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A B S T R A C T   

Background: MicroRNAs (miRNAs) are key regulators of gene expression that have been implicated in gyneco
logical and breast cancers. Understanding the cancer stage-wise expression patterns of miRNAs and their in
teractions with other RNA molecules in cancer is crucial to improve cancer diagnosis and treatment planning. 
Comprehensive web tools that integrate data on the transcriptome, circulating miRNAs, and their validated 
targets to derive beneficial conclusions in cancer research are lacking. 
Methods: Using the Shiny R package, we developed a web tool called ExplORRNet that integrates transcriptomic 
profiles from The Cancer Genome Atlas and miRNA expression data derived from various sources, including 
tissues, cell lines, exosomes, serum, and plasma, available in the Gene Expression Omnibus database. Differential 
expression analyses between normal and tumor tissue samples as well as different stages of cancer, accompanied 
by gene enrichment and survival analyses, can be performed using specialized R packages. Additionally, a 
miRNA-messenger RNA (mRNA)-long non-coding RNA (lncRNA) networks are constructed to identify regulatory 
modules. 
Results: Our tool identifies cancer stage-wise differentially regulated miRNAs, mRNAs, and lncRNAs in gyneco
logical and breast cancers. Survival analysis identifies miRNAs associated with patient survival, and functional 
enrichment analysis provides insights into dysregulated miRNA-related biological processes and pathways. The 
miRNA–mRNA–lncRNA networks highlight interconnected regulatory molecular modules driving cancer pro
gression. Case studies demonstrate the utility of the ExplORRNet for studying gynecological and breast cancers. 
Conclusion: ExplORRNet is an intuitive and user-friendly web tool that provides a deeper understanding of 
dysregulated miRNAs and their functional implications in gynecological and breast cancers. We hope our 
ExplORRNet tool has potential utility among the clinical and basic researchers and will be beneficial to the entire 
cancer genomics community to encourage and facilitate mining the rapidly growing public databases to progress 
the field of precision oncology. The ExplORRNet is available at https://mirna.cs.ut.ee.   

1. Introduction 

MicroRNAs (miRNAs) are small non-coding RNA (ncRNA) molecules 
consisting of 20–22 nucleotides. miRNAs have emerged as key 

regulators of gene expression in various cellular processes and a wide 
range of diseases [1,2]. miRNAs regulate gene expression by binding to 
the 3′UTR region of the target mRNA sequence [3]. This binding may 
lead to the translational repression or degradation of the target mRNA 
[4]. Moreover, miRNAs form a complex network with their target genes 
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and downstream effectors, thereby exerting profound control over bio
logical pathways [5]. Dysregulation of miRNAs has been implicated in 
the tumorigenesis of different types of cancers [6–8]. 

Breast cancer and gynecological cancers originating from the organs 

in the pelvic region, including the uterus/endometrium, ovaries, cervix, 
vulva, and vagina, and breast cancer pose a significant health burden to 
women worldwide [9]. Aberrant expression of miRNAs in the 
above-mentioned cancers is of pathological importance because it in
fluences critical aspects, such as the proliferation, survival, metastasis, 
and chemoresistance of tumors as well as the tumor microenvironment 
[9]. Altered miRNA expression has been associated with cancerous tis
sues, cancer metastasis, and various stages and subtypes of cancer [10]. 
Consequently, miRNAs have emerged as potential diagnostic and prog
nostic markers for gynecological cancers and their subtypes. 

Notably, miRNAs often engage in crosstalk with other ncRNAs, such 
as long ncRNAs (lncRNAs), resulting in intricate molecular interactions. 
These interactions, called triplets (miRNA–mRNA–lncRNA in
teractions), can disrupt gene expression patterns and contribute to 
tumorigenesis [11]. lncRNAs and miRNAs together control the expres
sion of mRNAs, which can also affect the expression of ncRNAs [11]. 
These lncRNAs are called competing endogenous RNAs (ceRNAs). The 
networks formed by ceRNAs involve specific binding sites, leading to the 
regulation of miRNA abundance and activity and subsequent gene 
repression. These ceRNA networks have been implicated in cancer 
progression [12,13]. 

Microarray and high-throughput techniques, such as RNA 
sequencing, have facilitated the study of miRNAs, revealing multiple 
mature miRNA sequences arising from a single pre-miRNA [14]. These 
miRNA variants, called isomiRs, exhibit sequence substitutions, in

sertions or deletions, non-templated additions at the 3′ end, and varia
tions in 5′ and/or 3′ cleavage. Recent evidence suggests that isomiRs are 
not randomly distributed, implying their potential regulatory and 
functional significance [14]. IsomiRs are biologically relevant partners 

Nomenclature 

ExplORRNet Explorer of Oncology-Relevant miRNA-mRNA- 
lncRNA Network 

DEmiRNAs Differentially regulated miRNAs 
c-miRNAs circulating miRNAs 
TCGA The Cancer Genome Atlas 
GEO Gene Expression Omnibus 
UCEC Uterine corpus endometrial carcinoma 
UCS Uterine carcinosarcoma 
CESC Cervical squamous cell carcinoma and endocervical 

adenocarcinoma 
OV Ovarian serous cystadenocarcinoma 
BRCA Breast invasive carcinoma 
GDC Genomics Data Commons 
FIGO Federation of Gynecology and Obstetrics 
AJCC American Joint Committee on Cancer 
CRAN The Comprehensive R Archive Network 
HPA The Human Protein Atlas 
HP Human Phenotype Ontology 
WP WikiPathways 
DEcircmiR Differentially regulated c-miRNAs  

Table 1 
Clinical data fields for the five cancer types. Bcr_patient_barcode field was used to identify common samples in all three data types (miRNA/mRNA/lncRNA) from 
miRNAseq and RNASeq datasets. Stage_event_clinical_stage field was used to annotate patients with clinical stage information. Here, Stage IA, IA1, IA2, IB, IC are 
defined as Stage I. Stage II, IIA, IIA1, IIA2, IIB, IIC are defined as Stage II. Stage III, IIIA, IIIB, IIIC, IIIC1, IIIC2 are defined as Stage III. Stage IV, IVA, IVB are defined as 
Stage IV.  

Clinical data TCGA-UCEC TCGA-UCS TCGA-CESC TCGA-OV TCGA-BRCA 

bcr_patient_barcode N = 596 N = 65 N = 315 N = 590 N = 1174 
vital_status Alive:548, Dead:48 Alive:31, Dead:34 Alive:254, Dead:61 Alive:284, Dead:303 Alive:1062, Dead:112 
days_to_last_followup Min: − 13.0 Min: 0.0 Min: 0.0 Min: 0.0 Min: − 7.0 

Median: 404.0 Median: 497.0 Median: 186.0 Median: 809.0 Median: 360.0 
Max: 5691.0 Max:2841.0 Max:5957.0 Max:5481.0 Max:7067.0 
NA: 49 NA: 33 NA:61 NA: 72 NA: 112 

days_to_death Min: 50.0 Min: 0.0 Min: 14.0 Min: 8.0 Min: 0 
Median: 548.5 Median: 444.5 Median: 582.0 Median:1021.0 Median:1223 
Max. :3251.0 Max. :3115.0 Max. :4086.0 Max. :4624.0 Max. :4456, 
NA: 548 NA: 31 NA: 254 NA: 288 NA:1062 

age_at_initial_pathologic_diagnosis Min:31.00 Min. :51.00 Min. :20.00 Min. :26.00 Min. :26.00 
Median:64.00 Median:69.00 Median:47.00 Median:59.00 Median:59.00 
Max:90.00 Max. :90.00 Max. :88.00 Max. :89.00 Max. :90.00 

stage_event_clinical_stage Stage I: 2, Stage IA:155, 
Stage IB:136, Stage IC: 24 

Stage IA:11, Stage 
IB:7, Stage IC: 1 

Stage I: 5, Stage IA1, Stage IA1: 
1, Stage IA2: 1, Stage IB: 38, 
Stage IB1: 78, Stage IB2: 38 

Stage I: 0 NA 

Stage II: 26, Stage IIA: 6, 
Stage IIB: 12 

Stage II: 2, Stage IIA: 
1, Stage IIB: 1 

Stage II: 5, Stage IIA: 9, Stage 
IIA1: 5, Stage IIA2: 7, Stage IIB: 
40 

Stage IIA: 3, Stage 
IIB: 5, Stage IIC: 20 

NA 

Stage III: 2, Stage IIIA: 35, 
Stage IIIB: 4, Stage IIIC: 34, 
IIIC1: 23, IIIC2: 20 

Stage III: 2, Stage IIIA: 
2, Stage IIIB: 1, Stage 
IIIC: 4 
Stage IIIC1: 4, Stage 
IIIC2: 5 

Stage III: 1, Stage IIIA: 3, Stage 
IIIB: 40 

Stage IIIA: 7, Stage 
IIIB: 22, Stage IIIC: 
352 

NA 

Stage IV: 3, Stage IVA: 3, 
Stage IVB: 19 

Stage IVB:9 Stage IVA: 9, Stage IVB 13 Stage IV: 79 NA 

stage_event_pathologic_stage NA NA NA NA Stage I: 86, Stage IA: 78 
Stage II: 5, Stage IIA: 
339, Stage IIB: 243 
Stage III: 2, Stage IIIA: 
147, Stage IIIB: 23, 
Stage IIIC: 62 
Stage IV: 13  
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that cooperate with canonical miRNAs and target pathways involving 
functionally related genes [14]. The heterogeneity of miRNA isoforms, 
in terms of length and sequence, can lead to modifications in the seed 
sequence, resulting in a shift in the targetome [15]. 

MiRNAs are detected in extracellular body fluids, including exo
somes, macrovesicles, and apoptotic bodies, either alone or in complex 
with AGO2 proteins. Notably, these circulating miRNAs (c-miRNAs) 
have been implicated in oncogenic mechanisms and serve as promising 
non-invasive biomarkers for cancer [16,17]. For example, miRNA 

expression patterns in the serum of patients with ovarian cancer have 
been shown to differentiate between high- and low-risk groups [18]. The 
presence of miR-1290 in the serum exosomes of patients with epithelial 
ovarian cancer holds potential as a biomarker for distinguishing ma
lignant from benign ovarian neoplasms [19]. 

Databases, such as The Cancer Genome Atlas (TCGA) and Gene 
Expression Omnibus (GEO), are publicly available for the identification 
of miRNA biomarkers in cancer. Bioinformatics and statistical tools play 
crucial roles in the functional analysis of miRNA biomarkers, including 
target prediction, functional enrichment analysis, and survival analysis 
[20]. Numerous R packages and web tools have been developed for the 
functional prediction and annotation of miRNA targets in various tissue 
contexts, cell types, and pathological conditions [21]. Publicly available 
resources containing transcriptomic profiles of gynecological cancer 
patients and cell lines offer valuable opportunities for exploring and 
identifying potential biomarkers, thereby enhancing therapeutic ap
proaches, and facilitating early-stage diagnosis. Although several web 
tools are available for miRNA analysis, more specific insights into breast 
and gynecological cancers are needed, enabling the stage-wise explo
ration of dysregulated RNA networks. To address this issue, we present 
ExplORRNet, an R Shiny based web interface designed to facilitate the 
exploration of miRNA, lncRNA, and mRNA expression profiles in gy
necological cancers and breast cancer. The latter was included as a 

Table 2 
Sample number in each group for the five cancer types.  

Cancer Normal Stage 
I 

Stage 
II 

Stage 
III 

Stage 
IV 

Stage information 

TCGA- 
UCEC 

35 341 51 130 29 Clinical staging 
system 

TCGA- 
UCS 

– 21 5 20 10 Clinical staging 
system 

TCGA- 
CESC 

3 162 69 45 21 Clinical staging 
system 

TCGA- 
OV 

– 1 21 292 57 Clinical staging 
system 

TCGA- 
BRCA 

113 182 627 249 20 Pathological 
staging system  

Fig. 1. Schematic representation depicting user interface and functionality of ExplORRNet.  
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predominant women-specific cancer, which shares similarities in hor
monal regulation [22] and risk factors [23] with gynecological cancers. 
Our tool utilizes data from TCGA and GEO, offering a user-friendly and 
interactive platform for investigating RNA expression patterns in gyne
cological cancers and breast cancer in tissue, extracellular space, and 
cell lines. Thus, our integration of patient-derived cancer profiles and 
cell line data enhances the comprehensiveness of our analyses, 
contributing to a deeper understanding of cancer biology and potential 
therapeutics. 

2. Materials and methods 

We used transcriptomic profiles consisting of 2504 samples from five 
cancers, including uterine corpus endometrial carcinoma (UCEC), 
uterine carcinosarcoma (UCS), cervical squamous cell carcinoma and 
endocervical adenocarcinoma (CESC), ovarian serous cys
tadenocarcinoma (OV), and breast invasive carcinoma (BRCA), from the 

TCGA program available on the Genomic Data Commons Data Portal 
(GDC) (https://portal.gdc.cancer.gov/). Next, the raw read counts of 
miRNA isoform and RNA expression for the above-mentioned tumors 
and matched normal samples were downloaded. RNA expression data 
were grouped into protein-coding genes and long non-coding gene 
expression. 

Furthermore, the clinical data (as outlined in Table 1) for the 
selected cancers was acquired by downloading XML files from the GDC 
web portal. 

To download the transcriptome profiles and clinical data of the 
above-mentioned patients with cancer, we used the R package, TCGA
biolinks. Genes in the RNA-seq data were annotated using the Bio
conductor R package biomaRt (v 2.54.1). 

Gynecological cancer samples were staged using the Federation of 
Gynecology and Obstetrics (FIGO) system, and breast cancer samples 
were staged using the TNM (Tumor, Node, Metastasis) system main
tained by the American Joint Committee on Cancer (AJCC). This cate
gorization enabled pairwise differential analyses between tumor and 
normal tissues and among different cancer stages (I–IV). We created 
sample groups for miRNA isoform and RNA-Seq (protein-coding genes 
and lncRNA expression) for pairwise differential expression analysis 
(Table 2). 

To identify the expression patterns of circulating miRNAs in patients 
with gynecological and breast cancer, we collected datasets from the 
GEO database. We used combinations of search terms to identify the 
datasets from GEO, such as “Circulating miRNAs/microRNAs and can
cer,” “Circulating miRNAs/microRNAs and gynecological cancer,” 
“Extracellular miRNA/microRNAs and cancer/endometrial cancer/ 
ovarian cancer/cervical cancer,” “Exosome and microRNAs and cancer,” 
“Plasma and microRNAs/miRNAs and cancer,” and “Serum miRNAs/ 
microRNAs and cancer.” 

Based on these search terms, we gathered datasets for endometrial, 
ovarian, cervical, and breast cancers. We included 1710 samples for 
expressions of c-miRNA and miRNA in tissues and cell lines. 

2.1. Preprocessing and differential expression analysis 

High-throughput sequencing counts of miRNA isoform data and 
protein-coding and lncRNA expression data collected from the GDC data 
portal were normalized using the calcNormFactors function from the 

Fig. 2. An example of the Volcano plot showing DEmiRNAs between the 
normal and tumor samples of TCGA-UCEC. The red points are DEmiRNAs, and 
the blue points indicate the non-significant set of miRNAs (p-value = 0.01 & | 
Log2FC| = 1). 

Table 3A 
Targets of hsa-mir-106b-5p in TCGA-UCEC.  

Accession miRNA ID Target Symbol TargetEntrez Target 
Ensembl 

Experiment Support 
Type 

Pubmed ID 

MIMAT0000680 hsa-miR-106b-5p BCL2L2 599 ENSG00000129473 PAR-CLIP Functional MTI (Weak) 23446348 
MIMAT0000680 hsa-miR-106b-5p TMPO 7112 ENSG00000120802 CLASH Functional MTI (Weak) 23622248 
MIMAT0000680 hsa-miR-106b-5p ZNF532 55205 ENSG00000074657 PAR-CLIP Functional MTI (Weak) 22012620 
MIMAT0000680 hsa-miR-106b-5p MIDN 90007 ENSG00000167470 PAR-CLIP//HITS-CLIP Functional MTI (Weak) 21572407 
MIMAT0000680 hsa-miR-106b-5p WDR53 348793 ENSG00000185798 HITS-CLIP Functional MTI (Weak) 23313552 
MIMAT0000680 hsa-miR-106b-5p SERF1B 728492 ENSG00000205572 PAR-CLIP Functional MTI (Weak) 22012620 
MIMAT0004672 hsa-miR-106b-3p PTEN 5728 ENSG00000171862 qRT-PCR//Western blot Functional MTI 28288092  

Table 3B 
Targets of hsa-let-7f-5p, hsa-let-7f-3p in TCGA-OV.  

Accession miRNA ID Target Symbol Target Entrez Target Ensembl Experiment Support Type Pubmed ID 

MIMAT0000067 hsa-let-7f-5p ADH5 128 ENSG00000197894 PAR-CLIP Functional MTI (Weak) 26701625 
MIMAT0000067 hsa-let-7f-5p NUCB2 4925 ENSG00000070081 PAR-CLIP Functional MTI (Weak) 23592263 
MIMAT0000067 hsa-let-7f-5p RRM2 6241 ENSG00000171848 PAR-CLIP Functional MTI (Weak) 21572407 
MIMAT0000067 hsa-let-7f-5p SP1 6667 ENSG00000185591 CLASH Functional MTI (Weak) 23622248 
MIMAT0000067 hsa-let-7f-5p ZBTB5 9925 ENSG00000168795 PAR-CLIP Functional MTI (Weak) 23592263 
MIMAT0000067 hsa-let-7f-5p RAD18 56852 ENSG00000070950 PAR-CLIP Functional MTI (Weak) 21572407 
MIMAT0000067 hsa-let-7f-5p ZNF611 81856 ENSG00000213020 HITS-CLIP Functional MTI (Weak) 23706177 
MIMAT0000067 hsa-let-7f-5p MTSS2 92154 ENSG00000132613 CLASH Functional MTI (Weak) 23622248 
MIMAT0000067 hsa-let-7f-5p C5orf51 285636 ENSG00000205765 PAR-CLIP Functional MTI (Weak) 23446348 
MIMAT0004482 hsa-let-7b-3p NRBF2 29982 ENSG00000148572 PAR-CLIP Functional MTI (Weak) 20371350  
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Bioconductor R package edgeR (v 3.40.2), and the filterByExpr function 
from the edgeR package was used to filter the lowly expressed miRNAs, 
genes, and lncRNAs to exclude them from differential expression anal
ysis. We used glmFit and glmLRT functions from the edgeR package to 
identify differentially regulated miRNAs, protein-coding genes, and 
lncRNAs. p-values were adjusted using a false discovery rate (FDR) 
correction. Raw Affymetrix microarrays from the GEO datasets were 

normalized and background-corrected using the rma() function from the 
Bioconductor R package affy (v 1.50.0). Raw data from the Agilent 
microarrays were normalized and background-corrected using the Bio
conductor R package limma (v 3.28.14). Log2-transformed data were 
then fitted to a linear model using the lmFit() function in limma (v 
3.28.14). 

Interactive volcano plots of the differential expression of miRNAs 

Fig. 3. Pairwise DEmiRNA analysis between the normal and tumor samples grouped by clinical stage (Stage I to IV). (A) Option to select cancer type and sample 
group to get DEmiRNAs. Here the normal sample group is compared against clinical stage I group. (B) Table of DEmiRNAs after selecting the normal sample groups 
and clinical stage I group. (C) Violin plot of has-let-7a-5p expression in TCGA-UCEC. Number of samples per group is denoted by ’n’ in the bracket. 
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(DEmiRNAs), protein-coding genes, and lncRNAs were created using the 
CRAN R package highcharter (v 0.9.4). 

2.2. Survival analysis 

The survival curve was fitted for each miRNA expression, and a 
Kaplan–Meier plot (KM-plot) was created. The log-rank test using the 
survdiff() function was used to determine the survival difference be
tween the high and low expression of each miRNA. The univariate Cox 
proportional hazard model was fitted using the CRAN R package sur
vival (v 3.4–0), and the ggsurvplot() and ggforest() functions from the 

CRAN R package survminer (v 0.4.9) were used to plot the KM-plot and 
forest plots, respectively. 

For protein-coding genes and lncRNAs, survival analysis was per
formed analogously. 

2.3. Collection of validated miRNA targets 

Experimentally validated lists of targets of differentially regulated 
miRNAs were collected from three validated miRNA target databases: 
miRecords [24], miRTarBase [25,26], and TarBase [27]. The Bio
conductor R package multiMiR (v 1.18.0) [28] was used to download 

Fig. 4. Kaplan-Meier (A) and forest plot (B) for the gene TSPAN6 showing connection to the patient survival in different clinical stages in TCGA-UCEC.  
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data from the three databases using default parameters. 

2.4. Functional annotations: pathway and GO enrichment analyses 

Differentially regulated miRNA target genes generated from the 
miRNA target panel were used as inputs for GO and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment analyses. The 
enrichGO and enrichKEGG functions of the Bioconductor R package 
clusterProfiler [29] (v 4.4.4) and the gost function of the CRAN R 

package gProfiler2 [30] (v 0.2.1) were used for functional enrichment 
analysis. The top enriched terms were visualized as a dotplot function 
using the Bioconductor R package enrichplot (v 1.18.3). 

2.5. miRNA–mRNA–lncRNA network and hub module identification 

To construct miRNA–mRNA–lncRNA network, we first calculated the 
Pearson correlation coefficients between differentially regulated miR
NAs, mRNAs, and lncRNAs. Next, the miRNA–mRNA–lncRNA 

Fig. 5. The co-expression network of miRNA-mRNA-lncRNA in TCGA-UCEC was generated from the cancer stage-wise analysis panel. (A) Options to select cancer 
type, comparison groups, and selection of cutoff values (p-value, log2FC, and correlation cutoff). (B) Co-expression network generated for TCGA-UCEC from 
DEmiRNAs, DEGs, and DElncRNAs selected by cutoff values (p-value = 0.01, |log2FC| = 1 & correlation cutoff = 0.75). (C) Edge table showing the connections of 
has-miR-449b-3p. The edge table contains the log2FC of miRNA (− 3.63) and connected genes (FOXN4 = − 2.52, CDC20B = − 3.73 & AZU1 = − 1.68). 
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correlation matrix with correlation coefficient |r| > 0.5 was used to 
create a network graph using the CRAN R package igraph (v 1.4.1). The 
Fastgreedy network community identification method was used to 
identify hub networks from the co-expression network of miRNA–mR
NA–lncRNAs. The CRAN R package visNetwork (v 2.1.0) was used to 
visualize the co-expression networks. 

2.6. miRNA-drug associations and Human Protein Atlas pathology data 

Experimentally supported miRNAs and their drug associations pre
sent in gynecological and breast cancers were collected from the Non
coRNA DB [31]. In total, 672 associations were included. From The 
Human Protein Atlas (HPA), we collected the pathology data to explore 
miRNA target gene protein expression and their relevance in cancer 
prognosis. 

2.7. Tool implementation 

The Shiny R package was used to build the web application. A Docker 
image of the Shiny application was created to host the application on the 
public domain. 

3. Results 

3.1. Tool interface 

ExplORRNet enables the exploration of miRNA or gene expression 
profiles from TCGA datasets for gynecological cancers and breast cancer 
tissues, as well as circulating miRNA expression profiles from blood, 
serum, plasma, and exosome, as shown in Fig. 1. 

Users can select cancer types from the following options: TCGA- 
BRCA, TCGA-UCEC, TCGA-UCS, TCGA-CESC, and TCGA-OV. The 
DEmiRNAs and genes (coding and long non-coding genes) can also be 
explored by cancer subtypes defined according to the clinical staging 
systems of the given cancer type. 

The sidebar panel of the tool interface has three sections for 
exploring the miRNAs, mRNAs, and lncRNAs. Each section is further 
categorized into two parts. The first part enables the exploration of 
differential expression between normal and tumor tissues. The second 
part enables the interactive selection of groups of samples according to 
the clinical stage of cancer to perform pairwise differential expression 

between the stages (or between normal tissue and any cancer stage). 
Violin plots of miRNA or gene expression can be generated by 

selecting the miRNA/mRNA/lncRNA ID from the list, as shown in Sup
plementary Figs. S1A, S1C, and S1E. miRNA/mRNA/lncRNA expression 
in cancer stages can be visualized from the cancer stage-wise analysis 
tab, as shown in Supplementary Figs. S1B, S1D, and S1F. Supplementary 
Fig. S1G shows a violin plot for c-miRNA expression in the GEO dataset 
GSE178629. 

3.2. miRNA/mRNA/lncRNA differential expression analysis 

After data preprocessing, the DEmiRNAs are calculated on the tool 
interface and output as a table along with information regarding the 
miRNA family, logCPM, exp(logCPM), fold change value, p-value, and 
adjusted p-value (Supplementary Fig. S2). DEmiRNAs can be visualized 
as a volcano plot, and the p-values and log2 fold-change cutoff values 
can be adjusted by user choice, as shown in Fig. 2. Similar to miRNAs, 
differential expression analysis can also be performed for mRNAs and 
lncRNAs in gynecological and breast cancers by comparing the expres
sion between normal and tumor tissues or the tumor tissue divided by 
clinical stages. Volcano plots of mRNA/lncRNA profiles can also be 
generated. 

3.3. Extraction of miRNA target genes 

Validated targets for the differentially regulated miRNAs (adjusted p- 
value ≤0.05, |log fold change| >0.5) were obtained from the miRTar
Base, miRecords, and TarBase databases using the multiMiR package. 
For any selected differential expression comparison, a validated miRNA 
target gene table will be generated from the three databases, as shown in 
Supplementary Figs. S3A and S3B. Tables 3A and 3B lists the target 
genes in TCGA-UCEC and TCGA-OV. 

3.4. Gene ontology and pathway enrichment analysis of target genes of 
DEmiRNAs 

This tool also provides functional annotations of miRNA target 
genes. Significantly enriched biological processes, cellular components, 
molecular functions, and KEGG pathways of the target genes of DEmi
RNAs are plotted in the form of a dot plot, as shown in Fig. 8A- Fig. 8D. 
Furthermore, other biologically relevant proteins from the Human 

Table 4 
Table of tool comparison with other existing tools.  

Tool Name Pan-Cancer miRNA 
expression 
pattern 
exploration 

miRNA Target and 
interactions 

Functional 
annotations 

Network Survival mRNA and 
lncRNA 

ExplORRNet No: BRCA, 
UCEC, UCS, 
CESC & OV 

Pairwise: stages 
of cancer types 

Validated targets & 
interactions: mRNA 
and lncRNA. 

GO, KEGG & 
HPA 

miRNA-mRNA-lncRNA 
network (correlation 
between differentially 
regulated biomolecules.) 

CoxPH and log rank 
test, KM-plot for 
each biomolecule. 

yes 

miRNACancerMap (Tong, 
Ru, and Zhang 2018) 

yes Normal- tumor, 
subtype 

yes yes Yes no no 

miR-TV (Pan and Lin 
2020) 

yes Normal-tumor Predicted targets no No no Yes 
(miRNA 
target) 

miRTissue (Fiannaca 
et al., 2018) 

Yes Normal-tumor miRNA-target 
interactions in 
human tissues 

yes PPI network- drug target 
identification 

no no 

OMCD (OncoMir cancer 
Database) (Sarver et al., 
2018) 

Yes (10000 
cancer 
patients) 

Normal-tumor, 
tumor-tumor & 
control-control 

no no No no no 

OncoMir (Wong et al., 
2018) 

yes normal,-tumor, 
stage, grade, 

Yes: miRNA-target 
correlation 

no No Overall survival, 
miRNA-based 
survival signature 

no 

UALCAN (Chandrashekar 
et al., 2017) 

yes normal.-tumor, 
stage 

yes no No yes yes 

OncoLnc (Anaya 2016) yes yes no no No yes yes  
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Phenotype Ontology (HP), Human Protein Atlas (HPA), miRNAs, 
Reactome pathways, transcription factor (TF), and WikiPathways (WP) 
are generated using the gProfiler2 package, as shown in Supplementary 
Fig. S7. 

3.5. Pairwise DEmiRNA analysis and visualization 

Based on the classification by the clinical staging of the cancer type, 
users can opt for pairwise comparisons from the provided options, and 
the tool performs a differential expression analysis. The respective vi
sualizations, as well as the DEmiRNA target gene information and 
enrichment analysis, are generated similarly as above. The option to 
select any two groups of samples for DEmiRNA analysis and DEmiRNA 
table as well as the has-let-7a-5p expression is visualized in the violin 
plot are shown in Fig. 3A- 3C respectively. 

3.6. c-miRNA expression in gynecological and breast cancers 

c-miRNA expression microarray and high-throughput sequencing 
data were collected from the GEO database. miRNA levels in blood 
plasma and serum and exosomal miRNA expression in gynecological and 
breast cancers were used. Similar to solid tumor tissue expression 
analysis, the expression patterns of miRNAs in the blood circulation, 
plasma, and serum of patients with gynecological and breast cancers can 
be explored and visualized as volcano or violin plots, as shown in Sup
plementary Figs. S4A-S4C. Target genes of differentially regulated 
circulating miRNAs (DEcircmiRs) are extracted from databases, 
including miRecords, miRTarBase, and TarBase, similar to those from 
TCGA data. Moreover, GO and KEGG pathway enrichment analyses for 

Table 5 
miRNA regulation in TCGA-UCEC.  

miRNA Family upregulation downregulation reference 

has-mir-497-5p/3p mir-497 Normal Tissue Tumor tissue [37] 
Normal tissue Clinical stage I, II, III, IV 
Clinical stage I III, IV 
Clinical stage II III, IV 

hsa-miR-23b-3p/5p mir-23 Normal Tissue Tumor tissue [38]   
Normal Tissue Clinical stage I, II, III, IV 

hsa-miR-125b-5p mir-10 Normal Tissue Tumor Tissue 
Normal Tissue Clinical stage I, II, III, IV 

hsa-miR-199a-3p mir-199 Normal Tissue Tumor Tissue [38] 
Normal Tissue Clinical stage I, II, III, IV 

hsa-miR-221-3p mir-221 Normal Tissue Tumor Tissue [38] 
Normal Tissue Clinical stage I, II, III, IV 

hsa-miR-451a mir-451 Normal Tissue Tumor Tissue [39]  
Normal Tissue Clinical stage I, II, III, IV 

hsa-miR-363-3p mir-363 Tumor tissue Normal Tissue [39] 
Clinical stage I, II, III, IV Normal tissue 
Clinical stage IV Clinical stage I 
Clinical stage IV Clinical stage II 
Clinical stage IV Clinical stage III 

hsa-miR-940 mir-940 Tumor Tissue Normal Tissue [39] 
Clinical stage I, II, III, IV Normal Tissue 

hsa-miR-1301-3p/5p mir-1301 Tumor Tissue Normal Tissue [39] 
Clinical stage I, II, III, IV Normal Tissue 

hsa-miR-18a-3p/5p mir-17 Tumor Tissue Normal Tissue [40] 
Clinical Stage I, II, III, IV Normal Tissue 
III SI 

hsa-miR-18a-3p mir-17 Tumor Tissue Normal Tissue [40]  
Clinical Stage I, II, III, IV Normal Tissue  
Clinical stage III Clinical stage I  
Clinical stage IV Clinical stage SI 

hsa-miR-18b-3p/5p mir-17 Tumor Tissue Normal Tissue [40]   
Clinical Stage I, II, III, IV Normal Tissue 

hsa-miR-449c-5p mir-449 Tumor tissue Normal Tissue [40] 
Clinical Stage I, II, III, IV Normal Tissue 

hsa-miR-1224-5p mir-1224 Tumor Tissue Normal Tissue [40] 
Clinical Stage I, II, III, IV Normal Tissue 
Clinical stage I, II Clinical stage III 

hsa-miR-424-5p mir-322 Normal Tissue Tumor Tissue [40] 
Normal Tissue Clinical Stage I, II, III, IV 

has-mir-101-3p/5p mir-101 Normal Tissue Tumor Tissue [41,42] 
hsa-miR-106b-5p/3p mir-17 Tumor Tissue Normal Tissue [42,43] 

Clinical Stage I, II, III, IV Normal Tissue 
hsa-miR-944 mir-944 Tumor Tissue Normal Tissue [42,44] 

Clinical stage I, II, III, IV Normal Tissue  

Table 6 
miRNA regulation in TCGA-OV.  

miRNA Family upregulation downregulation reference 

hsa-miR-19b-3p/ 
1-5p 

mir-19 Clinical stage II Clinical stage III, 
IV 

[45–47] 

hsa-let-7f-5p let-7 Clinical stage II Clinical stage III, 
IV 

hsa-let-7b-3p let-7 Clinical stage II Clinical stage III 
hsa-miR-323a-3p mir- 

154 
Clinical stage 
III 

Clinical stage IV 

hsa-miR-323b-3p mir- 
154 

Clinical stage 
III 

Clinical stage IV 

hsa-miR-128-3p mir- 
128 

Clinical stage II Clinical stage IV 

hsa-miR-486-3p mir- 
486 

Clinical stage II Clinical stage III, 
IV 

hsa-miR-98-5p let-7 Clinical stage II Clinical stage III, 
IV 

hsa-miR-34a-5p mir-34 Clinical stage II Clinical stage III [47,48] 
hsa-miR-34c-3p/ 

5p, hsa-miR- 
34b-3p 

mir-34 Clinical stage 
III, IV 

Clinical stage II [47,48]  
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the target genes are also performed for DEcircmiRs, similar to Supple
mentary Figs. S3A and S3B. 

3.7. Survival analysis 

The overall patient survival probability as a KM-plot and a forest plot 
as a Cox proportional hazard model can be generated for miRNA/gene 
expression and the clinical staging of cancer types. miRNA/gene 
expression is separated into two groups: high and low expression, ac
cording to the median expression value in the selected cancer types 
(Fig. 4). 

3.8. miRNA–mRNA–lncRNA co-expression analysis and hub network 
identification 

A co-expression network comprising DEmiRNAs, differentially 
expressed genes, and differentially expressed lncRNAs was generated 
using a correlation matrix. The user interface enables the selection of 
cutoff values for the minimum correlation coefficient (ranging from − 1 
to − 0.5 or 0.5 to 1), adjusted p-values by FDR (ranging from 0.001 to 
0.05), and log2-fold change (ranging from − 2 to − 0.5 or 0.5 to 2). Only 
the edges satisfying the selected cutoff values were used to construct the 
network. To identify the hub module, the Fastgreedy method from the 
igraph package is applied. Each hub is represented by a unique color as 
shown in Fig. 5B and 7A. 

The assortativity coefficient of the network, which measures the 
tendency of nodes to connect with similar or dissimilar nodes, is 
calculated after the hub module identification. A network with an 
assortativity coefficient (R) > 1 exhibits a tendency for hubs to connect 
with each other. A coefficient of <1 indicates a disassortative network in 
which hubs tend to avoid linking. An assortativity coefficient of zero 
represents a neutral network where nodes connect with an expected 
random probability. A visual representation of the network panel is 
shown in Fig. 5A–C. 

3.9. Other aspects 

miRNA and drug target association outputs can be generated using 
the tool interface, enabling users to explore miRNAs and their drug 
target associations for selected cancers, as shown in Supplementary 
Fig. S5. Users can select a specific cancer type from the drop-down list 
(including endometrium, ovary, cervix, and breast cancer tissues). Using 
the HPA database, the tool generates validated miRNA target genes and 
related pathological data. Additionally, a separate link to the HPA 
platform is provided in the table, which enables users to further explore 
selected proteins, as shown in Supplementary Fig. S6. 

3.10. Comparing ExplORRNet with features and capabilities of existing 
tools 

Compared to other web tools, ExplORRNet offers specialized features 
for BRCA, UCEC, UCS, CESC, and OV cancers, enabling the exploration 
of miRNA expression patterns at different cancer stages (Table 4). 
Moreover, our tool provides validated targets and interactions involving 
mRNA and lncRNAs, along with functional annotations, such as GO, 
KEGG, and HPA. Furthermore, users can construct comprehensive 
miRNA–mRNA–lncRNA networks that uncover correlations between 
differentially regulated biomolecules. Additionally, ExplORRNet per
forms survival analysis using CoxPH, log-rank tests, and KM-plots. 

Other tools such as miRNACancerMap [10] focus on 
normal-vs-tumor miRNA expression, miR-TV [21] predicts miRNA tar
gets, and miRTissue [32] offers miRNA-target interactions in human 
tissues, incorporating protein–protein interaction networks. In contrast, 
OMCD [33] covers various cancers but lacks miRNA targets, networks, 
and survival analyses. However, OncoMir [34] considers factors such as 
a normal tumor, stage, and grade and examines miRNA-target correla
tions and survival signatures. Similarly, UALCAN [35] analyzes normal 
tumor miRNA expression, functional annotations, survival, and target 
genes. Finally, OncoLnc [36] explores miRNA expression, survival, 
mRNA, and lncRNA analysis. Considering its specialized focus, validated 
targets, functional annotations, comprehensive networks, and survival 
analysis capabilities, ExplORRNet is a valuable addition to existing web 
tools. 

3.11. Case studies 

3.11.1. Exploration of differentially regulated miRNAs in TCGA-UCEC, 
TCGA-OV, and TCGA-BRCA 

Using the miRNA option in the sidebar panel of ExplORRNet, we 
analyzed miRNA expression levels in TCGA-UCEC, TCGA-OV, and TCGA- 
BRCA across tumor tissues and four tumor stages. In TCGA-UCEC, seven 
miRNAs (has-mir-497-5p/3p, hsa-miR-23b-3p/5p, hsa-miR-125b-5p, hsa- 
miR-199a-3p, hsa-miR-221-3p, hsa-miR-424-5p, and has-mir-101-3p/5p) 
were downregulated at higher tumor stages (SIII and SIV) compared to 
normal tissue or lower tumor stages (SI and SII) (Table 5). Conversely, six 
miRNAs (hsa-miR-363-3p, hsa-miR-940, hsa-miR-1301-3p/5p, hsa-miR- 
18a/b-3p/5p, hsa-miR-449c-5p, and hsa-miR-1224-5p) were upregu
lated in tumor tissues compared to normal tissues (Table 5). These findings 
are consistent with those of multiple studies using TCGA datasets and 
other repositories [37–44]. In TCGA-OV, we also observed characteristic 
regulation patterns consistent with previous reports [45–47] Pairwise 
comparisons between the clinical stages of ovarian tumor tissues revealed 
the downregulation of hsa-miR-19b-3p/1-5p, hsa-let-7f-5p, hsa-let-7b-3p, 
hsa-miR-128-3p, hsa-miR-98-5p, and hsa-miR-34a-5p in stages III and IV, 
whereas hsa-miR-323a-3p and hsa-miR-323b-3p were downregulated in 
stage IV (Table 6). Conversely, hsa-miR-34c-3p/5p and hsa-miR-34b-3p 

Table 7 
miRNA regulation in TCGA-BRCA.  

miRNA Family upregulation downregulation reference 

hsa-miR-497-5p mir-497 Normal Tissue Tumor Tissue, Clinical Stage I, II, III, IV [49] 
hsa-miR-200c-5p/3p mir-8 Tumor Tissue, Clinical Stage I, II, III, IV Normal Tissue 
hsa-miR-141-5p/3p mir-8 Tumor Tissue, Clinical Stage I, II, III, IV Normal Tissue 
hsa-miR-224-3p/5p mir-224 Normal Tissue Tumor Tissue, Clinical Stage I, II, III, IV [55] 

Clinical stage II Clinical Stage I 
hsa-miR-210-3p mir-210 Tumor Tissue, Clinical Stage I, II, III, IV Normal Tissue 

Clinical Stage II, IV Clinical Stage I 
hsa-miR-130a-3p mir-130 Normal Tissue Tumor Tissue, Clinical Stage I, II, III, IV 
hsa-miR-30a-5p mir-30 Tumor Tissue, Clinical Stage I, II Normal Tissue [56] 
hsa-miR-126-5p/3p mir-126 Normal Tissue Tumor Tissue, Clinical Stage I, II, III, IV 
hsa-miR-140-3p mir-140 Normal Tissue Tumor Tissue, Clinical Stage I, II, III, IV 
hsa-miR-206 mir-1 Normal Tissue Clinical Stage I, II, III, IV   

Clinical stage II Clinical Stage III 
hsa-miR-335-5p/3p mir-335 Normal Tissue Clinical Stage I, II, III, IV  

A. Lawarde et al.                                                                                                                                                                                                                               



Non-coding RNA Research 9 (2024) 125–140

135

were upregulated in stages III and IV, consistent with existing literature 
[47,48]. Similarly, in TCGA-BRCA, we observed a regulatory pattern 
consistent with that reported in previous literature [49]. In particular, 
has-miR-497-5p, hsa-miR-224-3p/5p, hsa-miR-130a-3p, hsa-
miR-126-5p/3p, hsa-miR-140-3p, hsa-miR-206, and hsa-miR-335-5p/3p 
were downregulated in tumor tissues compared to normal tissues 
(Table 7). In contrast, hsa-miR-200c-5p/3p, hsa-miR-141-5p/3p, 
hsa-miR-210-3p, and hsa-miR-30a-5p were upregulated in tumor tissues 
(Table 7). 

3.11.2. Survival analysis of differentially regulated miRNAs in TCGA- 
UCEC, TCGA-OV, and TCGA-BRCA 

Survival analysis of the differentially regulated miRNAs in TCGA- 
UCEC, TCGA-OV, and TCGA-BRCA revealed significant associations 
with patient prognosis [37,38]. 

In TCGA-UCEC, the upregulated miRNAs (has-mir-497-5p/3p, hsa- 
miR-23b-3p/5p, hsa-miR-125b-5p, hsa-miR-199a-3p, hsa-miR-221-3p, 
and hsa-miR-424-5p) correlated with poor survival at higher tumor 
stages. Fig. 6A highlights the median survival of approximately 4 years 
for stage IV patients, and the hazard ratio of advanced stages (III and IV) 

Fig. 6. Kaplan-Meier (KM) and forest plot exemplifying downregulated miRNAs in TCGA-UCEC and TCGA-OV 
(A) KM-plot and forest plot of has-mir-497-5p in TCGA-UCEC. (B) KM-plot and forest-plot of has-mir-128-3p in TCGA-OV. (C) KM-plot and forest plot of has-mir-30a- 
5p in TCGA-BRCA. 
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was significantly higher (p-value <0.001) than that of early stages (I–II) 
in TCGA-UCEC. 

In TCGA-OV, significant associations were observed between specific 
miRNAs (hsa-miR-19b-3p/1-5p, hsa-let-7f-5p, hsa-let-7b-3p, hsa-miR- 
128-3p, hsa-miR-98-5p, hsa-miR-323a-3p, and hsa-miR-323b-3p) and 
patient prognosis. For example, hsa-mir-128-3p expression correlated 
with a median survival of approximately 2.7 years. Fig. 6B shows the 
hazard ratios for patients with stage II (p-value <0.01), stage III (p-value 

<0.01), and stage IV cancers (p-value <0.001). 
In TCGA-BRCA, higher expression of has-miR-30a-5p was linked to 

improved survival. Fig. 6C illustrates the KM-plot, demonstrating a 
median survival of approximately 10 years for stage IV cancer. The 
forest plot displayed a reduced hazard ratio (p-value <0.001) associated 
with lower expression of has-miR-30a-5p. Additionally, patients in 
clinical stages I and II showed a decreased hazard ratio (p-value <0.05). 
Notably, our findings are consistent with prior studies [37,38], 

Fig. 7. Co-expression network of miRNA-mRNA-lncRNA in TCGA-UCEC and TCGA-OV. (A) Co-expression network of dysregulated miRNA-mRNA-lncRNA in 
normal vs tumor tissue of TCGA-UCEC. (p-value <0.05, |logFC| >1, |r| > 0.545 and assortativity correlation coefficient = − 0.6958). The square shape indicates 
miRNA, circle indicates mRNA and triangle indicates lncRNA. Each hub module of a network is colored differently by the hub ID. (B) Co-expression network of 
dysregulated miRNA-mRNA-lncRNA in TCGA-UCEC at each progressing clinical stage (Stage I, II, III and IV) compared against the normal tissue. The dysregulated 
miRNAs and genes are selected by cutoff of p-value <0.01, |logFC| > 1 and the correlation cutoff, |r| <0.75. (C) Co-expression network of dysregulated miRNA- 
mRNA-lncRNA in TCGA-OV at each progressing clinical stage (Stage II, III and IV) compared against each other. The dysregulated miRNAs and genes are 
selected by cutoff of p-value <0.05, |logFC| > 0.5 and the correlation cutoff, |r| < 0.5. In (B and C), R stands for the assortativity coefficient for network. 

Fig. 8. Functional enrichment based on the DEmiRNA list in TCGA-UCEC.The dot-plot shows the top 10 enriched GO terms for DEmiRNAs in TCGA-UCEC (adj. 
P-value <0.01 & |logFC| >1). (A–C) feature top 10 enriched biological processes, cellular components, and molecular functions, respectively. (D) Top 20 enriched 
KEGG pathways. 
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indicating a good level of comparability. 

3.11.3. miRNA–mRNA–lncRNA network in TCGA-UCEC and TCGA-OV 
Using a network panel, we constructed the co-expression networks of 

miRNAs, mRNAs, and lncRNAs in both TCGA-UCEC (Fig. 7A) and TCGA- 
OV (Fig. 7C). We identified hub networks and modules and analyzed the 
interactions between the dysregulated miRNAs and genes. Negative 
assortativity coefficients were observed for TCGA-UCEC and TCGA-OV, 
as shown in Fig. 7B and C, respectively. Thus, our analysis indicates a 
probable loss of regulatory control in different cancer cell populations, 
as suggested in previous studies [50,51]. 

3.11.4. Gene set and pathway enrichment analyses 
In the gene set and pathway enrichment analyses, we utilized the 

target enrichment panel in the tool interface to identify the targets of 
DEmiRNAs in TCGA-UCEC tumor tissues compared to normal tissues. 
The analysis revealed the enrichment of biological processes and path
ways (Fig. 8A and D) involved in tumor progression, such as the Rap1 
and Hippo signaling pathways, which have been previously implicated 
in promoting proliferation, migration, and invasion in endometrial 
cancer [52,53]. The functional enrichment analysis performed using 
gProfiler2 corroborated these findings and also identified enrichment in 
other functional terms, including transcription factor (TF) targets, 
WikiPathways (WP), Human Phenotype (HP), Human Protein Atlas 
(HPA), and Reactome pathways. These results are shown in Supple
mentary Fig. S7 and provide additional insights into the underlying 
mechanisms associated with the dysregulation of miRNAs in 
TCGA-UCEC. 

4. Discussion 

Our study aimed to develop a web tool that enables users to explore 
miRNA expression profiles and their correlation with mRNA and 
lncRNAs in human gynecological and breast cancers. Additionally, we 
aimed to provide a stage-wise exploration, which can be particularly 
useful for examining stage-specific biomarker candidates without 
requiring programming skills. 

ExplORRNet integrates various functions to facilitate the identifica
tion of dysregulated miRNAs, their target genes, and their potential 
biological functions. The differential expression analysis module enables 
users to identify stage-specific miRNAs, mRNAs, and lncRNAs that are 
significantly upregulated or downregulated in specific gynecological 
cancer types. This information is invaluable for understanding the mo
lecular landscape of gynecological cancers and may facilitate the dis
covery of novel biomarkers for early detection and prognosis. 

Furthermore, ExplORRNet incorporates functional enrichment 
analysis, enabling researchers to gain insights into the biological pro
cesses and molecular pathways that are influenced by dysregulated 
miRNAs. By identifying enriched gene ontology terms and signaling 
pathways, researchers can unravel the underlying mechanisms by which 
miRNAs affect cancer development and progression. This information 
may guide the design of targeted therapies or combination treatment 
strategies that exploit the vulnerabilities associated with aberrant 
miRNA expression. 

The miRNA–mRNA–lncRNA interaction network analysis module of 
ExplORRNet provides a visual representation of the regulatory re
lationships among miRNAs, mRNAs, and lncRNAs, enabling users to 
explore the complex interplay between different RNA molecules and to 
identify key regulatory hubs within the network. By highlighting central 
miRNAs or lncRNAs and their associated target genes, researchers can 
prioritize candidate biomarkers or therapeutic targets for further 
investigation. 

ExplORRNet incorporates survival analysis illustrated by 
Kaplan–Meier curves and forest plots, enabling researchers to stratify 

cancer patients and further identify miRNAs or genes associated with 
favorable or adverse clinical outcomes. These findings may aid the 
development of personalized treatment approaches and prognostic 
biomarkers. 

Example case studies using ExplORRNet have demonstrated its effi
ciency in identifying and comparing potential biomarkers in gyneco
logical cancers, highlighting the significance of c-miRNAs as non- 
invasive biomarkers. 

Our study had certain limitations. The use of only publicly available 
data and criteria for selecting gynecological cancers limited the number 
of samples in the current study. It is worth noting that the availability of 
samples could be influenced by updates to public data repositories. 
Moreover, our analysis covered only cancer stages and not subtypes 
because, the lack of sufficient data hindered this possibility. From a 
technical perspective, network generation is slow (>1 min) on the tool 
interface, especially when the number of input genes is high. Finally, 
although fundamental studies have highlighted the importance of 
miRNAs in cancer tissues and cell-free samples for cancer diagnosis and 
prognosis [54], miRNAs are not commonly used for decision making in 
clinical practice. There are multiple reasons for the limited use of 
miRNAs in clinics, such as different levels of miRNA regulation in 
different cancer types, varying concentrations of cell-free miRNAs, and 
variability in factors originating from the clinical and demographic 
criteria of patients [54]. Thus, there is still a need to clinically validate 
the regulated miRNAs and genes to support their roles as biomarkers. 

5. Conclusions 

In conclusion, we believe that ExplORRNet is a valuable tool for 
clinical and basic researchers working in the field of gynecological 
cancer. By facilitating the identification of potential biomarkers and 
their correlation patterns, ExplORRNet provides a platform for the 
development of more precise and personalized treatment strategies. 
Furthermore, our tool offers cancer stage-wise information that can be of 
interest to oncologists for identifying stage-specific biomarker candi
dates without requiring advanced computational programming knowl
edge. Additionally, the network analysis capability of our tool enables 
the identification of cancer-specific drivers for cancer progression. We 
aim to continue updating and improving our tool to compete with the 
latest advancements in the field of cancer genomics, thereby enabling 
improved survival and outcomes for patients with gynecological and 
breast cancers. 

Funding 

This research was funded by the Estonian Research Council (grant 
no. PRG1076), Horizon 2020 innovation grant (ERIN, grant no. 
EU952516), Enterprise Estonia (grant no EU48695), and the Horizon 
Europe NESTOR grant (grant no. 101120075) of the European 
Commission. 

CRediT authorship contribution statement 

Ankita Lawarde: Conceptualization, Data curation, Formal analysis, 
Investigation, Software, Visualization, Methodology, Writing - original 
draft. Edris Sharif Rahmani: Software, Investigation, Writing - review 
& editing. Adhiraj Nath: Software, Writing – review & editing. Darja 
Lavogina: Conceptualization, Writing - original draft, Writing - review 
& editing. Jana Jaal: Conceptualization, Supervision, Writing - review 
& editing. Andres Salumets: Conceptualization, Funding acquisition, 
Project administration, Supervision, Writing – review & editing. 
Vijayachitra Modhukur: Conceptualization, Formal analysis, Investi
gation, Project administration, Resources, Supervision, Writing – orig
inal draft, Writing – review & editing. 

A. Lawarde et al.                                                                                                                                                                                                                               



Non-coding RNA Research 9 (2024) 125–140

139

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The authors would like to express their gratitude to the high- 
performance computing team of the University of Tartu for their valu
able assistance in resolving technical issues during the development of 
the web tool. Additionally, we thank Dr. Amrutha Pathare for her 
assistance in generating the graphical abstract using BioRender (bior 
ender.com). We are grateful to the TCGA research network (http://c 
ancergenome.nih.gov) and the researchers who deposited their data in 
the Gene Expression Omnibus (GEO), enabling us to utilize publicly 
available data for constructing the web tool. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ncrna.2023.10.006. 

References 

[1] J. Gilabert-Estellés, A. Braza-Boïls, L.A. Ramón, E. Zorio, P. Medina, F. España, 
A. Estellés, Role of microRNAs in Gynecological Pathology, 2012. 

[2] M. Ha, V.N. Kim, Regulation of microRNA biogenesis, Nat. Rev. Mol. Cell Biol. 15 
(2014) 509–524, https://doi.org/10.1038/nrm3838. 

[3] Ambros Victor, The Functions of Animal microRNAs, 2004, https://doi.org/ 
10.1038/nature02871. 

[4] S. Jonas, E. Izaurralde, Towards a molecular understanding of microRNA-mediated 
gene silencing, Nat. Rev. Genet. 16 (2015) 421–433, https://doi.org/10.1038/ 
nrg3965. 

[5] S.K.D. Dwivedi, G. Rao, A. Dey, P. Mukherjee, J.D. Wren, R. Bhattacharya, Small 
non-coding-rna in gynecological malignancies, Cancers 13 (2021) 1–52, https:// 
doi.org/10.3390/cancers13051085. 

[6] P. Xu, Q. Wu, J. Yu, Y. Rao, Z. Kou, G. Fang, X. Shi, W. Liu, H. Han, A systematic 
way to infer the regulation relations of miRNAs on target genes and critical 
miRNAs in cancers, Front. Genet. 11 (2020), https://doi.org/10.3389/ 
fgene.2020.00278. 

[7] C.M. Croce, Causes and consequences of microRNA dysregulation in cancer, Nat. 
Rev. Genet. 10 (2009) 704–714, https://doi.org/10.1038/nrg2634. 

[8] G. Di Leva, M. Garofalo, C.M. Croce, MicroRNAs in Cancer, Annual Review of 
Pathology: Mechanisms of Disease, 9, 2014, pp. 287–314, https://doi.org/ 
10.1146/annurev-pathol-012513-104715. 

[9] S.K. Srivastava, A. Ahmad, H. Zubair, O. Miree, S. Singh, R.P. Rocconi, J. Scalici, A. 
P. Singh, MicroRNAs in gynecological cancers: small molecules with big 
implications, Cancer Lett. 407 (2017) 123–138, https://doi.org/10.1016/j. 
canlet.2017.05.011. 

[10] Y. Tong, B. Ru, J. Zhang, MiRNACancerMAP, An integrative web server inferring 
miRNA regulation network for cancer, Bioinformatics 34 (2018) 3211–3213, 
https://doi.org/10.1093/bioinformatics/bty320. 

[11] Y. Zhou, X. Zheng, B. Xu, W. Hu, T. Huang, J. Jiang, The identification and analysis 
of mRNA–lncRNA–miRNA cliques from the integrative network of ovarian cancer, 
Front. Genet. 10 (2019), https://doi.org/10.3389/fgene.2019.00751. 

[12] T. Cheng, S. Huang, Roles of non-coding RNAs in cervical cancer metastasis, Front. 
Oncol. 11 (2021), https://doi.org/10.3389/fonc.2021.646192. 
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