
INTRODUCTION

The Rho family of GTPases is a subfamily of the Ras su-
perfamily and consists of more than 20 members in humans 
(Haga and Ridley, 2016). Most Rho GTPases modulate cy-
toskeletal dynamics, cell movement, vesicle trafficking, and 
cell adhesion to maintain polarity and motility (Ridley, 2006; 
Hodge and Ridley, 2016). The Rho GTPases work as mo-
lecular switches: when activated by numerous extracellular 
signals, guanine nucleotide exchange factors stimulate the 
replacement of the inactive GDP moiety with GTP, forming an 
active GTP–Rho complex, whereas GTPase-activating pro-
teins enhance GTPase activity, leaving the protein in an inac-
tive GDP-bound form (Haga and Ridley, 2016).

The human Rho GTPases are divided into eight subfami-
lies. The Rho subfamily consists of three members: RhoA, 
RhoB, and RhoC. RhoA is related to various pathological con-

ditions (Narumiya and Thumkeo, 2018). RhoA and RhoC are 
upregulated or engaged in various tumors, including gastric 
cancer, testicular cancer, squamous cell carcinoma, hepato-
cellular carcinoma, and pancreatic adenocarcinoma (Suwa et 
al., 1998; Clark et al., 2000; Simpson et al., 2004; Faried et 
al., 2006; Wang et al., 2007; Porter et al., 2016; Wang et al., 
2016). Recent reports have identified mutated RhoA in several 
tumors, such as diffuse gastric cancer and angioimmunoblas-
tic T cell lymphoma (Kakiuchi et al., 2014; Sakata-Yanagimoto 
et al., 2014; Wang et al., 2014; Yoo et al., 2014; Zhou et al., 
2014; Zhao et al., 2015). In contrast, RhoB is generally re-
ported to inhibit oncogenic progression, and its expression is 
downregulated in cancer cells and tissues (Du and Prender-
gast, 1999; Chen et al., 2000; Adnane et al., 2002; Mazieres et 
al., 2004; Sato et al., 2007). Dysregulation of the RhoA/ROCK 
pathway induces oxidative stress and promotes cardiovascu-
lar diseases, such as vasospasm, arteriosclerosis, ischemia/
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The small GTPase RhoA has been studied extensively for its role in actin dynamics. In this study, multiple bioinformatics tools 
were applied cooperatively to the microarray dataset GSE64714 to explore previously unidentified functions of RhoA. Compara-
tive gene expression analysis revealed 545 differentially expressed genes in RhoA-null cells versus controls. Gene set enrich-
ment analysis (GSEA) was conducted with three gene set collections: (1) the hallmark, (2) the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway, and (3) the Gene Ontology Biological Process. GSEA results showed that RhoA is related strongly to 
diverse pathways: cell cycle/growth, DNA repair, metabolism, keratinization, response to fungus, and vesicular transport. These 
functions were verified by heatmap analysis, KEGG pathway diagramming, and direct acyclic graphing. The use of multiple gene 
set collections restricted the leakage of information extracted. However, gene sets from individual collections are heterogenous in 
gene element composition, number, and the contextual meaning embraced in names. Indeed, there was a limit to deriving func-
tions with high accuracy and reliability simply from gene set names. The comparison of multiple gene set collections showed that 
although the gene sets had similar names, the gene elements were extremely heterogeneous. Thus, the type of collection chosen 
and the analytical context influence the interpretation of GSEA results. Nonetheless, the analyses of multiple collections made it 
possible to derive robust and consistent function identifications. This study confirmed several well-described roles of RhoA and 
revealed less explored functions, suggesting future research directions.
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reperfusion injury, hypertension, pulmonary hypertension, and 
heart failure (Satoh et al., 2011; Shimokawa et al., 2016). Sev-
eral reports have shown that RhoA can have an ameliorating 
or aggravating effects in diabetic complications, although most 
studies have indicated that RhoA/Rho activation aggravates 
diabetic conditions. Thus, it is urgent to identify RhoA-medi-
ated signaling pathways and develop regulators to modulate 
pathological conditions.

The molecular details of RhoA activities have only been 
partially characterized. RhoA can regulate actin cytoskeleton 
remodeling (Ridley and Hall, 1992), vesicle trafficking in exo-
cytosis or Golgi-to-endoplasmic reticulum transport (Ridley, 
2006), and glucose transport (Duong and Chun, 2019). These 
functions are exerted primarily through downstream effector 
molecules, such as Rho-kinases (ROCKs) (Leung et al., 1995) 
and Diaphanous-related formin 1 (Watanabe et al., 1999). 
ROCKs activate LIM kinase and inhibit myosin light chain 
phosphatase to enhance the conversion of monomeric G-actin 
into polymeric fibrous F-actin (Kimura et al., 1996; Maekawa 
et al., 1999). Through the formation of F-actin, RhoA can plays 
diverse cellular roles by activating transcription regulators, in-
cluding serum response factor/myocardin related transcription 
factor A, activator protein 1, Nuclear factor NF-kappa-B, tran-
scriptional coactivator YAP/Tafazzin, β-catenin, and hypoxia 
inducible factor-1α (Kim et al., 2018). 

In this study, the Gene Express Omnibus database was 
searched for RhoA knockdown or knockout systems. One study 
conducted by Garcia-Mariscal et al. (2018) fell into the category 
(further described in the Materials and Methods). Although the 
role of RhoA was examined at the genomic level, their study 
focused on identifying the role of retinol in keratinocyte differ-
entiation, without comprehensive analyses of the other func-
tions. This study aimed to uncover unknown functions by evalu-
ating the role of RhoA in various functional aspects. For this 
purpose, Gene Set Enrichment Analysis (GSEA) (https://www.
gsea-msigdb.org/gsea/index.jsp) was performed using various 
molecular signatures, and the results were compared. GSEA is 
a computational method to compute the statistical significance 
of a defined set of genes in a given experimental environment 
(Mootha et al., 2003; Subramanian et al., 2005). In GSEA, a 
gene set is a group of genes that share a common function 
or property. The GSEA database officially provides eight major 
curated gene set collections in the Molecular Signatures Data-
base (MSigDB) (Liberzon et al., 2011), which can be chosen ac-
cording to the analytical purpose. The release of MSigDB (ver. 
7.0) has more than 20,000 gene sets as of the time of this study. 

Three different gene set collections were applied: the hall-
mark gene set (Liberzon et al., 2015), the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway gene set (Kanehisa 
et al., 2017), and the Gene Ontology (GO) Biological Process 
(BP) gene set (Ashburner et al., 2000). As these gene sets 
have distinct advantages and disadvantages, using them 
in combination allows their strengths to be leveraged while 
compensating for their weaknesses. The outcomes from each 
gene set collection were compared and analyzed to identify 
novel putative functions of RhoA.

MATERIALS AND METHODS

Microarray dataset
The microarray dataset was obtained by searching the 

NCBI Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo) using “RhoA” as a keyword. Only 
one dataset (GSE64714) satisfied the following criteria: (1) 
RhoA depletion or overexpression was an independent vari-
able, (2) it contained genome-wide RNA expression, and (3) 
it had three or more samples, and (4) complete microarray 
raw data were available. GSE64714 is based on the Affymetrix 
Mouse Genome 430 2.0 array (platform ID: GPL1261) and 
includes 10 samples of RhoA-null or wild-type keratinocytes 
from freshly isolated (in vivo) or cultured primary mouse ke-
ratinocytes (in vitro). As the in vivo data were prepared in du-
plicate, further analyses were performed with the triplicate in 
vitro data.

Data preprocessing and quality testing
The original CEL data files were read using the Affy pack-

age (Gautier et al., 2004) in R software (Version 3.5.2) (R 
Core Team, 2018). Background correction, normalization, and 
summarization were performed for all 45,101 probes (45,037 
target genes and 64 in-house markers) using the robust mul-
tiarray average (RMA) method (Irizarry et al., 2003). Principal 
component analysis (PCA) of this normalized expression data 
was performed using the “prcomp” function.

Screening of differentially expressed genes
Probes were filtered from the normalized expression data-

set with relatively high variance using the “nsFilter” function 
in genefilter (Gentleman et al., 2018) (variance cutoff=0.5), 
resulting in 18,993 probes selected. The overall distribution of 
the filtered gene expression data was displayed using an MA 
plot, in which the mean log2 gene expression from six groups 
was used as a representative expression level. The p value 
of each gene was determined by t-testing using the Limma 
package (Smyth et al., 2005) in R software to obtain the dif-
ferentially expressed genes (DEGs). The false discovery rate 
(FDR) was calculated using the Benjamini–Hochberg method 
to adjust the p value. The FDR value versus log2 fold change 
(FD) of DEGs was displayed using a volcano plot. Affymetrix 
mouse genome 430 2.0 array annotation data (mouse4302.
db) (Carlson, 2016) were used for gene annotation.

Heatmap display
The relative gene expression was visualized using the 

pheatmap package (Kolde, 2019). Expression values were 
centered and scaled in the row direction (scale=“row”).

Gene set enrichment analysis
A total of 37,999 normalized probes with annotated gene 

symbols were subjected to the lmFit and eBayes functions 
of the Limma package. Statistics for duplicated genes with 
identical symbols were combined into mean values, produc-
ing 20,563 individual genes. GSEA was performed using the 
fgsea function in the fgsea package (Sergushichev, 2016), ap-
plying the hallmark (50 gene sets), the KEGG pathway (186 
gene sets), and the GO BP (7,350 gene sets) gene set collec-
tions from MSigDB (Liberzon et al., 2015) (version 7.0) indi-
vidually as signature gene sets with 1000 permutations.

For GO BP, DEGs with adjusted p values <0.05 were se-
lected, and GO term enrichment was tested using topGo. 
Fifty refined and concise “hallmark gene sets” were derived 
from multiple founder sets. The KEGG pathway database is 
another collection of manually curated pathway maps. This 
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database offers a helpful way to represent visualized path-
way diagrams of selected gene sets based on the molecu-
lar interaction, reaction, and relationship networks. GO is the 
most widely used database of gene function information. GO 
provides a hierarchically organized set of terms consisting of 
three classes: Molecular Function, Cellular Component, and 
Biological Process. The full description of members included 
in the gene sets is provided in List S1. 

After measuring the gene–phenotype association score 
for each gene in a dataset, the degree of overrepresenta-
tion was calculated and assigned an “enrichment score.” For 
demonstration, several pathways with the highest normalized 
enrichment scores (NES) were selected and displayed using 
the ggplot2 package (Wickham, 2016). Enrichment plots were 
generated using fgsea. The mean gene expression levels in 
a gene set were displayed in a scatter plot and boxplot using 
ggplot2. 

Visualization of pathways using the KEGG pathway 
database 

Gene lists in a given KEGG pathway (“SNARE interaction 
in vesicular transport” (KEGG id#: 04130) and “DNA replica-
tion” (KEGG id#: 03030)) were entered into the KEGG path-
way database (https://www.genome.jp/kegg/pathway.html) to 
map DEGs in biological pathways. Significantly upregulated 
or downregulated genes (p<0.05) were colored red or blue. 
Genes without significance were colored green.

Construction of a directed acyclic graph between the 
enriched GO BP terms

Gene sets in the GO are organized in hierarchical parent-
child relationships with each other. These hierarchical relation-
ships can be visualized using a graph in which terms repre-
senting gene sets can be depicted as nodes, and relationships 
between gene sets are represented as edges. Specifically, 
this graph has directed parent-child relationships between 
nodes, but does not have cyclic loop structures internally, so it 
is called a “directed acyclic graph” or DAG. DAG can efficiently 
mark the “part of” relationship between gene sets as moving 
across levels of abstraction. The root node, the highest level 
of abstraction, contains more general gene members, while 
leaves are more specific members. The directed acyclic graph 
(DAG) was constructed from the 51 most enriched GO BP 
terms (p<0.01 and |NES|>2) using GOView web-based soft-
ware (Shoop et al., 2004) (http://www.webgestalt.org/2017/
GOView/) and AEGIS software (Zhu et al., 2019). The GO IDs 
used in GOView analyses were obtained from the MSigDB.

Similarity analyses
The similarity of gene sets was measured using the Jac-

card distance. The more similar two sets are, the smaller the 
Jaccard distance is. The Jaccard distance was obtained by 
subtracting the Jaccard index from 1 and has a value between 
0 and 1. The formula to calculate the Jaccard index is 
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37,999 genes having symbols
(1) Statistis: ImFit and eBayes functions
(2) Combining identical symbols: 20,563 distinct genes

Gene set enrichment analysis (GSEA)

GO BP
7,350 gene sets

KEGG
186 gene sets

Hallmark
50 gene sets

Comparative analysis
between collections

Collection-oriented
analyses

Filtration
nsFilter function (genefilter package)

(Var cutoff=0.5)

Differentially expressed
genes (DEGs)

adjust value (FDR)<0.05p

Up: 400
Down: 354

Normalization (RMA)
Quality control

Datasets: GSE64714

Platform ID: GPL 1261, Affymetrix GeneChip
Mouse genome 430 2.0 array
System model: cultured mouse primary keratinocyte

Wildtype vs. RhoA-null

ngene=18,993

Fig. 1. Study flow diagram. The chart describes the methods used and the features extracted during analyses of the GSE dataset 
GSE64714.
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Jaccard index=(the number of genes in both gene sets)/
(the number in either gene set).

The distances between multiple gene sets were visualized 
with a correlation plot generated using the corrplot package 
(Taiyun and Viliam, 2017) in R software. 

RESULTS

Analyses of DEGs regulated by RhoA
Microarray data were obtained from the GEO database 

(GSE64714) to explore RhoA-regulated targets. The in vitro 
data from RhoA-negative mouse keratinocytes contained 
gene expression information for 45,101 genes. The overall 
scheme is illustrated in Fig. 1. Gene expression levels were 
normalized by applying the RMA method (Fig. 2A). The PCA 
plot showed that the expression profile was clearly differenti-
ated between the RhoA-null and wild-type control data (Fig. 
2B), thus indicating that the consequent DEG analyses could 
be properly performed. The 18,993 genes were obtained by 
filtering out genes with low expression or high variation, and 

the quality of data to be used was confirmed using the MA 
plot (Fig. 2C). The distribution of gene expression values (log2 
fold change) with adjusted p values (FDR) was presented us-
ing a volcano plot (Fig. 2D). The result indicated that RhoA-
deficiency upregulated several genes having large differential 
changes. The subsequent t-test produced 754 DEGs with 
FDR<0.05 (400 upregulated, 354 downregulated), and the 50 
most significantly regulated genes are listed in Table 1. The 
statistical information for 754 probes is provided in Supple-
mentary Table 1. A heatmap of 189 genes with the criterion of 
log2|FC|>1 and FDR<0.05 is shown in Fig. 2E.

Functional enrichment analysis using three distinct gene 
set collections

GSEA was performed to analyze the functions of RhoA. In 
this study, three distinct gene set collections were applied to 
deduce robust functions and use collection-dependent fea-
tures: the “hallmark,” the “KEGG pathway,” and the “GO BP” 
collections. The results are provided in Supplementary Table 
2.

FDR values of gene sets were plotted versus normalized 
enrichment scores (NESs) to evaluate the quality of the GSEA 
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Fig. 2. Preprocessing and identification of DEGs. Datasets of three wild-type samples (control) and three RhoA-null samples (KO) were 
preprocessed and analyzed for DEGs. (A) Box plots of log2 expression values of the GSE64714 dataset before (left) and after RMA normal-
ization (right). (B) PCA plot representing the differential gene expression patterns of RhoA-null and wild-type samples in two dimensions; x-
axis=PC1: PCA component 1; y-axis=PC2: PCA component 2. (C) MA plot for 18,993 genes after filtration. The x-axis represents the aver-
age log2 intensity of genes, and the y-axis represents the log2 fold change. (D) Volcano plot for DEGs. DEG, differentially expressed gene. 
(E) A total of 189 DEGs (log2|FC|>1 and FDR<0.05) were selected and clustered hierarchically based on distances. The row for each clus-
ter was divided into two parts (up- and downregulation) and are displayed using a heatmap.
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results (Fig. 3, left). Gene sets with highly positive or negative 
NESs had lower FDR values, resulting in bell-shaped sym-
metric distributions. Parts of significantly regulated gene sets 
were presented with their NESs (Fig. 3, right).

The GSEA results using the “hallmark” collection showed 
that the “p53 pathway” was upregulated significantly 
(FDR<0.1, NES>1.5), whereas “E2F targets,” “G2M check-
point,” “Myc targets v1,” “mTORC1 signaling,” “Myc targets 
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Table 1. Differentially expressed genes in the RhoA-null condition (50 most significant genes)

Probe ID Symbol LogFC AveExpr t p value FDR B

1431592_a_at Sh3kbp1 2.16 8.61 –13.8 8.61E-11 1.56E-06 14.4
1460337_at Sh3kbp1 2.3 8.48 –13.2 1.64E-10 1.56E-06 13.8
1456203_at Dsc1 2.11 8.6 –12.9 2.61E-10 1.66E-06 13.4
1433924_at Peg3 –2.45 7.35 12.3 4.94E-10 1.75E-06 12.9
1417356_at Peg3 –1.69 6.71 12.3 5.52E-10 1.75E-06 12.8
1437811_x_at Cotl1 2.28 8.39 –12.4 4.89E-10 1.75E-06 12.9
1448756_at S100a9 1.87 10.4 –11.8 9.50E-10 2.58E-06 12.3
1436838_x_at Cotl1 2.12 10.7 –11.7 1.14E-09 2.70E-06 12.2
1417695_a_at Soat1 1.89 8.72 –11.5 1.52E-09 3.22E-06 11.9
1435760_at Csta1 1.84 9.68 –11.2 2.17E-09 3.74E-06 11.6
1454264_at 2310046K23Rik 2.2 10.2 –11.2 2.10E-09 3.74E-06 11.6
1442339_at Stfa2l1 1.89 8.12 –11 3.02E-09 4.79E-06 11.3
1433795_at Tgfbr3 –1.54 9.13 10.7 4.46E-09 5.64E-06 10.9
1423494_at Teddm3 2.09 7.78 –10.7 4.39E-09 5.64E-06 11
1421460_at Dsc1 2.13 7 –10.8 4.10E-09 5.64E-06 11
1448397_at Gjb6 1.79 8.13 –10.5 6.02E-09 7.15E-06 10.7
1419394_s_at S100a8 1.56 10.8 –10.4 6.68E-09 7.46E-06 10.6
1425415_a_at Slc1a1 –2.19 6.04 10.3 8.43E-09 8.90E-06 10.4
1437052_s_at Slc2a3 –2 6.66 10.1 1.04E-08 1.03E-05 10.2
1423062_at Igfbp3 –1.87 10.6 9.99 1.26E-08 1.20E-05 9.99
1439878_at Ivl 1.68 9.61 –9.84 1.58E-08 1.43E-05 9.78
1448873_at Ocln –1.51 9.03 9.64 2.16E-08 1.78E-05 9.49
1453511_at 2310007B03Rik –1.47 5.3 9.65 2.11E-08 1.78E-05 9.51
1458268_s_at Igfbp3 –1.73 9.73 9.55 2.46E-08 1.87E-05 9.37
1436236_x_at Cotl1 1.64 9.74 –9.58 2.37E-08 1.87E-05 9.41
1420401_a_at Ramp3 –1.41 8.16 9.42 3.04E-08 2.17E-05 9.18
1429053_at Mtcl1 1.31 6.49 –9.41 3.09E-08 2.17E-05 9.16
1455519_at Dsg1b 1.42 7.7 –9.31 3.59E-08 2.35E-05 9.02
1422324_a_at Pthlh 1.85 6.25 –9.32 3.55E-08 2.35E-05 9.03
1448745_s_at Lor 3.24 7.94 –9.26 3.91E-08 2.47E-05 8.94
1419248_at Rgs2 –1.38 8.34 9.23 4.11E-08 2.52E-05 8.89
1447830_s_at Rgs2 –1.48 7.23 9.18 4.38E-08 2.60E-05 8.83
1417696_at Soat1 1.31 8.25 –8.8 8.11E-08 4.67E-05 8.26
1420431_at Rptn 2.71 5.77 –8.76 8.65E-08 4.83E-05 8.2
1421606_a_at Sult4a1 1.29 5.86 –8.65 1.04E-07 5.67E-05 8.02
1427682_a_at Egr2 –1.47 5.7 8.58 1.17E-07 6.00E-05 7.91
1429564_at Pcgf5 –1.3 10.1 8.59 1.14E-07 6.00E-05 7.94
1416007_at Satb1 –1.25 8.3 8.54 1.24E-07 6.20E-05 7.86
1454883_at Gsdmc2 1.68 5.98 –8.44 1.48E-07 7.23E-05 7.69
1419247_at Rgs2 –1.27 8.54 8.41 1.54E-07 7.33E-05 7.65
1416002_x_at Cotl1 1.43 8.03 –8.33 1.77E-07 8.21E-05 7.52
1425801_x_at Cotl1 1.23 9.42 –8.31 1.82E-07 8.25E-05 7.49
1451924_a_at Edn1 –1.53 7.79 8.2 2.21E-07 9.14E-05 7.31
1417355_at Peg3 –1.51 6.67 8.21 2.18E-07 9.14E-05 7.33
1451154_a_at Celf2 –1.18 5.55 8.2 2.20E-07 9.14E-05 7.32
1450633_at Calm4 1.69 11.9 –8.22 2.15E-07 9.14E-05 7.34
1417697_at Soat1 1.4 7.26 –8.17 2.31E-07 9.20E-05 7.27
1432269_a_at Sh3kbp1 1.47 7.56 –8.17 2.32E-07 9.20E-05 7.26
1423071_x_at 6720475J19Rik 1.15 7.83 –8.12 2.55E-07 9.87E-05 7.18
1455898_x_at Slc2a3 –1.64 5.32 8.1 2.64E-07 1.00E-04 7.14

Genes were sorted in ascending order of the FDR. 
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v2,” and “mitotic spindle” were downregulated significantly 
(FDR<0.1, NES<–1.5) (Fig. 3A). However, the “KEGG path-
way” analysis showed “SNARE interactions in vesicular trans-
port” as upregulated (FDR<0.1, NES>1.5). The same analy-
sis showed downregulation of “DNA replication,” “cell cycle,” 
“base excision repair,” “mismatch repair,” “glycine serine and 
threonine metabolism,” “homologous recombination,” “N gly-
can biosynthesis,” “terpenoid backbone biosynthesis,” “panto-
thenate and CoA biosynthesis,” and “pyrimidine metabolism” 
(FDR<0.1, NES<–1.5) (Fig. 3B). The “GO BP” pathways pro-
vided results of >7000 curated gene sets (Fig. 3C), among 
which “peptide cross-linking,” “keratinization,” and “defense 

response to fungus” were the most positively affected gene 
sets (NES>2.2). Negatively regulated pathways (NES<–2.2) 
were “DNA-dependent DNA replication,” “DNA replication,” 
“cell cycle DNA replication,” “nuclear-dependent DNA replica-
tion maintenance of fidelity,” “telomere maintenance via semi-
conservative replication,” “serine family amino acid metabolic 
process,” “DNA replication-independent nucleosome organi-
zation,” “regulation of DNA-dependent DNA replication,” and 
“chromatin remodeling at centromere.” 

Enrichment plots of the selected gene sets 
The enrichment plots were inspected to visualize the rel-
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Fig. 4. Enrichment plots in three collections. Enrichment plots for significantly up- or downregulated pathways for the “hallmark,” the 
“KEGG,” and the “GO BP” collections.
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evance of the selected gene sets to RhoA activity: “p53 path-
way” (hallmark), “SNARE interactions in vesicular transport” 
(KEGG pathway), and “peptide cross-linking,” “keratinization,” 
and “defense response to fungus” (GO BP) showed positive 
NESs (Fig. 4, red). In contrast, “E2F targets,” “G2M check-

point,” and “cholesterol homeostasis” (hallmark), “DNA repli-
cation,” “cell cycle,” and “base excision repair” (KEGG path-
way), and “regulation of DNA replication” (GO BP) showed 
negative NESs (Fig. 4, blue). These gene sets with high NES 
values showed strong asymmetry, indicating significant posi-
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tive or negative control. 
Interestingly, these gene sets shared minimal similarity be-

tween collections, indicating that analysis of a single collec-
tion could reveal only a partial view of RhoA functions. Thus, 
comparative analyses among multiple collections followed to 
provide a robust method for the comprehensive identification 
of functions, including those collection-specific functions that 
may reduce any leakage in discovering functions.

Inference of RhoA functions
As each collection has a different number of gene sets (from 

50 to 7350) and distinct characteristics, it was impossible to 
compare the results obtained for each collection directly. Nev-

ertheless, by comparing a small set of gene sets presented in 
Fig. 3, robust functions could be derived based on functional 
similarity. This analysis showed that RhoA is a major regulator 
of cell cycle/growth and DNA repair (Fig. 5). These findings are 
consistent with numerous reports that RhoA is related closely 
to cancer progression. Recent evidence has suggested the 
role of RhoA in the DNA repair system (reviewed in (Cheng et 
al., 2021)). The analysis also showed that RhoA is involved in 
the metabolism of macromolecules, such as fatty acids, cho-
lesterol, amino acids, nucleotides, and carbohydrates.

Meanwhile, several functions were detected only in a single 
collection. For instance, functions on “keratinization” and “re-
sponse to fungus” were obtained only from the GO BP–spe-
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cific gene sets. Further research is needed to characterize 
the role and mechanisms of RhoA in these processes, and 
it would be interesting to identify whether these functions are 
regulated in a cytoskeleton remodeling–dependent or inde-
pendent manner.

Evaluation of significant gene sets in the “hallmark” 
pathway collection

The overall distribution of fold changes was visualized to 
evaluate the quality of GSEA of the “hallmark” pathway (Fig. 
6A). Fifty gene sets were sorted in order of |NES| vertically, 
and the log-scaled fold changes were expressed using point 
and bar plots. It was confirmed that gene sets with large |NES| 
(bottom) were distributed away from the centerline (red dotted 
line). The magnified plots of the 10 most enriched gene sets 
(Fig. 6A, lower panel) showed that the gene sets with large 
|NES| have more biased distributions from the centerline. This 
result indicates that GSEA effectively derived significant func-
tions related to RhoA deletion.

The efficiency of GSEA was validated by comparing indi-
vidual gene expression levels in a heatmap, which showed 
that genes related to the “p53 pathway” were generally upreg-
ulated in the RhoA-null group, whereas genes related to the 
“E2F Targets” were downregulated (Fig. 6B). Both point/bar 
and heatmap plots indicate that RhoA may negatively regu-
late the p53 pathway and positively regulate E2F-related cell 
growth under basal conditions.

Mapping analysis of the “KEGG pathway” collection
The KEGG pathway database provides a handy analysis 

tool that enhances our understanding of gene interaction by 
visualizing the molecular interaction network (Kanehisa et al., 
2017). In the “SNARE interaction in vesicular transport” gene 
set (pathway id 04130), Gosr1, Stx1a, Stx2, Stx6, and Ykt6 
were upregulated in the RhoA-null group (red), whereas Stx11 
was downregulated (blue) (p<0.05) (Fig. 7A). In the “DNA 
replication” gene set (pathway id 03030), all genes with sig-
nificance were downregulated in the RhoA-null group (blue) 

(p<0.05): Lig1, Mcm2, Mcm3, Mem5, Mem6, Mem7, Pola2, 
Pold1, Pold2, Pold3, Pole, Pole4, Rfc2, and Rfc4 (Fig. 7B). 
Thus, RhoA likely suppresses SNARE-mediated vesicular 
transport and promotes cell proliferation in normal conditions. 

Functional analysis of “GO BP” based on a DAG
Unlike the “hallmark” and “KEGG pathway,” “GO BP” provid-

ed a large number of functionally redundant gene sets, which 
made it difficult to summarize the enriched results. One valu-
able GO pathway property is the hierarchical structure among 
GO terms in which nodes represent pathways and edges de-
scribe a parent–child relationship. Genes in a descendant GO 
term are a subset of its parent term and more specific. This 
directional relationship between GO terms can be visualized 
using a DAG. To resolve the redundancy issue, the hierarchi-
cal structure of 51 enriched GO terms was visualized based 
on the DAG using GOView. The result showed that GO terms 
could be classified into eight different functional groups (Fig. 
8A, circled), and most terms were included in groups related 
to cell proliferation and DNA replication.

Subsequently, the geometric distribution of the enriched 
GO terms was examined using AEGIS software (Zhu et al., 
2019). Enriched gene set pathways were displayed on a “fo-
cus and context” graph representation in a root-bound layout. 
(Fig. 8B). In the left focus graph, 51 enriched GO terms called 
focus pathways were shown as leaf anchors (blue closed 
circles) with their ancestors (purple closed circles) under the 
root anchor of “BP” (GO:0008150). The graph confirmed that 
the enriched GO pathways produced several clusters with 
their relatives. The context graph on the right side shows the 
number of the full ontology at each level. The node counts 
at each level are displayed with the number of ancestor and 
descendant terms of interest (purple bars) compared to the 
whole other GO terms (gray bars). The gene sets with various 
distances from the root were evenly selected.

Cross-evaluation of gene sets between distinct collections
In this study, GSEA resulted in gene sets with low similarity 
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B

Directed acyclic diagram of GO BP <0.01, NES >2p I I

GO IDs of 51 representative gene sets used in the construction of DAG

Fig. 8. A directed acyclic graph (DAG) showing the hierarchical structure of gene sets of GO BP. A DAG was constructed from 51 most en-
riched GO BP terms (p<0.01 and |NES|>2) using (A) GOView web-based software (Shoop et al., 2004) and (B) AEGIS software (Zhu et al., 
2019). (A) GO BP terms are colored red, and the terms with similar functions are grouped and circled. The names of the GO BP terms are 
listed below the group name. The end nodes representing the lowest level are colored green. (B) A DAG constructed using AEGIS software. 
(Left) The focus graph renders the hierarchical structure of the inquired sub GO BP terms. The structure is expressed in a buoyant layout 
mode. Each node represents a GO term and each link represents a parent–child relationship. A parent node is always placed at a level 
higher than its children. The enriched GO BP terms are colored blue. (Right) The context graph provides full ontology under the root anchor 
of “biological process” (GO:0008150, 13,310 GO terms). At each level, the node counts of terms of interest are presented in the purple bar, 
with the whole other GO terms at the same level in gray.
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among collections, and certain gene sets with similar names 
were regulated in opposing ways. For instance, “SNARE inter-
action in vesicular transport” (KEGG id: 04130, Ngene=38) had 
a high significance (adjusted p value<0.1, NES>1.5), where-
as gene sets of GO BP with “SNARE” in the name showed 
no significance in GSEA: “SNARE complex assembly” (GO: 

0035493’, Ngene=19) (adjusted p=0.670, NES=–1.1) and “regu-
lation of SNARE complex assembly” (GO: 0035542’, Ngene=11) 
(adjusted p=0.792, NES=–0.97) (Supplementary Table 2). 

These findings indicate that each collection’s composi-
tion of gene sets can be heterogenous even if the names are 
similar. The elements in the gene set of one collection were 
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Fig. 9. Comparative analyses of the KEGG “SNARE interaction in vesicular transport” with gene sets from the hallmark and GO BP. The 
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hallmark (one gene set) and GO BP (10 gene sets) collections. (A) Whether the searched gene sets contain the 18 genes was visualized 
with a heatmap in brown color. (B) The range of gene set sizes is expressed in the bar plot. The numbers of the overlapped genes are ex-
pressed in orange and those of non-overlapped genes are in blue (left). The Jaccard distance is provided to take the set size into account 
for comparison (middle). NES values are presented on the right side. The gene sets were sorted in the order of the Jaccard distance. (C) 
According to the collection, the FDR-NES plot of 12 selected gene sets shows that even similar gene sets are evaluated differently in 
GSEA. (D) A DAG diagram shows the resemblance between two gene sets closely related to the KEGG gene set: “GO vesicle docking” 
(GO: 0048278, blue) and “GO organelle membrane fusion” (GO: 0090174) in the orange-colored box. (E) Enrichment plots of the three 
most closely resembled GO BP gene sets. 



112https://doi.org/10.4062/biomolther.2021.075

compared with those of other collections to test this hypoth-
esis. The similarity between gene sets was measured quanti-
tatively by calculating the distance. In the first example, KEGG 
“SNARE interaction in vesicular transport” was compared with 
GO BP gene sets with “SNARE” in the name. The Jaccard 
distances of the KEGG gene set between GO BP gene sets 
were 0.88 and 1.0 for the GO BP “SNARE complex assembly” 
and “regulation of SNARE complex assembly,” respectively. 
Most of the leading-edge genes of “SNARE interaction in ve-
sicular transport” were not included in the other two gene sets 
(Supplementary Fig. 1). Thus, gene sets from distinct collec-
tions may have a heterogenous composition of elements even 
though they have similar names, and it may be inappropriate 
to infer function only by the name of the gene set. 

As this discordance may occur by the lack of rules to con-
stitute genes and naming, I further searched for gene sets ho-
mologous to the KEGG “SNARE interaction in the vesicular 
transport” gene set (n=38 genes), using the overlap search 
tool provided by MSigDB. The KEGG gene set had one and 
ten similar gene sets in the “hallmark” and “GO BP” collections, 
respectively. The summary of these 11 gene sets is provided 
in Supplementary Table 3. The gene sets contained many 
genes in common with the KEGG gene set (Fig. 9A). How-
ever, the gene set sizes and GSEA NES values varied from 65 
to 1741 genes and from –1.12 to 1.61, respectively (Fig. 9B). 
When the Jaccard distance was measured to take the set size 
into account, “organelle membrane fusion,” “vesicle docking,” 
“organelle fusion,” and “membrane fusion” gene sets of GO 
BP were shown to be the closest (0.716-0.771) (Fig. 9B). In 
particular, “organelle membrane fusion” and “vesicle docking” 
showed FDR and NES values similar to the KEGG “SNARE 
interaction in vesicular transport” (Fig. 9C). In the DAG struc-
ture, these two gene sets (red) had “single-organism process” 
(GO: 0044699, blue) as a common ancestor (Fig. 9D). These 
gene sets with high similarity produced closely resembled en-
richment plots (Fig. 9E). These findings indicate that a clear 
understanding of gene set functions in GSEA requires inspect-
ing the composition of the element within the gene set and 
those components representing the function correctly.

Similarly, although the “p53 pathway” was the most sig-
nificant gene set in hallmark gene sets, no significant gene 
set containing “p53” in the name was found in the other col-
lections. A search for overlaps using MSigDB suggested that 
around 30 gene sets shared similarity with the hallmark “p53 
pathway” gene set in three collections (Fig. 10A). The size and 
degree of overlap varied. The KEGG “p53 signaling pathway” 
had the closest Jaccard distance value of 0.906 with positive 

NES. However, most gene sets had negative NES values. The 
NES significance plot for the 10 gene sets with the largest 
|NES| showed that the hallmark “p53 pathway” (marked “x”) 
failed to cluster with any similar property (Fig. 10B). When 
log2FC distributions of 10 gene sets (i-x) were compared, it 
was clear that the hallmark “p53 pathway” had a unique pat-
tern in the distribution (Fig. 10C). Although the KEGG “p53 
signaling pathway” (marked “ix”) had the property most similar 
to the hallmark “p53 pathway,” there was significant discor-
dance in the gene set size and elements. In particular, these 
two gene sets’ enrichment plots showed only partial similarity 
(Fig. 10D), with leading-edge genes only partially overlapped 
in two gene sets (overlapped genes: Ccnd2, Ccng1, Cdkn1a, 
Ei24, Gadd45a, Mdm2, and Zmat3).

When using public gene sets in GSEA, it is essential to 
be aware that (1) the size and composition of gene sets are 
heterogenous in each collection, (2) using multiple collections 
may compensate for the gaps that would result from using a 
single collection, (3) gene set names are not sufficient to infer 
function, and (4) the components of gene sets must be exam-
ined to understand the functions in the appropriate context.

DISCUSSION

Most RhoA research has focused on actin cytoskeleton 
regulation. In this study, I sought to investigate the functions 
of RhoA in an unbiased manner through bioinformatics data 
analysis based on microarray datasets, not limited to the 
known functions of RhoA. Previously, Garcia-Mariscal et al. 
(2018) focused on the role of RhoA in retinol signaling by us-
ing gene expression data. In this study, functional enrichment 
analyses were performed to exclude prejudice in exploring 
RhoA functions. Three different gene set collections were 
used to minimize bias that may occur by selecting specific 
gene sets. In short, the functions of RhoA common to the three 
collections were cell cycle regulation and DNA replication. In-
terestingly, RhoA regulated E2F pathway positively, while p53 
pathway negatively. Because p53 upregulates p21 leading to 
the inhibition of a Cyclin dependent kinase 2 and subsequent 
activation of Rb transcriptional corepressor, p53 inactivation is 
closely linked to the activation of E2F (Sherr and McCormick, 
2002). This finding suggests that RhoA is a key factor that can 
efficiently regulate cell growth by controlling both machiner-
ies that promote or inhibit the cell cycle. Gene set collection-
specific functions were also obtained. For example, the KEGG 
pathway diagram confirmed that functions such as vesicular 
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transport and DNA replication could be regulated through 
SNARE.

Currently, the MSigBD site provides nine main collections 
with their sub-collections. These collections were curated by 
the field’s experts. Thus, the appropriate collection needs to 
be selected based on the purpose and context of the study. 
Importantly, however, there is no guarantee that the chosen 
collection will fully cover the desired aspects of biology, as the 
integrity of collections has not been clearly verified. Thus, it 
seems important for researchers to keep in mind this potential 
weakness embedded in the collections. 

Generally, the larger the collection, the more faithfully the 
function can be explored, but on the other hand, a large one 
likely increases redundancy between gene sets (Liberzon et 
al., 2015). The main problem in the large-sized collection is 
that a bunch of redundant functions make up most of the top 
list and are overexposed, so lowly scored functions are often 

ignored even though they can be meaningful. On the other 
hand, a small collection presents more concise results so that 
researchers can quickly and easily find features. However, it 
has the disadvantage that researchers can potentially lose 
meaningful functions because the search is made with a limit-
ed number of gene sets. In this regard, rather than choosing a 
single collection, it would be ideal to test and compare several 
gene collections to see the differences in results. When using 
a gene set, it seems necessary to evaluate the completeness 
of the work through additional analysis that takes into account 
the characteristics of each collection.

This study demonstrated that each gene set collection com-
prises gene sets from different perspectives, and the results 
are heavily influenced by which collection is selected, so reli-
ance on a single gene set collection may introduce bias in 
functional analysis.

In this study, multiple gene set collections were used to (1) 
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search for robust, commonly derived functions, and (2) reduce 
the opportunity to omit positive results because of the incom-
pleteness of a single collection. Interestingly, the comparative 
experiment showed that the number and size of gene sets 
constituting each collection and the types of elements were 
diverse. It was possible to derive different functions depend-
ing on which collection was selected. Even for gene sets with 
similar names, NES and significance were different because 
of differences in composition. For example, in the Hallmark 
collection, only the p53 pathway showed a significant increase 
in expression, but other collections do not have a gene set 
significantly similar to this.

On the other hand, although many gene sets have a key-
word related to the action of SNARE in common, there were 
cases where the NES values were different because of a sig-
nificant difference in the type and number of constituent ele-
ments (Supplementary Fig. 1). Thus, the study design must 
consider the appropriate selection of gene set collections for 
functional enrichment analyses and interpretation. In other 
words, the gene set derived from the analysis is influenced 
greatly by the nature of the collection itself. Even gene sets 
with similar names contained different elements. This phe-
nomenon seems to occur because there is no standard crite-
rion to select the elements constituting each collection’s gene 
set. Therefore, research bias can be minimized only when 
these problems are well-recognized in the actual functional 
analysis process. This analysis showed that, even though a 
gene set with significantly altered expression is derived, its 
function cannot be inferred simply from its name.

Even so, meaningful conclusions could be drawn if the 
functional characteristics of each collection were utilized cor-
rectly. For example, the KEGG pathway showed interesting 
results using a schematic pathway. For the first time, this 
study showed that RhoA consistently negatively regulates the 
expression of SNARE-related genes in vesicular transport. 
In contrast, genes involved in DNA replication are positively 
regulated by RhoA. RhoA functions in SNARE gene expres-

sion have not yet been elucidated, and it will be interesting to 
decipher the mechanism in future studies. There were also un-
intended outcomes in that the individual enrichment analysis 
yielded different results depending on the collection’s charac-
teristics, but it is worth recalling that when several collections 
are combined, robust functions may be derived. Also, it seems 
that reliable results can be obtained if the collection character-
istics are utilized well.
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