, these studies indicate that
abnormalities in U1 snRNA and alternative splicing of pre-mRNA
are emerging as potentially important drivers of cancer [54, 55]. An
alternative mechanism underlying changes in the U1 levels in
alternations of cancer gene expression is changes in 3’-untrans-
lated region (UTR) length, leading to the removal of miRNA binding
sites. U1 overexpression lengthens the 3ʹUTR of KRAS to include a
miRNA let-7 binding site with tumor-suppressive activity [56].
snoRNAs are conserved noncoding RNAs responsible for

ribonucleoprotein guidance in cells for RNA posttranscriptional
modification [57]. A study on the characterization of small snoRNAs
in cancer identified an unexpected role for specific snoRNAs in the
modulation of KRAS-driven carcinogenesis [58]. A human protein
microarray screen discovered SNORD50A and SNORD50B as two
snoRNAs that bind to KRAS. The results showed that loss of
SNORD50A and SNORD50B expression enhances the amount of
GTP-bound and active KRAS, leading to hyperactivated RAS-ERK1/
ERK2 signaling [58]. The soluble NSF attachment protein receptor
(SNARE) protein superfamily, which is critical for membrane fusion,
is responsible for the vesicular transport that is essential for KRAS
trafficking to the plasma membrane and active signaling [59]. In
2019, Che et al. found that the SNORD50A/B snoRNAs, as
antagonists of SNAP23, SNAP29, and VAMP3 SNARE proteins,
inhibit the process of KRAS localization to the membrane [59].
circRNAs constitute a distinct type of endogenous abundant

noncoding RNA with a closed-loop structure and have been
found to be overexpressed in cancers [60]. Strikingly, similar to

lncRNAs, circRNAs have the potential to act as oncogenes or
tumor suppressors, possibly by acting as sponges for miRNAs.
Gorospe et al. found that circPVT1, as a circRNA, regulated the
availability of let-7 miRNA, a well-characterized tumor suppressor
with a target site on KRAS mRNA. This suggests that circPVT1,
whose expression is elevated in dividing cells and down-
regulated in senescent cells, can be considered a KRAS-related
circRNA that acts by sponging let-7 [61]. Other results showed
that a circRNA derived from Golgi glycoprotein 1 mRNA regulates
KRAS expression and then promotes colorectal cancer develop-
ment by targeting miR-622 [62].
Many studies have presented remarkable details of systematic

alterations in the form of noncoding RNAs, such as miRNAs,
lncRNAs, snRNAs, and circRNAs, with impacts on multiple facets of
tumorigenesis.

KRAS-RELATED LNCRNAS IN SOLID TUMORS
Aberrant regulation of oncogenes, tumor suppressor genes, and
miRNA genes are crucial in the pathogenesis of cancer. These
alterations are sequential multistep processes that can ultimately
contribute to malignant transformation [63]. The crucial roles of
miRNAs in various biological processes, such as cell proliferation,
tumor initiation, EMT, and tumor invasion, are directly related to
malignancy [64]. Several studies have identified many tumor
suppressor miRNAs targeting the KRAS oncogene in human
cancers, which affect cancer-associated cellular and molecular
mechanisms [65, 66]. Notably, research progress on the interac-
tions between lncRNAs and miRNAs in human cancer has
introduced an extra layer of complexity in the miRNA-target
interaction network [31]. With the development of the analysis of
regulatory networks, differential expression, and signaling path-
ways, lncRNAs have emerged as crucial regulators in various
biological processes [67, 68].
In this review, we mainly focus on confirmed KRAS-related

lncRNAs whose oncogenic roles as suppressors of KRAS-targeting
miRNAs have been verified (Fig. 2). These lncRNAs act as molecular
sponges of KRAS-targeting miRNAs, most likely contributing to
KRAS upregulation. We also summarize a large number of lncRNAs
potentially capable of regulating KRAS, possibly through sponging
of previously recognized KRAS-targeting miRNAs (Fig. 2) [31].

CONFIRMED KRAS-RELATED LNCRNAS
MALAT1
MALAT1, which was first identified in lung cancer, plays an
important role in the pathogenesis of various human diseases,
such as cancer [69–71] and autoimmune and inflammatory
diseases [72]. MALAT1 behaves as an oncogene in the initiation
and progression of many cancers [73, 74]. MALAT1, as a molecular
sponge of miR-217, an inhibitor of KRAS [75], promotes KRAS
signaling in pancreatic ductal adenocarcinoma (PDAC) [76]. In this
regard, knockdown of MALAT1 results in a significant reduction in
MEK and ERK1/2 phosphorylation by attenuating KRAS protein
expression, emphasizing the role of MALAT1 in protecting KRAS
mRNA from repression by miR-217 [76]. Moreover, miR-1 has been
shown to suppress breast cancer development by downregulating
KRAS and MALAT1 transcription, which emphasizes the potential
role of miR-1 as a tumor-suppressive miRNA and MALAT1 as an
oncogenic lncRNA via the regulation of KRAS [66].

MIR31HG
MIR31HG is a lncRNA with 2166 nucleotides that originates from
the intronic region of the Harbi1 gene and is responsible for
coding miR-31. MIR31HG is markedly upregulated in cancer
tissues, with potential roles in cancer initiation, progression, and
metastasis. It was confirmed that MIR31HG facilitates esophageal
squamous cell carcinoma cell proliferation and functions as a
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ceRNA by sponging miR-34a, allowing upregulation of c-Met [77].
MIR31HG inhibits oncogene-induced cell senescence by regulat-
ing transcription of the tumor suppressor p16 (INK4A) [78]. The
interaction of the MIR31HG transcript with the genomic regions of
INK4A and MIR31HG contributes to the recruitment of polycomb-
group protein complexes and then the repression of INK4A. In
addition, SP1-induced MIR31HG was found to be significantly
upregulated in NSCLC tissues and cell lines, which promotes cell
migration and invasion by sponging miR-214 [79]. It has been
reported that miR-193b is able to directly target MIR31HG,
resulting in cancer progression by counteracting miR-193b in
pancreatic cancer [80]. Based on the significant role of the KRAS
mutation in pancreatic cancer, these results confirm the potential
role of MIR31HG in the malignant transformation of different
tumors, including KRAS-driven pancreatic cancer.

KRAS1P
KRAS1P is considered as a pseudogene of KRAS. Its expression is
amplified in most cancers with mutated KRAS, which indicates a
positive correlation between these genes. The transcript levels of
KRAS and KRAS1P correlate directly in prostate cancer, neuro-
blastoma, retinoblastoma, and hepatocellular carcinoma (HCC),
which illustrates a proto-oncogenic role of KRAS1P in cancer [81–
83]. While the detailed mechanism by which KRAS1P regulates
KRAS as a pseudogene-derived noncoding RNA has not been well
recognized, its activity as a sponge for miRNAs that bind to the
3ʹUTR of KRAS has been proposed [84]. Two studies have reported
the possible role of KRAS1P as a ceRNA with binding sites for some
KRAS-targeting miRNAs, such as miR-143 and the let-7 miRNA
family [85, 86]. Thus, KRAS1P can potentially act as an oncogenic
lncRNA to inhibit degradation of the KRAS transcript [84].

BCYRN1
BCYRN1 is a newly identified brain cytoplasmic lncRNA of 200
nucleotides, which is transcribed from human chromosome
2p21. The high expression of BCYRN1 in various tumor cell lines
suggests the role of BCYRN1 as an oncogenic lncRNA [87, 88]. In
gastric cancer tissues, it is associated with tumor depth, lymph
node metastasis, cell proliferation, cell cycle progression,
migration, and invasion [89]. BCYRN1 is upregulated in color-
ectal cancer (CRC) tissues, which is related to tumor growth and
advanced pathological stages via NPR3 overexpression [90].
Moreover, the promotion of glycolysis and tumor progression in
non-small cell lung cancer (NSCLC) are observed as the result of
BCYRN1 overexpression [91]. High BCYRN1 expression induces
glycolysis through the repression of miR-149 and upregulation
of PKM2 as the target of miR-149. Strikingly, as a ceRNA, BCYRN1
affects the development of CRC via regulation of the miR-204-
3p/KRAS axis [92]. Therefore, negative regulation of KRAS by
miR-204-3p suggests BCYRN1 as another confirmed KRAS-
related lncRNA.

NUTF2P3-001
Overexpression of NUTF2P3-001 in pancreatic cancer and chronic
pancreatitis tissues is positively correlated with cancer cell
characteristics, such as tumor size and distant metastasis [93]. It
was reported that NUTF2P3-001, as an oncogenic lncRNA,
competes with the 3′UTR of KRAS mRNA for binding to miR-
3923. In addition, downregulation of NUTF2P3-001 inhibits the
viability, proliferation, and invasion of pancreatic cancer cells and
contributes to a decrease in KRAS expression [93]. Hence, these
data provide an alternative lncRNA-mediated regulatory mechan-
ism for the tumor oncogene KRAS.

Fig. 2 Lists of the confirmed (left) and potential (right) KRAS-related lncRNAs in different tissues. lncRNAs are presented in green,
indicating their upregulation as oncogenic regulators in carcinogenesis. miRNAs with tumor suppressor activity are presented in red,
indicating their repression due to the sponging effect of lncRNAs in malignancies. The left and right panels illustrate the confirmed and
potential KRAS-related lncRNAs as well as their miRNAs, respectively (Supplementary Table S1).
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RMRP
RMRP lncRNA is widely expressed in different human and mouse
tissues [94]. Previous studies have indicated that the expression
of RMRP is dysregulated in gastric cancer [95]. Suppression of
miR-206 by RMRP positively modulates Cyclin D2 expression and
cell cycle progression, which provides us with a better under-
standing of the mechanism underlying RMPR carcinogenesis
[96]. Furthermore, ectopic expression of RMRP was observed to
promote cell proliferation, colony formation, and invasion in lung
adenocarcinoma [97]. It was indicated that miR-206 acts as a
tumor suppressor miRNA in oral squamous cell carcinoma by
directly targeting KRAS [98]. Inhibition of miR-206 by RMRP was
demonstrated to result in overexpression of KRAS, FMNL2, and
SOX9 in lung adenocarcinoma [99], confirming RMPR as one of
the KRAS-related lncRNAs.

H19
H19, with both oncogenic and tumor suppressor activities,
acts as a double-edged sword via mechanisms such as miRNA
sponging [100]. The let-7 family miRNAs that control human RAS
oncogene expression are often downregulated in human cancers
[86, 101, 102]. H19 possesses both canonical and noncanonical
binding sites for the let-7 family of miRNAs, which plays
predominant roles not only in cancer but also in development
and metabolism [103]. H19 promotes pancreatic cancer metastasis
by inhibiting let-7 suppression on its target HMGA2-mediated EMT
in PDACs [100, 104]. Considering the role of let-7 in targeting KRAS,
H19 may influence KRAS expression levels in PDAC. To confirm
other sponging effects of H19, H19 overexpression exerted
proangiogenic effects, possibly by downregulating miR-181a and
inducing the JNK and AMPK signaling pathways to facilitate
angiogenesis [30]. Considering the tumor-suppressive effect of
miR-181a via downregulation of KRAS and the role of the KRAS
mutation in vascular malformations, it is assumed that H19 has an
indirect effect on KRAS upregulation [105, 106]. This can also be
mediated by miR-193b, another KRAS-regulating miRNA [107].
Overexpression of H19 has been shown to attenuate miR-193b-
mediated inhibition of multiple driver oncogenes, including EGFR,
KRAS, PTEN, IGF1R, and MAPK1, suggesting that lncRNA H19 serves
as a KRAS regulator through miR-193b sponging [108].

LINC01133
LINC01133, with a length of 1154 nucleotides, is located on
chromosome 1q23.2 and was first reported to be involved in CRC
and NSCLC [109, 110]. A positive correlation has been found
between high LINC01133 expression and poor prognosis in
patients. LINC01133 downregulation leads to the repression of
proliferation and invasion of lung cancer cells [111]. Nevertheless,
other studies have shown low LINC01133 expression in CRC and
breast cancer tissues [112, 113]. Therefore, it can be concluded
that the expression levels of LINC01133 vary among various types
of cancer, suggesting that there is a tissue-specific regulation of its
expression that may be directly related to its function. Other
results showed that LINC01133 aggravates the proliferation,
migration, and invasion of osteosarcoma by sponging miR-422a,
which targets KRAS, exerting antitumor effects [114, 115].

SLCO4A1-AS1
The role of SLCO4A1-AS1 in the tumorigenesis of CRC has been
demonstrated in several studies, confirming its upregulation in
CRC tissues and its relation with poor prognosis and tumor
metastasis [116, 117]. SLCO4A1-AS1 has been reported to serve as
an oncogenic lncRNA in CRC by activating the WNT/β-catenin
signaling pathway [117]. The oncogenic role of SLCO4A1-AS1 in
CRC promotion has been attributed to the stabilization of
SLCO4A1, a transmembrane protein with sodium-independent
organic anion transporter activity. In addition, the axis of the
SLCO4A1-AS1/miR-508-3p/PARD3 autophagy pathway has been

proposed as another carcinogenic mechanism of SLCO4A1-AS1 in
the development of CRC through a sponging effect [116].
SLCO4A1-AS1 knockdown in HCT116 and SW480 cells led to the
downregulation of EGFR, KRAS, BRAF, and MAP3K1 expression
[118]. Therefore, SLCO4A1-AS1 can be considered as a KRAS-
related lncRNA. However, the corresponding miRNA has not yet
been identified.

POTENTIAL KRAS-RELATED LNCRNAS
On the basis of the significant role of KRAS oncogenic mutations,
many miRNAs that target KRAS have been discovered in many
human cancer tissues [119, 120]. The inhibitory effect of miRNAs
on KRAS expression led us to search for miRNAs that are sponged
by oncogenic lncRNAs to find potential KRAS-related lncRNAs.
Therefore, a review of the previously recognized KRAS-targeting
miRNAs helps us to predict some oncogenic lncRNAs with
sponging effects, which may participate in the regulation of
KRAS. To identify potential KRAS-related lncRNAs, two steps were
taken. In the first step, a collection of miRNAs that target KRAS
were identified. Second, an extensive literature study was
performed to determine lncRNAs with sponging effects on the
miRNAs (Fig. 2). For example, a significant role of miR-143 in
the inhibition of KRAS translation was confirmed to contribute to
the suppression of cell growth [85]. In this regard, other
supporting documents showed the interaction of PSMG3-AS1
lncRNA as a sponge with miR-143-3p in HCC and breast cancer
tissues [16, 121]. According to the targeting of KRAS by miR-143
and the sponging effect of PSMG3-AS1 on this miRNA, it can be
assumed that PSMG3-AS1 can be a potential KRAS-associated
lncRNA. Similarly, miR-181a is a known miRNA with the ability to
target KRAS mRNA. With this information, lncRNA CRNDE, whose
sponging effect on miR-181a was previously confirmed, can be
considered one of the other potential KRAS-related lncRNAs
[122]. Therefore, a thorough understanding of the plethora of
tumor suppressor miRNAs contributing to KRAS-targeting and its
downregulation provides mechanistic insight into discovering
potential KRAS-related oncogenic lncRNAs that act as molecular
sponges. Accordingly, there is a large number of potential KRAS-
related lncRNAs sponging the KRAS-targeting miRNAs (Fig. 2;
Supplementary Table S1).

RAS-RELATED LNCRNAS ASSOCIATED WITH LEUKEMIA
Leukemia, as a heterogeneous group of malignant neoplasms in
the hematopoietic system, is classified on the basis of its clinical
behavior and histological origin. Although leukemia is a common
malignant cancer of the hematopoietic system, its mechanism of
pathogenesis has not been fully elucidated [123]. One of the main
causes of this malignancy is related to acquired and infrequently
inherited genetic alterations [124]. Moreover, epigenetic altera-
tions, such as heritable and reversible changes, can also lead to
some malignant behaviors, such as cancer relapse. For instance, as
well-studied leukemia, acute myeloid leukemia (AML) is a typical
consequence of these abnormalities and gene mutations [125]. In
addition to these valuable efforts, an urgent need to elucidate the
mechanism of cancer malignancy triggered the researchers to
search for new molecular systems, including regulatory transcripts
such as miRNAs and lncRNAs.
Oncogenic RAS mutations are highly prevalent in hematopoietic

malignancies and are associated with poor survival [126]. While
somatic mutations, such as KRAS mutations, cause a series of
downstream secondary alterations in the transcriptome of cancer
cells, evidence showing the role of lncRNAs in the pathophysiol-
ogy of hematological malignancies has drastically increased in the
last decade [127]. Therefore, understanding the role of KRAS
mutations in large-scale alterations in the transcriptional profiles
of leukemia cells, including the dysregulation of lncRNA
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expression, provides more details on the pathogenic mechanisms.
In this regard, the results of a pairwise analysis study comparing
patients with KRAS mutations showed 26 differentially expressed
lncRNAs (17 upregulated and 9 downregulated) compared to
juvenile myelomonocytic leukemia (JMML) patients without this
mutation [128]. Other differentially expressed RNAs between
JMML patients and normal bone marrow controls revealed that
the expression of 29 (19 up- and 10 downregulated) lncRNAs was
dysregulated in the subgroup of KRAS-mutant patients with
overexpressed lnc-ACOT9-1 [129]. lncRNA MORRBID regulates the
lifespan of short-lived myeloid cells in response to extracellular
pro-survival signals through the suppression of the pro-apoptotic
gene BCL2L11 (also known as BIM) [130]. The high expression of
MORRBID accompanied by KRAS and NRAS mutations is associated
with poor overall survival of JMML patients [131].
Although the exact mechanism by which KRAS-related lncRNAs

function in leukemia has not been elucidated, the sponging effect
on miRNAs can be considered one of the regulatory procedures.
Wang and colleagues demonstrated the role of MALAT1 in
sponging miR-101 to inhibit its interaction with the 3ʹUTR of its
target mRNA, myeloid cell leukemia 1 (MCL1). This competition
between MALAT1 and MCL1 causes a decrease in MCL1
expression and a consequent increase in drug resistance in lung
cancer [132]. In addition to the contribution of lncRNAs in
leukemogenesis, recent studies on the role of lncRNAs as
biomarkers in the diagnosis, prognosis, and therapeutic response
have emphasized lncRNAs as essential regulatory factors in
leukemia patients [133–135].

lncRNAs as therapeutic targets
lncRNAs are key regulators of gene expression and act through
different mechanisms, including genomic imprinting, epigenetic
regulation, mRNA and protein stability regulation, protein
sequestration, miRNA sponging, protein translation regulation,
and alternative splicing. Therefore, not only sponging effects but
also other mechanisms are involved in gene regulation by
lncRNAs, which provides the possible application of extensive
therapeutic strategies [136].
With rapid developments in high-throughput screening meth-

ods and bioinformatics, large numbers of cancer-related genes
and their associated regulatory lncRNAs will be discovered in the
near future [137–139]. Considering the critical roles of lncRNAs in
malignancies, lncRNA-based therapeutics may represent promis-
ing approaches in cancer treatment through novel technologies
[140, 141]. Antisense oligonucleotides (ASOs), which may form a
DNA-RNA structure with their target RNA through base pairing
rules, could be exploited as promising tools for targeting
oncogenic lncRNAs [142]. Aptamers are specific structures in the
form of oligonucleotides or peptide molecules that possess the
ability to bind specifically and structurally to the desired target,
such as lncRNA, and prevent the interactions of the lncRNA with
its corresponding targets [136]. The CRISPR/Cas9 genome editing
technique, a technology for the specific DNA modification of
targeted genes, has been found to be a successful approach to
silence the transcription of many carcinogenic lncRNAs [143].
Although the rapid development of a new generation of gene-
editing tools, such as ASOs or CRISPR/Cas9-based therapy, has
already shown the feasibility of gene-editing for cancer treatment,
their off-target events or unstable efficiency originating from the
spatiotemporal specificity of lncRNAs should also be evaluated for
further clinical applications [14]. Neutralizing targeted lncRNAs by
exogenous double-stranded RNA via RNA interference (RNAi)
transfection is an alternative strategy that has shown some
significant results due to its specificity [144]. Despite its specificity,
the RNAi method efficiency is transient due to the natural
instability of RNA molecules, which necessitates solid experimen-
tal analysis to confirm the practicability of this technology [145]. In
contrast to oncogenic lncRNAs, some lncRNAs with tumor

suppressor activity, such as CR749391 and LET, are known to be
expressed at low levels in tumors [146, 147]. Thus, induction of
these lncRNAs could be a possible therapeutic approach for
cancer treatment. For example, viral transfection, as the main
method for plasmid transmission to the target site, could be
applied to transfect exogenously synthesized tumor suppressor
lncRNA plasmids into cancer cells to upregulate the expression
of corresponding lncRNAs. This lncRNA-based strategy could be
investigated for cancer treatment; however, solid experimental
analysis is required to validate the feasibility and practicability of
this strategy [14]. Aside from the fact that lncRNAs themselves
could serve as possible therapeutic targets, recent documents
have proven the utility of peptides/proteins encoded by
lncRNAs as other potential targets [148]. lncRNAs are known
as RNA molecules that do not encode proteins, but recent
findings have shown that peptides/proteins encoded by
lncRNAs do indeed exist and surprisingly have tumorigenic
effects [148]. Therefore, peptides/proteins encoded by lncRNAs
might be hidden oncopeptides/oncoproteins representing
promising drug targets for treating tumor growth [148].
On the other hand, some proteins encoded by lncRNAs have
tumor-suppressive effects that inhibit the carcinogenesis of
oncoproteins such as KRAS [38]. Taken together, these findings
suggest that lncRNAs could serve as novel therapeutic targets
for cancer therapy.

CONCLUSION AND PERSPECTIVE
Approximately 25% of all human cancers have oncogenic
mutations in the RAS family of oncogenes, most frequently the
KRAS gene, resulting in the aberrant activation of RAS proteins
and consequently their downstream pathways and leading to
malignant transformation. To date, diverse therapeutic
approaches have been used to interfere with mutant KRAS-
mediated signaling. Although KRAS proto-oncogene mutations
are responsible for the conversion of KRAS to its oncoprotein form
with increased activity, suppression of mutant KRAS gene
expression could be an approach to inhibit oncoprotein produc-
tion. In this review, we focused on the sponging effect as a
strategy for KRAS downregulation, considering the established
roles of both miRNAs and lncRNAs. The fact that the majority of
lncRNAs are expressed in a highly cell- or tissue-specific manner
makes them effective therapeutic targets for cancer treatment.
However, many questions remain to be addressed. How many
lncRNAs are functionally and clinically relevant for KRAS-driven
cancers? How can we develop systematic genomic and functional
approaches to understand the role of lncRNAs in the initiation,
progression, and alternative metastasis of KRAS-mutant cancers?
How can we integrate patient genomic and transcriptomic data
with KRAS mutations to establish a lncRNA discovery pipeline to
drive preclinical studies? Finally, how does a tissue-specific
expression of lncRNAs provide therapeutic candidates for tissues
with a higher frequency of KRAS mutation? In addition to the
questions above, the authors of this review present some
suggestions for future studies concerning lncRNAs as therapeutic
targets. More oncogenic lncRNAs with sponging effects on other
tumor-suppressive miRNAs that target KRAS or its downstream
effectors should be discovered. Proteins/peptides encoded by
lncRNAs and their oncogenic or tumor-suppressing effects should
be investigated. The ability to target KRAS-related oncogenic
lncRNAs through various methods, such as nucleic acid-based
drugs, gene-editing methods, small molecule inhibitors, miRNA
mimics, catalytic degradation of lncRNAs by ribozymes, targeting
lncRNA secondary and tertiary structures, and synthetic lncRNA
mimics, must be studied. More importantly, further characteriza-
tion of interactions between oncogenic lncRNAs and associating
proteins, which form ribonucleoprotein complexes and could be
involved in KRAS signaling, may lead to the identification of novel
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therapeutic targets and the development of new anti-KRAS drugs.
Hopefully, the increased success rate of nucleic acid therapeutics
provides an outstanding opportunity to discover lncRNAs as
viable candidates for therapeutic targets in KRAS-dependent
malignant transformation.
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