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Abstract: Accelerating emergence of antimicrobial resistance among food pathogens and consumers’
increasing demands for preservative-free foods are two contemporary challenging aspects within
the food industry. Antimicrobial packaging and the use of natural preservatives are promising
solutions. In the present study, we used beta-casein—one of the primary self-assembly proteins in
milk with a high polymeric film production capability—as a fusion partner for the recombinant
expression of E 50-52 antimicrobial peptide in Escherichia coli. The pET21a-BCN-E 50-52 construct was
transformed to E. coli BL21 (DE3), and protein expression was induced under optimized conditions.
Purified protein obtained from nickel affinity chromatography was refolded under optimized dialysis
circumstances and concentrated to 1600 µg/mL fusion protein by ultrafiltration. Antimicrobial
activities of recombinant BCN-E 50-52 performed against Escherichia coli, Salmonella typhimurium,
Listeria monocytogenes, Staphylococcus aureus, Aspergillus flavus, and Candida albicans. Subsequently,
the synergistic effects of BCN-E 50-52 and thymol were assayed. Results of checkerboard tests showed
strong synergistic activity between two compounds. Time–kill and growth kinetic studies indicated
a sharp reduction of cell viability during the first period of exposure, and SEM (scanning electron
microscope) results validated the severe destructive effects of BCN E 50-52 and thymol in combination
on bacterial cells.
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1. Introduction

The adverse impacts of chemical antimicrobial compounds as food preservatives on human
health, growing food pathogen resistance to commonly-used antimicrobial agents, and increasing
interest in natural food preservatives are the primary issues persuading researchers to find novel
natural antimicrobial compounds as food preservatives [1]. Antimicrobial packaging systems serve
as a strong obstacle for microbial agents, and extend food shelf life while diminishing preservative
compound utilization. Therefore, novel antimicrobial polymers with natural sources have received
considerable attention [2]. Bacteriocins are bacterial antimicrobial peptides which have been exploited
as biopreservatives in the food industry for a hundred years [3]. Bacteriocins have been divided
into four classes: Class II consists of three subgroups on the basis of their primary structure.
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The YGNGV-conserved motif, a disulphide bond linkage, and significant inhibitory impacts on
Listeria sp. are most prominent in Class IIa bacteriocins, typically [4]. Bacteriocin E 50-52, with net
charge of +2, produced by Enterococcus faecium belongs to class IIa bacteriocin [5]. The wide antibacterial
spectrum, successful inhibition of antibiotic-resistant bacterial strains, heat stability, and the quality of
being recognized as safe makes Bacteriocin E 50-52 a great candidate as a natural antimicrobial food
preservative [6]. Bacteriocin derivation from natural bacterial sources is time-consuming, laborious,
and costly. Solid-phase chemical synthesis provides small amounts of peptides, but biotechnological
approaches are able to efficiently produce higher quantities [7]. However, using microbial hosts for the
production of antimicrobial peptides leads to inconsiderable yield.

The recombinant production of antimicrobial peptides in bacterial cells using different kinds of
carriers has led to significant production [8]. Beta-casein (β-CN) is one of four main types of casein,
a major milk protein [9]. β-CN’s homodimerization activity and amphiphilic structure cause the
formation of micelles in aqueous solutions [10,11]. β-CN’s abilities in the formation of polymeric films
were reported in separate studies [12–14].

In this study, we applied beta-casein as a carrier for the expression of E 50-52 in E. coli to create
an antimicrobial polymeric monomer for further applications in food packaging. The antimicrobial
activities of the fused BCN-E 50-52 against common food photogenes were assayed, and its synergistic
effects with thymol as a food-grade monoterpene were calculated.

2. Results

2.1. Expression of BCN E 50-52 in E. coli BL21

Protein production in various tested induction conditions was analyzed by SDS-PAGE. The greatest
yield was achieved by applying 1.5× NB and 0.5 mM isopropyl thio β-D-galactosidase (IPTG). Overnight
incubation of induced medium under 200 rpm shaking at 24 ◦C was the most convenient condition.
The produced 35 kDa protein after 24 h and 2 h of induction are indicated by corresponding arrows in
Figure 1a.

2.2. Purification and Refolding of BCN E 50-52

SDS-PAGE was used to analyze the quality and quantity of purified proteins by nickel
nitrilotriacetic acid-agarose (Ni-NTA; Qiagen, Valencia, Spain; Alameda, CA, USA). Then, various
changes in the durations and times of the purification steps were applied to gain much more purified
protein without any extra bands (Figure 1b).
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cystine at pH = 4.5. Protein concentration after the dialysis procedure was about 200 µg/mL, which 

Figure 1. (a) Expression of BCN-E 50-52 in E. coli BL21. M: size marker; lane 1: total protein
before induction; lane 2: total protein 2 h after induction; lane 3: total protein 24 h after induction.
(b) Purification and refolding of BCN-E 50-52. M: size marker; lane 1: fusion protein retrieved by nickel
affinity chromatography; lane 2: protein after refolding.
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The best dialysis conditions were chosen based on the MIC (minimum inhibitory concentration)
assay against S. aureus and E. coli. The results of dialysis in phosphate-buffered saline (PBS) buffers at
different pHs revealed that low pH (pH = 4.5 and pH = 5) was the most effective for protein yields.
Proteins was dialyzed in PBS-based exchanging buffers contained a complex of 0.5 mM cysteine
and 0.05 mM cystine at pH = 4.5. BCN-E 50-52 concentration after the dialysis procedure was about
200 µg/mL, which was not sufficient for further assays. The problem was solved by utilizing Amicon
centrifuging filters, yielding proteins with 1600 µg/mL concentration.

2.3. Antibacterial and Antifungal Activities

The MIC values of BCN-E 50-52 and thymol—alone and in combination—against the test bacteria
and fungi are presented in Table 1.

Table 1. The minimum inhibitory concentrations (MICs) of BCN-E 50-52, thymol, and their
combinations against different microorganisms.

Microorganism

MIC (µg/mL)

(BCN-E
50-52)A

(BCN-E
50-52)C

FICA ThymolB Thymolc FICB FICC Interpretation

Gram-negative
E. coli 25 8 0.031 128 16 0.125 0.156 synergistic
S. typhimurium 256 4 0.015 128 32 0.25 0.265 synergistic

Gram-positive
S. aureus 256 2 0.0078 128 16 0.125 0.132 synergistic
L. monocytogenes 256 2 0.0078 128 64 0.5 0.507 partial synergy

Fungi
C. albicans 256 8 0.031 64 32 0.5 0.515 partial synergy
A. flavus - - - 128 64 0.5 - non-synergistic

Values represent mean of three replications. FIC: fractional inhibitory concentration; Subscript A indicates BCN E
50-52; Subscript B indicates thymol; Subscript C indicates each compound in combination.

The table demonstrates MIC values for each compound alone (subscript A for BCN E 50-52,
and subscript B for thymol), the MIC value for each compound in combination (subscript C),
the individual FIC (fractional inhibitory concentration) values, the combined FIC value (FICC), and the
synergism interpretation. The different test microorganisms illustrated distinct susceptibility to each
compound individually and in combined forms. Overall, MIC tests indicated that BCN E 50-52 showed
moderate antimicrobial activity against most tested microorganisms and no antimicrobial activity
against A. flavus. Thymol (MIC 128 µg/mL) was the same for all tested microorganisms, except the
MIC of 64 µg/mL for A. flavus. The combination of thymol and BCN E 50-52 devalued the BCN E 50-52
MIC against most of the tested organisms. The most intense synergisms between BCN E 50-52 and
thymol were shown against S. aureus and L. monocytogenes, which recorded up to a 128-fold decline in
the BCN E 50-52 MIC (the FICA value = 0.0078) (Figure 2). The FIC index reveals a kind of synergy
between BCN E 50-52 and thymol in all test organisms, and no effects for A. flavus (Table 1).
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2.4. Bactericidal and Fungicidal Activities

The results of the minimum bactericidal concentration (MBC) studies are summarized in
Tables 2–4. The separate MBC tests of BCN E 50-52 and thymol against the tested bacteria indicated
no bactericidal activity of BCN E 50-52 and a faint bactericidal activity of thymol. The calculated
MBC (minimum bactericidal concentrations)/MIC values illustrated the bacteriostatic activity of
both compounds against all test bacterial species. The resultant MFC (minimum fungicidal
concentration)/MIC confirmed the fungistatic activity of each individual compound against C. albicans
(Table 2).

The individual MBC values of each compound declined in combination tests. More than four-fold
devaluation of BCN E 50-52 MBC was recorded against E. coli, S. aureus, and L. monocytogenes in
combination with thymol than in individual assays (fractional bactericidal concentration, FBC = 0.25).
MBC values of thymol were reduced two- to four-fold compared to the compound’s individual
employment. BCN E 50-52 MFC values for C. albicans were reduced by more than two-fold, while there
was no synergistic effect between thymol and BCN E 50-52 against A. flavus (Table 3). The synergistic
effects of BCN E 50-52 and thymol are shown in Table 4. The FBCI (fractional bactericidal concentration
index) and the interpretations for the activities of this combination against the test bacteria are recorded
as synergistic and partial synergy.
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2.4. Bactericidal and Fungicidal Activities

The results of the minimum bactericidal concentration (MBC) studies are summarized in
Tables 2–4. The separate MBC tests of BCN E 50-52 and thymol against the tested bacteria indicated
no bactericidal activity of BCN E 50-52 and a faint bactericidal activity of thymol. The calculated
MBC (minimum bactericidal concentrations)/MIC values illustrated the bacteriostatic activity of
both compounds against all test bacterial species. The resultant MFC (minimum fungicidal
concentration)/MIC confirmed the fungistatic activity of each individual compound against C. albicans
(Table 2).

The individual MBC values of each compound declined in combination tests. More than four-fold
devaluation of BCN E 50-52 MBC was recorded against E. coli, S. aureus, and L. monocytogenes in
combination with thymol than in individual assays (fractional bactericidal concentration, FBC = 0.25).
MBC values of thymol were reduced two- to four-fold compared to the compound’s individual
employment. BCN E 50-52 MFC values for C. albicans were reduced by more than two-fold, while there
was no synergistic effect between thymol and BCN E 50-52 against A. flavus (Table 3). The synergistic
effects of BCN E 50-52 and thymol are shown in Table 4. The FBCI (fractional bactericidal concentration
index) and the interpretations for the activities of this combination against the test bacteria are recorded
as synergistic and partial synergy.
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2.4. Bactericidal and Fungicidal Activities

The results of the minimum bactericidal concentration (MBC) studies are summarized in
Tables 2–4. The separate MBC tests of BCN E 50-52 and thymol against the tested bacteria indicated
no bactericidal activity of BCN E 50-52 and a faint bactericidal activity of thymol. The calculated
MBC (minimum bactericidal concentrations)/MIC values illustrated the bacteriostatic activity of
both compounds against all test bacterial species. The resultant MFC (minimum fungicidal
concentration)/MIC confirmed the fungistatic activity of each individual compound against C. albicans
(Table 2).

The individual MBC values of each compound declined in combination tests. More than four-fold
devaluation of BCN E 50-52 MBC was recorded against E. coli, S. aureus, and L. monocytogenes in
combination with thymol than in individual assays (fractional bactericidal concentration, FBC = 0.25).
MBC values of thymol were reduced two- to four-fold compared to the compound’s individual
employment. BCN E 50-52 MFC values for C. albicans were reduced by more than two-fold, while there
was no synergistic effect between thymol and BCN E 50-52 against A. flavus (Table 3). The synergistic
effects of BCN E 50-52 and thymol are shown in Table 4. The FBCI (fractional bactericidal concentration
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index) and the interpretations for the activities of this combination against the test bacteria are recorded
as synergistic and partial synergy.

Table 2. The minimum bactericidal concentrations and the minimum fungicidal concentrations of BCN
E 50-52 and thymol.

Microorganism

Separated Studies

(BCN E 50-52)A
Interpretation

ThymolB
Interpretation

MBC MBC/MIC MBC MBC/MIC

Gram-negative
E. coli >512 4 bacteriostatic 512 4 bacteriostatic
S. typhimurium >512 >4 bacteriostatic >512 >4 bacteriostatic

Gram-positive
S. aureus >512 8 bacteriostatic 512 4 bacteriostatic
L. monocytogenes >512 >4 bacteriostatic 512 4 bacteriostatic

Fungi
MFC MFC/MIC MFC MFC/MIC

C. albicans >512 >4 fungistatic 256 4 fungistatic
A. flavus - - No effects 256 4 fungistatic

Values represent the mean of three replications. MBC: minimum bactericidal concentration; MFC: minimum
fungicidal concentration.

Table 3. The minimum bactericidal concentrations and the minimum fungicidal concentrations of BCN
E 50-52 and thymol in combination.

Microorganism

Synergism Study

(BCN E 50-52)c
Interpretation

Thymolc
Interpretation

MBC MBC/MIC MBC MBC/MIC

Gram-negative
E. coli 128 16 bacteriostatic 128 8 bactericidal
S. typhimurium 128 64 bacteriostatic 128 4 bacteriostatic

Gram-positive
S. aureus 16 64 bacteriostatic 128 4 bacteriostatic
L. monocytogenes 128 64 bacteriostatic 256 8 bacteriostatic

Fungi
MFC/MIC MFC/MIC

C. albicans 256 32 fungistatic 256 16 fungistatic
A. flavus - - - 256 4 fungistatic

Values represent the mean of three replications.

Table 4. The fractional bactericidal concentration index (FBCI) of synergism study.

Organism
FBC

Interpretation
BCN E 50-52c ThymolC FBCI

Gram-negative
E. coli 0.25 0.25 0.5 partial synergy
S. typhimurium 0.25 0.25 0.5 partial synergy

Gram-positive
S. aureus 0.25 0.25 0.5 partial synergy
L. monocytogenes 0.25 0.5 0.75 partial synergy

Fungi
C. albicans 0.5 1 1.5 no synergy
A. flavus - 1 - no synergy

Values represent the mean of three replications.
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2.5. Agar Disk Diffusion

Confirming the MIC results, the antimicrobial activity of BCN E 50-52 with different concentrations
was assayed against E. coli and S. aureus (Figure 2). The test concentrations were equal to 1/2 MIC,
MIC, 2× MIC, and 4× MIC for each bacterium. Diameters of the inhibition zones corresponding
to different concentrations of BCN E 50-52 are shown in Figure 2. The qualitative data of agar disk
diffusion after statistical analysis were compared to the control inhibition zone (ampicillin disk,
10 µg/mL) according to the CLSI recommendation standard. The disks containing 4× MIC, MIC,
and 2× MIC concentrations of BCN E 50-52 against both bacteria created inhibition zones in the
range of susceptibility. Both bacterial inhibition zones for 1/2 MIC concentration of BCN E 50-52 were
assigned to the resistance range (Figure 2).

2.6. Time–Kill Curves

The results of the time–kill assay for E. coli and S. aureus are presented in terms of the changes
in the log10 CFU/mL of viable cells. Results of time–kill synergy studies are shown in Figure 3.
The number of viable E. coli cells decreased sharply, with more than five reductions in log10 CFU mL−1

by the combination of BCN E 50-52 and thymol at 2× MIC within 40 min, and complete cell death
occurred within 60 min. The test compound combinations achieved complete annihilation for S. aureus
within 60 min, while BCN E 50-52 and thymol caused three and four reductions in log10 CFU mL-1

viable cells gradually for both test bacteria and could not inhibit the cell growth thoroughly within the
first 120 min (Figure 3).Molecules 2017, 22, 822 6 of 14 
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E. coli cells treated with a combination of thymol and BCN E 50-52 at FIC values illustrated 
complete cell deformation and cell wall destruction after 2 h (Figure 4b). Indicating similar symptoms, 
membrane piercing and subsequent cytoplasmic material leakage were obvious morphological 
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(a) E. coli; control (filled triangles), BCN E 50-52 512 µg/mL (filled circles), thymol 256 µg/mL
(open triangles), BCN E 50-52 512 µg/mL and thymol 256 µg/mL (open circles); (b) S. aureus; control
(filled triangles), BCN E 50-52 512 µg/mL (filled circles), thymol 256 µg/mL (open triangles), BCN E
50-52 512 µg/mL and thymol 256 µg/mL (open circles).

2.7. Growth Kinetic Curves

In order to determine the mechanism of action of BCN E 50-52 against S. aureus and E. coli,
the turbidity of bacterial cultures exposed to 2× MIC of BCN E 50-52 and thymol were recorded over
time by a spectrophotometer. BCN E 50-52 and thymol separately caused more than 50% reductions
in the turbidity of both bacterial suspensions after 4 h and maintained this rate for 8 h (Figure 4).
The combination of BCN E 50-52 and thymol had much greater success in the reduction of more than
50% of S. aureus suspensions’ turbidity within the first hour, over 80% and 95%, declining after 2 h and
4 h, respectively. The E. coli suspension exposed to the combination of test compounds indicated 50%,
85%, and 95% density reductions occurring at 1, 2, and 4 h, respectively (Figure 4).
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2.8. SEM Microscopy

E. coli cells treated with a combination of thymol and BCN E 50-52 at FIC values illustrated
complete cell deformation and cell wall destruction after 2 h (Figure 4b). Indicating similar symptoms,
membrane piercing and subsequent cytoplasmic material leakage were obvious morphological changes
of S. aureus cells after treating for 2 h with thymol and BCN E 50-52 at FIC values (Figure 4d). These
results confirm rapid antimicrobial activities of BCN E 50-52 in combination with thymol and validate
the time–kill and growth curve results.

3. Discussion

The emergence of a vast spectrum of resistance to common antimicrobial agents among
microorganisms is turning into a unanimous global health concern. Research into new kinds of
antimicrobial compounds is receiving much more attention. E 50-52, as a bacteriocin, is a food-grade
strong antimicrobial peptide with diverse antimicrobial killing activities [5]. In addition to the
development of antimicrobial edible films are active research fields in the food industry for employing
natural sources as food preservatives [15]. Beta-casein’s ability to form edible polymeric films and
attach to other polymers has been previously proved [16,17]. In the present study, we describe the use
of beta-casein as a fusion partner for the expression of E 50-52 in Escherichia coli BL21 (DE3) (Figure 5).
It has been proved that the free N-terminal hydrophilic domain of Bacteriocin Class IIa plays the
main role in attaching to bacterial cells and cell lysis process initiation [5,18]. β-CN fusing to the E
50-52 N-terminal decreased its antimicrobial activities and caused a more soluble expression of E
50-52 in a susceptible bacterial host. However, decreasing the IPTG ratio to 0.5 mM, reducing the
incubation temperature to 24 ◦C, and extending the induction time to 24 h were the most efficient
conditions for recombinant protein production (Figure 1). While there were significant decrements
in E 50-52 antimicrobial intensity in the fusion to BCN, antimicrobial test results illustrated that
BCN did not thoroughly hamper E 50-52 antimicrobial potency. Setting up the refolding process
in an acidic buffer (pH = 4.5, 5) and applying the buffer including cysteine and cystin, followed by
protein purification, boosted BCN E 50-52’s antimicrobial activation. In silico estimation of BCN E
50-52 charge over the pH range confirmed that the charge of BCN E 50-52 at low pH (4, 4.5, and 5)
is much more positive (23.4, 15.9, and 9.1). The more positive net charge of recombinant BCN E
50-52 prompted its ability to attach to bacterial cell walls with negative charge [19]. There was
accommodation between the disk diffusion-registered data and MIC results (Figure 2). Thus, bacteria
were resistant to BCN E 50-52 sub-MIC, and the diameter of the inhibition zones increased according to
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ascending BCN E 50-52 concentration of the disks. Thymol is an important GRAS (generally recognized
as safe) natural antimicrobial compound [20,21]. In order to promote BCN E 50-52 antimicrobial
activities, the synergistic effects of this protein with thymol were assessed. The combination of the two
compounds significantly devalued the compounds’ MIC and MBC (Table 1). The FICI and FBCI for
most test microorganisms indicated at least additive efficacy (Tables 1 and 4). Bacterial killing kinetics
of BCN E 50-52, thymol, and their combination were conducted to survey the compounds’ pace of
action during the first minutes of application. The accelerating force of thymol to BCN E 50-52 function
was obvious (Figure 3).
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Figure 5. Design of the expression vector pET21a-BCN E 50-52. BCN: beta casein. GPGP: Double repeat
of Glycine Proline as a flexible linker between two different proteins.

Overall, all performed antimicrobial tests demonstrated substantial antimicrobial activities of
BCN E 50-52 and thymol in combination with each other. Bacteriocins destabilize bacterial cells by
piercing their membranes and, consequently cause cell lysis [5]. Thymol is capable of penetrating
into the lipid assemblies and damaging lipid membranes [22]. Creating primary disorders in the cell
membrane by each compound enhances their efficiency in expanding cell leakage with much lower
concentrations. SEM analysis indicated drastic disruptions in the cell walls by piercing and rupturing
of the outer membranes and severe lysis of cells incubated with BCN E 50-52 and thymol combinations
at FIC values (Figure 6).
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4. Materials and Methods

4.1. Materials and Chemicals

Ampicillin, beta-casein, brain-heart infusion media (BHIB and BHIA), dimethyl sulfoxide, Mueller
Hinton media (MHB and MHA), RPMI-1640, Sabouraud dextrose agar, resazurin sodium salt, and
thymol were purchased from Sigma Aldrich Co. (St. Louis, MO, USA). All other chemicals used were
of analytical grade.

4.2. Bacterial Strains

The antibacterial activities were assessed against four different food spoilage microorganisms:
Two Gram-negative strains, including Escherichia coli ATCC 25922 and Salmonella enterica serovar
Typhimurium ATCC 14028, and two Gram-positive strains, including Listeria monocytogenes ATCC 19115
and Staphylococcus aureus 29213. Antifungal activity was evaluated against Aspergillus flavus ATCC
204304 and Candida albicans ATCC 76615. Escherichia coli BL21 (DE3) was used as the recombinant
protein expression host.

4.3. Construction of the Expression Vector pET21a-BCN E 50-52

The entire gene sequence, which contains the 5’ BamH I, histidin tag, thrombin cleavage site,
bovine beta-casein sequence (β-CN) (EMBL: M16645), GP linker, an enterokinase cleavage site, an E
50-52 corresponding sequence (UniProt: P85148), and Xho I 3’ were designed and codon-optimized
for E. coli expression. The whole construct was synthesized by Biomatik Company (Cambridge,
ON, Canada). The synthesized DNA (EMBL: LT795121) was inserted into the plasmid pET21a
(Novagene) as the expression vector (Figure 6).

4.4. Expression of BCN E 50-52 in E. coli BL21

Competent Escherichia coli BL21 (DE3) were prepared based on standard protocols, and were
transformed by pET21a-BCN E 50-52 [23,24]. One of the recombinant colonies grown on plates
containing ampicillin was incubated in 2 mL NB medium containing 100 µg/mL ampicillin at
37 ◦C. Then, 300 µL of overnight culture was inserted in 50 mL NB broth (100 µg/mL ampicillin),
and incubated at 37 ◦C at 220 rpm. The cells’ optical density at 600 nm were measured occasionally,
and when the culture turbidity was equal to 0.6, isopropyl thio β-D-galactosidase (IPTG) (1 mM) was
added to induce protein expression. Four hours after induction, whole induced transformed bacteria
were harvested by centrifugation at 5000 rpm for 20 min and the pellets were stored at −20 ◦C [25].
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Various cultured media, different amounts of IPTG, alternative incubating temperatures, and different
incubation times were tested to achieve the highest protein expression efficiency.

4.5. Purification of BCN E 50-52

Denaturing conditions using 8 M urea, followed by Ni-NTA agarose resin affinity chromatography
(Qiagen, Alameda, CA, USA) were used for purification of the recombinant protein. SDS polyacrylamide
gel electrophoresis (SDS-PAGE 12%) was applied to assay the quality of the purified recombinant BCN E
50-52 protein. The quality of purified recombinant BCN E 50-52 protein was analyzed by the absorbance
of 280 and 260 nm [26].

4.6. Refolding Optimization of BCN E 50-52

Using urea for protein purification denatures the active folding of proteins. So, the refolding
process was done by applying prepared dialysis tubing, 10K molecular weight cut-off (MWCO)
(Thermo Scientific SnakeSkin). Various pH (4.5, 5, 7, 8, 8.5) and different PBS-based exchanging
buffers containing distinct amino acids (argenine, proline, and cysteine) were tested to gain the most
efficient dialysis conditions [27]. The dialysis process was carried out at 4 ◦C for 24 h. The best dialysis
conditions were chosen based on their MIC results.

4.7. Concentration of BCN E 50-52

A 10 kDa pore-size Amicon centrifugal filter (Merck Millipore, Darmstadt, Germany) was used to
concentrate the dialyzed protein.

4.8. Preparation of Standardized Inoculum

Bacterial inoculum preparation was done based on the CLSI standard protocol MO7-A10. Briefly,
The selected isolated colonies were cultured in BHI broth and incubated at 37 ◦C until the culture
optical density OD at 600 nm was 0.1 (1 × 108 cells/mL). Then, the suspensions were diluted 1:100
with BHI to achieve 1 × 106 CFU/mL [28].

4.9. Preparation of the Thymol Solution

Dimethyl sulfoxide (DMSO) was used as the thymol solvent at the final concentration of 1% (v/v).
The initial concentration of thymol in solution was 1024 µg/mL [29].

4.10. Determination of Antibacterial Minimum Inhibitory Concentration (MIC)

CLSI protocol MO7-A10 was applied to calculate the MIC of BCN-E 50-52 and thymol against
each tested organism [30]. Briefly, wells of the 96-well microplates from column 1:10 were filled by
50 µL of BHI broth. Then, 50 µL of the dialyzed recombinant 1024 µg/mL BCN-E 50-52 protein
or 50 µL of thymol solution were diluted in wells by two-fold serial dilutions in separated 96-well
plates. Subsequently, 50 µL of prepared bacterial inoculum was added to each well. Column 11,
containing 100 µL of bacterial inoculum, was considered as the positive growth control, and Column 12,
with 100 µL of the BHI, was the sterility control. After 24 h incubation at 37 ◦C, 20 µL of resazurin dyes
(0.02% (w/v)) were added to each well and incubated again for 2 h [31]. The BCN-E 50-52 concentration
in the last blue color well was scored as the MIC value. Ampicillin was used as the positive control,
while 1024 µg/mL beta-casein solution was the negative control for BCN E 50-52 MIC assessment.
Ampicillin and 1% DMSO were positive and negative controls for thymol MIC study, respectively.
All experiments were performed in triplicate.

4.11. Determination of Minimum Bactericidal Concentration (MBC)

After MIC assessment, 100 µL of microplate blue wells corresponding to the MIC, and the above
MIC values of BCN E 50-52 and thymol were plated on BHI agar. Following this, incubation of plates
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at 37 ◦C for 24 h was conducted to indicate the lowest BCN E 50-52 and thymol concentrations that led
to no colony growth, which was considered as the MBC value. The antibacterial activities were defined
based on the MBC/MIC ratio (MBC/MIC = 1 or 2 bactericidal, MBC/MIC = 4 or 16 bacteriostatic) [31].

4.12. Determination of Antifungal MIC

CLSI M27-A4 and M38-A3 protocols were used for antifungal susceptibility tests of BCN E 50-52
and thymol against C. albicans and A. flavus [32,33]. Briefly, 50 µL culture preparations in RPMI 1640
with 2% glucose were inoculated into the flat-bottom wells of 96-well microtiter plates. BCN E 50-52
and thymol, with initial concentrations 1024 µg/mL, were added to wells by a two-fold serial dilution.
Then, 50 µL of 103 CFU/mL prepared inoculum of C. albicans and 104 CFU/mL conidiospores of
A. flavus were poured per well. Plates were incubated at 35 ◦C for 48 h. Then, 20 µL of the resazurin
solution was added to each well and the plate was re-incubated for 20 min. A change of color from
blue (oxidized) to pink (reduced) indicated the growth of fungi [34,35]. The MIC was defined as the
lowest concentration of each compound that prevented this change in color.

4.13. Determination of Minimum Fungicidal Concentration (MFC)

One-hundred microliters of the blue wells’ aliquots corresponding to the MIC and upper MIC
values of BCN-E 50-52 and thymol were cultured on Sabouraud dextrose agar plates and incubated
at 35 ◦C for 48 h. The lowest concentration that prevented visible growth was regarded as the MFC.
The MFC/MIC ratio results were interpreted to fungistatic (MFC/MIC ≥ 4) or fungicidal activity
(MFC/MIC 4) of compounds [36].

4.14. Agar Disk Diffusion

The agar disc diffusion method was performed based on CLSI to assay the inhibition zone
diameters of BCN-E 50-52 against E. coli, a Gram-negative bacteria, and S. aureus, a Gram-positive
bacteria [37]. Briefly, blank disks (6 mm) were placed on prepared BHI agar plates inoculated with
adjusted 0.5 McFarland turbidity inocula. Then, 20 µL of dialyzed BCN-E5 0-52 with different
concentrations were poured on blank disks. Ampicillin (10 µg/mL) disks were placed on the center of
plates for comparison. Inhibitory zones were measured after 24 h of incubation at 37 ◦C. All tests were
performed in triplicate, and the mean of the inhibition diameters expressed were reported [38].

4.15. Synergy Study

A checkerboard dilution test was applied to evaluate the synergistic effects of BCN-E 50-52
and thymol against all tested microorganisms [20]. The fractional inhibitory concentration (FIC)
was calculated according to the following formula: FIC of each drug (FIC) = (MIC of drug in
combination)/(its MIC value). The FIC index (FICI) values were calculated using the following
equation: FICI = FICA + FICB [20].

The interpretation is as follows: synergy, 0.5; partial synergy, 0.5–0.75; additive effect, 0.76–1.0;
indifference, 1.0–4.0; and antagonism, 4.0 [39,40]. The fractional bactericidal concentration index
(FBCI) is the sum of the FBCs of each of the compounds and is calculated and interpreted the same as
mentioned above for FIC [41].

4.16. Time–Kill Curves

A time–kill assay was performed on 10 mL of E. coli as an important Gram-negative bacteria, and
S. aureus, as the most common Gram-positive bacteria in food poisoning, with a starting inoculum of
106 CFU/mL in the exponential phase. BCN-E 50-52 and thymol with 2× MIC concentrations alone or
in combination were applied for investigation of their single and combination impacts on cell viability.
Samples were taken at 0, 20, 40, 60, 80, 100, and 120 min after incubation and plated on BHI agar for
colony counting. The detraction pattern of viable bacteria cell numbers and synergistic effects were
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determined after 24 h of incubation at 37 ◦C [42]. These experiments were performed in duplicate.
Positive controls for the assay included ampicillin (10 µg/mL), and bacterial cultures without any
agents were included as negative controls [43,44].

A reduction of ≥1 log10 relative to the initial inoculum indicates antimicrobial activity. In the
synergism assay, a reduction of ≥2 log10 and 1 ≤ log10 ≤ 2 were considered as synergistic and additive,
respectively [41].

4.17. Growth Curve

In short, mid-log phase bacterial cultures with a turbidity of 0.6 at 600 nm were diluted in MHB,
achieving an OD600 of = 0.2 (108 CFU/mL). After that, 200 µL of bacterial cultures were allocated to
separate culture tubes and 2× MIC concentrations of BCN-E 50-52 and thymol alone or in combination
were added to particular tubes. Tubes were incubated at 37 ◦C. At specific time intervals, turbidity
was measured at 600 nm. The assay was carried out in duplicate [40].

4.18. SEM Microscopy

Overnight cultures of E. coli and S. aureus were adjusted to OD 0.1 (1 × 108 cells/mL) at 600 nm
and were then diluted with BHI medium to achieve 1 × 106 CFU/mL cell density. Afterwards,
bacterial cells were treated with thymol and BCN-E 50-52 at the determined FIC values for 2 h at
37 ◦C. Untreated controls were prepared in BHI medium with the same cell density. The bacterial
cells were centrifuged at 12,000× g for 15 min, then washed two or three times and resuspended
in sterile PBS. Ten microliters of suspension was spread onto a microscope slide and fixed in 2.5%
glutaraldehyde. Then, samples were coated with gold. The changes in cell morphology were analyzed
by SEM (AIS2100, Seron Technologies, Uiwang-si, Gyeonggi-do, Korea) [45,46].

4.19. Statistical Analysis

All statistical analyses were performed using SPSS (Version 16.0; SPSS, Inc., Chicago, IL, USA)
software. Data analysis was presented as means ± standard deviations. Statistical significance was
defined as p 0.05. Mean values analysis was calculated by a Tukey test at the 0.05 level of significance.
All related graphs were created with Microsoft Excel 2010.
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